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Abstract

In recent years, real-time control of prosthetic hands has gained a great deal of attention. In
particular, real-time analysis of Electromyography (EMG) signals has several challenges to achieve
an acceptable accuracy and execution delay. In this paper, we address some of these challenges by
improving the accuracy in a shorter signal length. We first introduce a set of new feature extraction
functions applying on each level of wavelet decomposition. Then, we propose a postprocessing ap-
proach to process the neural network outputs. The experimental results illustrate that the proposed
method enhances the accuracy of real-time classification of EMG signals up to 95.5 percent for 800
msec signal length. The proposed postprocessing method achieves higher consistency compared with
conventional majority voting and Bayesian fusion methods.

1 Introduction
In recent years, Electromyography (EMG) has received considerable attention due to its applications
for the control of powered upper-limb prostheses. In these techniques, EMG signal captured by skin-
mounted sensors resulting by muscle contraction is used to send control commands [9].

The early myoelectric hands controlled via EMG signals were limited to ”on” or ”off” states depend-
ing on the amount of mean absolute value of signals [19]. If the amount of mean absolute value of EMG
signal is more than a specified threshold value, the output is ”on” and a simple activation would occur;
Otherwise, the output is ”off” and no activation would happen. This technique causes prosthetic hands
to perform limited movements, much less than the expected actions done by a human hand. Pattern
recognition is one of the most promising approaches to provide flexibility for fingers movements. Due
to the capability of EMG signals, many researchers have concentrated on finding appropriate features
and classifiers to achieve high accuracy. Feature extraction from EMG signals is one of the vital part for
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Figure 1: The overall procedure of our proposed model.

the classification of fingers gestures. This feature extraction should be performed to find the monotonic
relation between a related signal and that of its corresponding command. In general, three different
type of features are used for EMG signals classification: time domain (TD), frequency domain (FD) and
time-frequency domain.

Heydarzadeh et al. [7] performed spectral analysis on EMG signals and extracted reflection coef-
ficients as their features. For classification, the authors utilized support vector machine (SVM) as a
classifier. Azhiri et al. [2] extracted the same features of [7], but their classifier was extreme value
machine (EVM), and improved the accuracy. Esa et al. [5] used Hudgins features, root-mean-square
(RMS) and finally combination of all these features, and an SVM classifier. Authors in [16] used some
combination of wavelet features and classified the EMG signal with optimized parameters of SVM to
get high accuracy of this classifier. Reference [3] used statistical features like RMS, median, standard
deviation, and variance combined with fast Fourier transform (FFT) and implemented gradient boosting
(GB) as a classifier.

While high accuracies have been reported in the literature, most of them targeted off-line processing,
which is impractical for real-time myoelectric control of prosthetics. Generally speaking, it is expected
to contemplate that the accuracy of real-time classification is less than off-line technique. On real-time
control of upper-limb prostheses, Khushaba et al. [12] extracted TD, autoregressive (AR) and Hjorth as
their features and performed feature reduction with linear discriminant analysis (LDA). Finally, classi-
fication is done with KNN and library SVM (LIBSVM). Authors in [4] used wavelet packet transform
as a generalized format of wavelet transform. They utilized principal component analysis (PCA) and
self-organizing feature map (SOFM) for feature reduction, and then classified with multilayer percep-
tron (MLP) in real-time approach. Reference [10] applied filtering, rectifying and extracting features
in time, frequency and time-frequency domains, and applying different parametric and nonparametric
classifiers. The extracted features from the EMG signals can be reduced to a set of features with the sig-
nificant importance using optimization methods such as Particle Swarm Optimization (PSO) [6, 22, 21],
Genetic algorithm [20, 14], matrix factorization [23], and space optimization [11].

Wavelet transform is a promising approach for analyzing EMG signals. In this paper, we utilize db1
mother wavelet transform. After applying a wavelet transform on EMG signals, the features are ex-
tracted using conventional feature extraction functions that are applied on signals. While some feature
extraction functions are conventionally used in the literature, we propose five new feature extraction
functions to be applied at each level of wavelet decomposition. For classification, a neural network ar-
chitecture with six hidden layers with 32 neurons at each layer is used. Moreover, a new postprocessing
method is employed to combine and refine the results of the neural network classifier. The proposed
method is based on the summation of probabilities for each class. This method is compared with the
majority voting and Bayesian fusion technique.
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Figure 2: Ten individual and combined finger movements [12]. Each finger movement corresponds to a
class, i.e. Thumb: class 1, Index: class 2, Middle: class 3, Ring: class 4, Little: class 5, Thumb-Index:
class 6, Thumb-Middle: class 7, Thumb-Ring: class 8, Thumb-Little: class 9, Hand-Close: class 10.

