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Abstract 
 

Prostate cancer is widely known to be one of the most common cancers among men around the world. 

Due to its high heterogeneity, many of the studies carried out to identify the molecular level causes for 

cancer have only been partially successful. Among the techniques used in cancer studies, gene 

expression profiling is seen to be one of the most popular techniques due to its high usage. Gene 

expression profiles reveal information about the functionality of genes in different body tissues at 

different conditions. In order to identify cancer-decisive genes, differential gene expression analysis is 

carried out using statistical and machine learning methodologies. It helps to extract information about 

genes that have significant expression differences between healthy tissues and cancerous tissues. In this 

paper, we discuss a comprehensive supervised classification approach using Support Vector Machine 

(SVM) models to investigate differentially expressed Y-chromosome genes in prostate cancer. 8 SVM 

models, which are tuned to have 98.3% average accuracy have been used for the analysis. We were able 

to capture genes like CD99 (MIC2), ASMTL, DDX3Y and TXLNGY to come out as the best 

candidates. Some of our results support existing findings while introducing novel findings to be possible 

prostate cancer candidates. 

keywords: Support Vector Machines; prostate cancer; Y-chromosome; differential expression; 

microarray data; log fold change. 

1. Introduction 
Advancement in computing technology has enabled the possibility of materializing microscopic 

information into humanly sensitive data, thus causing a massive growth of bioinformatics and 

computational biology fields. Collecting biological information of humans and other species, which 

once was a virtually impossible task has now become trivial. The depth of available cellular information 

of species has gone from cell level to DNA sequences. Furthermore, gene expression data can be 

acquired for analysis on computers with the development of Microarray technology [18] [21]. The 

advancement of retrieving methods and purity of Microarray data has given insights into touching 
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untouchable aspects in Medicine and Biology [9]; thus, benefitting the treatments for various diseases. 

Cancer treatments have become highly cellular based as bioinformaticians and scientists have been 

discovering genes and their interactions with each other over the past decade. These discoveries could 

cause triggers for treatments of a number of cancers and other sorts of untreatable diseases. In fact, 

studies have been carried out on the genome level to find differentially expressed genes that are 

remarkable in cancerous tissues [3] [14] [23]. However, the heterogeneity of these data has caused many 

hardships in analyzing gene expression profiles, which in turn provoking the development of novel 

data-analysis techniques. 

One of the most common, yet hardly treatable cancers is Prostate cancer, which can be seen often 

among men around the globe [2].  84,861 men from the USA [20] and 47,151 men from the UK [5] 

were diagnosed with prostate cancer in 2015 while 11,631 deaths were reported in the UK in 2016.  It 

has two basic stages as primary prostate tumour and metastatic prostate cancer where primary cancer is 

of low risk than metastatic cancer. The primary prostate tumour is only located within the prostate gland 

while the metastatic disease is spread across many other organs of the body [24].  

The probability of a man being diagnosed with it rises highly with the age making this cancer common 

among the geriatric population. The 84,861 men who were diagnosed with prostate cancer in the USA 

in 2015 includes 12,489 men aged between 60 and 79 and 14,529 men above the age of 80. This has 

led to research on gene expression data related to prostate cancer, which in turn revealed to be massively 

heterogeneous [1] [4] [23]. Many of the studies have been carried out in both biological sciences and 

statistical domains, highlighting information about some of the candidate genes that can be vital in 

prostate cancer [1] [22]. Since prostate cancer is male-specific, the importance of analyzing the effect 

of Y-chromosome genes towards the proliferation of the disease has been identified. However, most of 

the research carried out on prostate cancer is focused on chromosomes other than Y-chromosome.  

This paper presents an approach for the identification of candidate Y-chromosome genes that can have 

an impact on the growth of prostate cancer. Section 2 presents an overview of commonly used analysis 

techniques in both statistical and supervised learning domains while describing important statistical 

terms used in our approach. Section 3 outlines the analysis criteria and methodology of the model. 

Obtained experimental results and comparisons are presented in Section 4. Finally, section 5 concludes 

the paper with the inference obtained from the results, future extensions, and emphasizes the importance 

of the research. 

2. Background 

Common practice in big data analysis is to build statistical models that can interpret the probabilistic 

behaviour of data. In this paper, interest lies within gene expression profiles and their differential 

expressions. Biological data are highly variable and very sensitive due to their microscopic scale, 

especially when it comes to gene expressions. The variance of data highly depends on each of the gene 

expression values, which vary largely with respect to the tissue from which they have been collected. 

In order to remove the variability and noise in data, data pre-processing should be taken place as a 

common practice. Table 1 and Figure 1 depict information about average and variance of expression is 

5 randomly selected genes from GSE6919 dataset.  

