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The need of formally specify and verify the behavior of increasingly complex systems is posing
many new challenges, one of them being the difficulty of proving and reasoning over properties of
systems that exhibit some kind of probabilistic behavior. Following [1], we consider probabilistic

concurrent processes formalized as probabilistic transition systems given as a pair 〈P, { a−→
}a∈L〉, where L is some set of labels, D(P ) is the set of probability distributions on the set of

states P , and
a−→ ⊆ P × D(P ) is the a-labeled transition relation. This definition generalizes

that of standard labeled transition system.

The modal µ-calculus has proven to be a very expressive and yet tractable logic for expressing
properties of labeled transition systems. In [2, 3] an extension of this logic to the context of
probabilistic transition systems, called quantitative modal µ-calculus or just qMµ, is studied
and its semantics (assigning real values in [0, 1] to pairs of states and formulae) is given de-
notationally by means of fixed points. However understanding µ-calculus (and qMµ) formulae
denotationally can be very hard. In [4] the authors propose a different semantics based on Two
Player Stochastic games for qMµ very similar to the, nowadays standard, Two Player game
semantics for the modal µ-calculus introduced in [5]: the main difference being that in the
game configuration (p, 〈a〉F ) (respectively (p, [a]F )), Player 1 (respectively Player 2) chooses
an a-successor of p (i.e. a distribution); then the next game configuration is chosen probabilis-
tically according to the distribution. This allows one to understand operationally the meaning
of a qMµ formula as a limit probability, called the value, of winning the game according to
the usual rules for winning µ-calculus games [5]; for instance the value associated to the pair
(p, µX. [a]X) is the greatest lower bound for the probability of making a sequence of a-actions
and eventually reaching a state from which no a-action is possible. This semantics is arguably
easier to understand than the denotational semantics and therefore offers a tractable way to
deal with the meaning of qMµ formulae.

In the past 15 years, several proof systems have been proposed for reasoning over µ-calculus
properties. In [6, 7] the author introduces a sound and complete sequent based proof system for
proving Hennessy-Milner properties for processes described by a class of well behaved process
calculi. At the same time a sequent based proof system for CCS processes and general µ-calculus
properties is introduced in [8]. These papers provided evidence for the many advantages offered
by the use of sequents as basic judgments in the proposed proof systems (see [7] for a detailed
overview). More recent work on sequent calculi for the modal µ-calculus include [9] and [10].
One of the most interesting aspects of these proof systems is that derivations are in general
infinite (finite branching) trees, where the (left and right) rules for fixed points formulae are
just unfoldings. Proofs are therefore not just finite derivations with axioms at the leafs, but
infinite derivations satisfying some proof condition. The general study of this kind of sequent
based infinitary proof systems is developed in [11] in the context of first-order logic extended
with inductive definitions. The proof condition in these systems is always expressed as a ω-
regular property that every infinite path in the derivation must satisfy, which in turn is based
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Figure 1: Rules for the non-communicating asynchronous parallel operator |

on properties of the sequents forming the path.

This abstract describes the ongoing research aimed to the definition of a sequent based infinitary
proof system for proving qMµ properties of processed described by a class of well behaved
process calculi ([12]). The first notion that needs to be revisited is the meaning of sequents. As
the game-based semantics of the logic qMµ assigns a value [[p:F ]] ∈ [0, 1] to a pair of process
p and formula F , the standard classical (conjunction and disjunction) interpretation for the
commas in the sequents needs to be changed. We found that interpreting left commas as
multiplications, many properties of interest can be expressed by sequents. Therefore fixed an
interpretation ρ for the process variables we define the meaning of the sequent

p1:F1, ..., pn:Fn ` q1:G1, ..., qm:Gm

as

[[p1:F1]]ρ · ... · [[pn:Fn]]ρ ≤ [[q1:G1]]ρ � ...� [[qm:Gm]]ρ

where � is the De Morgan dual of · under the involution ¬x = 1− x, i.e. x� y = ¬(¬x · ¬y).
A sequent is valid if the inequality holds for every interpretation. Observe that adopting this
semantics, the familiar left and right contraction rules become unsound.

The following is a simple but surprisingly not trivial example of valid sequent only involving
the non-communicating asynchronous parallel ( | ) term constructor (whose probabilistic oper-
ational semantics is given, as in [12], by the rules of Figure 1) and the qMµ formula µX. [a]X
whose meaning has been discussed above:

x:µX. [a]X, y:µX. [a]X ` x|y:µX. [a]X

This is one of many examples that motivated the choice of multiplication (and its dual) as
interpretation of the commas. It seems that this choice fits quite well with the operational
semantics associated with any process operator given in the general SOS format for probabilistic
process operators of [12]. As a brief remark note that the quantitative entailment expressed by
the above valid sequent, implies a qualitative one: if the value of all assertions on the left part
of the sequent is 1 then the assertion on the right have value 1; in other words when reasoning
qualitatively, the meaning of the commas in the sequents collapses to the classical one. This
seems to support the choice of working with a quantitative interpretation for the sequents, as
it can express more refined properties.

Our sequent calculus proof system includes a number of interesting features due to the quanti-
tative interpretation of sequents. As already observed, contraction is unsound, so our sequent
calculus implements an affine logic. More significantly, the inclusion of probabilistic process
operators means that it is necessary to include proof rules for dealing with probability distri-
butions over processes. Let us consider for example the following right rule that operates with
the probability distribution p+1

3
q which assigns probability 1

3 to p and 2
3 to q:

Γ ` ∆, p:F Γ ` ∆, q:F
+R

Γ ` ∆, p+1
3
q:F
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Roughly speaking, this rule must be understood bottom-up, as corresponding to the probabilis-
tic choice associated with the distribution p +1

3
q. This amounts to consider the two premises

of the end sequent as having different probabilistic weights. Therefore the end sequent of the
rule +R can be considered as a probabilistic node in a derivation tree and the whole derivation
tree, under this interpretation, is a Markov Process, i.e. some of its nodes are probabilistic, and
some other nodes offer genuine choices. As in [9, 10, 11, 8] our proof system is based on infinite
(non-well-founded) derivations, and so requires a global proof condition to impose on proofs to
ensure soundness. To formulate the proof condition we first define the notion of Markov path
through a proof. This is like a path through the derivation tree, but it builds in probabilistic
choices at probabilistic proof rules, giving rise to a Markov chain of paths through the deriva-
tion. The proof condition is then the following: for every Markov path through the proof, the
set of paths in the Markov path having a left µ-trace or a right ν-trace has measure 1. The
notion of (µ, ν)-trace is fairly standard, as it coincides with analogous definitions appearing in
[11, 8, 9, 10]. Our main result is the soundness of this proof system. This is nontrivial and the
proof involves novel constructions on Two Player Stochastic games, in particular novel notions
of product and coproduct game related to the quantitative interpretation of sequents.

In addition to the soundness result, we have examples of derivations of nontrivial properties in
the system; for instance, the example presented above.

As a final remark, observe that in any practical use of the proof system, some finite description
for the infinite derivation must be provided. Among the classes of infinite derivations finitely de-
scribable by different structures, the simplest is that of regular derivations, those representable
by cyclic graphs. An interesting non-trivial problem is then associated with the decidability of
the proof condition on derivations represented as cyclic graphs.
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