Table 1: Twelve conventional features.
Statistical Metric Abbreviation Formula

Integrated EMG [24] IEMG ∑
N
n=1 |x[n]|

Mean Absolute Value [8] MAV 1
N ∑

N
n=1 |x[n]|

Simple Square Integrated [17] SSI ∑
N
n=1 x[n]2

Root Mean Square [17] RMS
√

1
N ∑

N
n=1 x[n]2

Variance [18] VAR 1
N−1 ∑

N
n=1 x[n]2

Myopulse Percentage Rate [17] MYOP 1
N ∑

N
n=1 f (|x[n]|), f (a) =

{
1 if a > T
0 otherwise

Waveform Length [17] WL ∑
N−1
n=1 |x[n+1]− x[n]|

Difference Absolute Mean Value [18] DAMV 1
N−1 ∑

N−1
n=1 |x[n+1]− x[n]|

Second-Order Moment [18] M2 ∑
N−1
n=1 (x[n+1]− x[n])2

Difference Variance Version [18] DVARV 1
N−2 ∑

N−1
n=1 (x[n+1]− x[n])2

Difference absolute standard deviation value [18] DASDV
√

1
N−1 ∑

N−1
n=1 (x[n+1]− x[n])2

Willison Amplitude [17] WAMP ∑
N−1
n=1 f (|x[n+1]− x[n]|), f (a) =

{
1 if a > T
0 otherwise

2 Wavelet Transform and Feature Extraction
Wavelet transform is an efficient method of capturing both time and frequency information of a signal.
Wavelet transform has successfully been used for processing time-varying and non-stationary biomed-
ical signals. Various wavelet decomposition techniques have been reported for EMG signal decompo-
sition in the literature in terms of mother wavelet and decomposition level [25]. For analyzing a signal
by wavelet transform, the type of wavelet and the level of decomposition have significant impact on the
analysis. After choosing a suitable wavelet transform and determining the level of decomposition, a set
of functions should be applied to the output signals of the wavelet transform to extract features that are
ultimately given to a classifier.

In EMG pattern recognition systems, a set of conventional functions are applied to extract some fea-
tures in time domain. These features are appropriate for real-time systems satisfying required constrains
and can also be implemented using a simple hardware. The conventional time domain features are usu-
ally calculated based on the statistics of the EMG signal such as its first derivative. Table 1 tabulates the
equations of these 12 conventional features. In general, feature extraction functions take a signal from
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either time, frequency, or time-frequency domains, and return a specific statistical value of the input
signal.

We propose to add a set of new features that have not been previously applied for the EMG signal
classification task. We were inspired to use these features by observing their effectiveness in filter design
and mapping a signal by a concave or convex function. The mother wavelet decomposition model used
in this paper is a hyperparameter that is determined by trial and error. These five features are as follows:

1. Integrated Absolute of Second Derivative (IASD):

IASD =
N−2

∑
n=1

|x′[n+1]− x′[n]| (1)

where x′[n] = x[n+1]− x[n], and x[n] is the value of feature as extracted from input. This feature
captures the relative changes of the second derivative of a signal, which behaves like a filter to
reduce the noise.

2. Integrated Absolute of Third Derivative (IATD):

IATD =
N−3

∑
n=1

|x′′[n+1]− x′′[n]| (2)

where x′′[n] = x′[n+ 1]− x′[n]. This feature captures the relative changes of the third derivative
of a signal. Similar to IASD, the third derivative also filters out the noise. Derivative values are
known to increase high-frequency noise. However, this is not detrimental in our work since our
goal is to target the noise in the low frequencies.

3. Integrated Exponential of Absolute Values (IEAV):

IEAV =
N

∑
n=1

exp(|x[n]|) (3)

This function amplifies the samples that are large and suppresses the samples that are small for all
positive and negative samples.

4. Integrated Absolute Log Values (IALV):

IALV =
N

∑
n=1

| log(x[n]+T )| (4)

where T is a threshold that must empirically be tuned. This function suppresses the samples that
are large and amplifies the samples that are small.

5. Integrated Exponential (IE):

IE =
N

∑
n=1

exp(x[n]) (5)

It is similar to IEAV, and it is able to distinguish between positive and negative samples, i.e.,
generally amplifies positive samples and suppresses negative ones. Feature extraction functions
of Table 1are employed to extract the required features from the wavelet transform introduced in
this section.
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3 EMG Processing Methodology

Our proposed architecture, as shown in Figure 1, includes three parts: preprocessing, processing (feature
extraction and neural network), and postprocessing.

3.1 Preprocessing

Due to the stochastic nature of EMG signals, instantaneous processing could not provide desired in-
formation for real-time control of prosthetic hands. Therefore, data windowing is required to examine
EMG signals in batches of consecutive samples [13]. For feature extraction, the wavelet features are
calculated for each window i.e., 100 msec, to discriminate disparate finger movements. These features
are used as inputs for the neural network classifier.

3.2 Neural Network

There has been an increasing interest to employ neural networks for classification of EMG signals. This
interest has emanated from the fact that the real-time control of prosthetic hands demands numerous data
samples, which is impractical for the most of the conventional classifiers. Our neural network model
includes six hidden layers, with 32 neurons for each layer chosen empirically. If we employ a L-level
wavelet decomposition, the total number of features extracted from F feature extraction functions would
be (L+ 1)×F . The output layer has 10 neurons corresponding to the number of classes. Also, ReLU
activation function is used at each layer of the neural network except in the last layer where we utilize
Softmax activation function.

3.3 Postprocessing

After classification by the neural network, we need a postprocessing method to combine the results
obtaining from each window of an EMG signal. The purpose of this step is to refine the results of
the neural network classifier. For the postprocessing, we propose a new method that is based on the
summation of probabilities of each class, i.e., we solve

ĉ = argmax
i

∑
j

P(ci|w j), (6)

where p(ci|w j) denote the probability of class i given window j. We compare our postprocessing method
with the Bayesian fusion method [12] that can be stated as:

ĉ = argmax
i

P(ci|w1,w2, · · · ,wN) = argmax
i

δ ∏
j

P(ci|w j), (7)

where δ is a normalization constant. Also, we compare these postprocessing methods with a simple
majority voting method [12]. The main drawback of Eqn. (7) is for a situation in which the probability
of a class given window wk vanishes. The probability of this phenomena increases by increasing the
number of windows. Our proposed postprocessing method in Eqn. (6) can overcome this problem by
adding probabilities instead of multiplying them.
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Table 2: The accuracy (in %) of majority voting postprocessing method for various signal length.

Features
Signal Length msec

300 550 800 1050 1300 1550 1800 2050

Conv. Features 76.0 84.0 87.0 88.5 89.5 90.0 91.0 92.5

Conv. Features + 5 Proposed Features 82.5 91.5 94.0 95.0 96.0 96.5 95.5 96.0

Table 3: The accuracy (in %) of our proposed postprocessing method for various signal length.

Features
Signal Length msec

300 550 800 1050 1300 1550 1800 2050

Conv. Features 75.5 83.5 88.0 91.0 92.0 92.5 91.5 90.5

Conv. Features + 5 Proposed Features 84.5 92.0 95.5 97.0 96.5 97.5 97.5 96.5

4 Experimental Results

4.1 Dataset

The proposed model is applied to the dataset provided by Center of Intelligent Mechatronic Systems
at the University of Technology at Sydney [12]. Eight participants (six men and two women at the
range of 25 to 30 years old) performing ten different finger movements consisting of five individuals as
Thumb (T), Index (I), Middle (M), Ring (R), Little (L) and five combined movement as Thumb-Index
(T-I), Thumb-Middle (T-M), Thumb-Ring (T-R), Thumb-Little (T-L) and closed hands. In Fig. 2, these
fingers movements are illustrated. The data is recorded with two skin-mounted EMG channels at 4,000
Hz and then amplified to a total gain of 1,000. Each movement of fingers is repeated six times. Each
gesture took five seconds, including rest and holding of each finger posture. We select the first four trials
for the training of the classification and the last two for the test in order to check the accuracy of the
classifiers.

Figure 3: Classification accuracies for various subsets of features and signal lengths.
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Figure 4: The classification accuracy for each class.

Table 4: Comparing the results of different approaches for the same EMG dataset.
Approaches Features Classifier Classes Condition Avg. Acc (%)

[1] TD+Hjorth+RMS ANN 5 Off-line 96.7
[15] AR + RMS ANN+NMF 5 Off-line 92.0
[7] Reflection Coefficients SVM 10 Off-line 89.0

[12] TD+AR+Hjorth KNN+SVM+Fusion 10 Online 90.0
Ours Wavelet NN 10 Online 95.5

4.2 System Setup and Architecture
Each EMG signal contains 20,000 samples that have been sampled and recorded for 5 seconds, with
frequency sampling of 4,000 Hz. Therefore, we break down each training EMG signal into 99 training
parts using a window of length 400 samples and overlap of 200 samples. Please note that for training
the neural network, we only use our training dataset, and this training is done off-line. We consider
a window size of 100 msec with an overlap of 50 msec. The overlapped windowing scheme provides
higher classification accuracy than that of disjoint one. The wavelet transform is applied to each window
of the original signal for feature extraction.

After applying a wavelet transform, a set of features are extracted; some are based on conventional
feature extraction functions that are common for time-varying signals proposed in the literature. We
also use our new feature extraction functions discussed in Section 2, i.e. IASD, IEAV, IATD, IALV
and IE. We consider a 2-level mother wavelet transform decomposition. The total number of features
extracted from conventional and proposed feature extraction functions are 17 for each level of wavelet
transform decomposition. We define the signal length as the length of the original signal that is used for
classification in the postprocessing step. We have trained this model in python and ran it in a Windows-
based PC with 2.60 GHz CPU and 16 GB memory.

4.3 Results
In Table 2, the effects of different features are shown. The accuracy of conventional features is signifi-
cantly improved by our proposed features. Combination of all new proposed and conventional features
enhance the accuracy up to 94.0% and 91.5% within signal length of 800 and 550 msec, respectively,
while we use a simple majority postprocessing. Table 3 shows a comparison between conventional fea-
tures and our proposed feature extraction methods in the presence of our proposed postprocessing. It
can be seen that the classification accuracy increases to 95.5% and 92% within 800 and 550 msec signal
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Figure 5: ROC of conventional features and all features, including five proposed features.

length, respectively. In Figure 3, the effect of signal length and classification accuracy is depicted for
various signal length at the output of the postprocessing. The simulation results show that after a spe-
cific signal length around 1,000 msec, the accuracy does not change significantly. The main drawback
of Eqn. (7) and this postprocessing technique is emanated from the situation in which the probability
of a given class vanishes. Figure 4 also shows the accuracy for each class for 800 msec signal length
using the majority voting. Again, it is obvious that high and uniform accuracy is gained by our archi-
tecture.For last class, the accuracy is less than other classes that could be related to the large nonlinear
movement in the corresponding class [12]. This misclassification for this class could be addressed by
defining a different postprocessing windowing technique. Overall, the accuracy of eight classes is more
than 95% which proves the capability and success of the proposed feature extraction functions.

In Table 4, the performance of our proposed methods is compared with the results of other re-
searchers. Comparing with other studies, especially the results that are obtained on the real-time frame-
work, the strength of our method is proved. Some previous researches on this dataset have just concen-
trated on five classes [18, 1]. Also, some works have focused on pattern recognition in off-line mode [7].
Our architecture that benefits from wavelet transform, neural network, and a set of new feature extrac-
tion functions, and a new postprocessing method outperforms in terms of classification accuracy in
comparison to the existing works. As it is obvious in Figure 5, receiver operating characteristic (ROC)
curve verifies the performance of added features and improves the capabilities of the classifier.

Finally, Figure 6 compares three proposed postprocessing methods with majority voting and
Bayesian fusion methods in the presence of all features. This figure shows that our postprocessing
method is consistent and does not suffer from the main drawback of Bayesian fusion method. The delay
time for the system is the result of feature extraction and process time required by the classifier to make
the decision. Based on our hardware and our proposed architecture, for 800 msec signal length at post-
processing, delay time is about 5.7 msec for the feature extraction and 3.12 msec for the classification.

5 Conclusion
In this paper, we proposed an architecture that is used for real-time control of prosthetic hands. For the
first time, we proposed five new feature extraction functions applying on each level of wavelet transform.
The proposed features were compared with conventional features previously used in the literature. The
proposed feature extraction method enhances the accuracy up to 8% approximately, and could achieve
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Figure 6: A comparison between accuracy of our proposed postprocessing method, majority voting, and
Bayesian fusion on different signal lengths.

the accuracy of 94% within 800 msec signal length using a majority voting postprocessing. The pro-
posed postprocesssing method also increased the accuracy to 95.5%. It was shown that the proposed
postprocessing method is much better than Bayesian fusion and can compete with majority voting. We
intend to implement the proposed feature extraction functions with other neural network architectures
and other conventional classifiers on various datasets. Specifically, we plan to apply the proposed fea-
tures to analyze other biomedical signals and compare with other feature extraction methods.
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