Table 1. Average expression across 171 patient-samples 

 

AR IGHV3_23 EIF2AK2 RPS19 PLAGL1 

1760.5 3.2 1342.7 10398.5 81.8 
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In statistics, the log2 transform is widely used to get rid of the high variance of data due to its 

simplicity [8] [13] [19]. It is possible to get rid of the dependency between the mean and variance of 

data by using this transform. This dependency is generally known as heteroskedasticity. This is 

important when dealing with noise (error) in microarray data because errors largely dependent on the 

population mean, especially when finding the quantitative change of a statistical variable. 

 

Figure 1. Variation of expression across 171 samples 

Fold change (FC) is a statistical quantity used to measure the quantitative change of a variable from 

one state to another. FC can be calculated between tumour (or cancer) samples and normal samples in 

microarray gene expression data. It is an indication of the amount of expression change that has occurred 

when the gene transformed from a normal state to a cancerous state. When the data are log-transformed 

before calculating the fold change, the resulting value is interpreted as log fold change (LogFC). In 

addition to that, there are many other statistical quantities, which can be used to evaluate the differential 

expression of genes such as t-statistics or Bayesian log odds (B-statistics) [19]. 

Apart from these statistical estimation methods, machine-learning methods have been widely used to 

analyze gene expression data and sequence data [11]. Since gene expression data are highly variable, 

statistical methods may provide incorrect estimates when the expression differences are insignificant 

between tissue samples. Pirooznia et al. [16] have carried out a study to perform comparisons between 

several machine learning algorithms regarding the applicability in microarray expression analysis. This 

study concludes that SVM results in better performance compared to other supervised learning 

algorithms for microarray expression analysis.  

A study done by Khosravi et al. [10] found a set of Y-chromosome genes in cancerous tissues which 

exhibit highly differentiated expression levels compared to other normal tissues. This phenomenon is 

used in many of the other studies to classify cancer candidate genes by analyzing their differential gene 

expression profiles. For some genes, expression patterns either can be up or down regulated and those 

genes are classified as cancer candidates. The occurrence of up or down regulation during the metastatic 

transformation process is highlighted in a comprehensive study done by Chandran et al. [4]. This 

information is used extensively to extract candidate Y-chromosome genes having differential 

expressions between normal tissue cells and cancerous cells in our research. Moreover, SVM is used in 

our approach to predict the genes since it has been concluded as the best learning algorithm for 

microarray data analysis [16]. However, further laboratory testing and comprehensive analysis are 

required to enhance these results and confirm them as truly vital candidates in prostate cancer. 
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3. Analysis Criteria and Methodology 

The proposed approach employs a dataset extracted from GEO Dataset under the accession number 

GSE6919 with platform ID GPL8300 [15]. The dataset has 171 patient-samples those, which are 

acquired from four distinct conditions; normal prostate tissue samples without any pathological 

alterations, samples adjacent to the primary prostate tumour, primary prostate tumour samples, and 

metastatic prostate cancer samples. Each of these distinct sample types contains 18, 63, 65 and 25 

samples respectively. Healthy prostate tissue samples without any pathology and samples adjacent to a 

prostate tumour are altogether labelled to normal category while primary tumour samples and metastatic 

cancer samples are put into the cancerous category. Throughout this paper, we refer to normal samples 

and cancerous samples according to the above categorization. These patient-samples, each having 

12625 gene expression values, are used for categorization purpose while training, testing and prediction 

performed on gene-probe samples where one gene-probe sample has 171 values. Overall, the microarray 

dataset is a matrix having 12625 rows and 171 columns. The proposed approach consists of a number 

of steps combining both statistical and supervised learning methods. The dataset is restructured into 8 

categories each of which contains more than one sample category as illustrated in Table 2. The purpose 

of the categorization is the unique identification of differentially expressed genes throughout the cancer 

expansion process from the normal stage to the metastatic stage. Our study compares every normal 

sample with every cancerous sample creating the need for 8 categories. Therefore, 8 SVM models were 

built having one model for each category. SVM models are trained using a subset of ranked gene probes 

from the whole gene set of 12625 genes while the Y-chromosome gene set with 45 genes, is extracted 

for the classification. Limma package in R is used for the probe ranking process since it has been widely 

used among the computational biology researchers for the statistical expression analysis of genes. 

Table 2. Categorization of samples 

Category No. of Samples 

NOR-MET (Normal & Metastatic samples) 43 

ADJ-MET (Adjacent to tumour & Metastatic samples) 88 

NOR-ADJ-MET (Normal, Adjacent to a tumour & Metastatic samples) 106 

NOR-TUM (Normal & Primary tumour samples) 83 

ADJ-TUM (Adjacent to tumour & Primary tumour samples) 128 

NOR-ADJ-TUM (Normal, Adjacent to tumour & Primary tumour samples) 146 

TUM-MET (Primary tumour & Metastatic samples) 90 

ALL (All samples) 171 

The gene probes are ranked according to log-fold-change (LogFC) value. Large LogFC values of the 

top genes provide evidence for the significance of differential expression pattern in them. Under-

expressed genes exhibit a negative LogFC value while over-expressed genes exhibit the opposite. In 

order to signify the patterns in the training dataset, it is divided into two subsets following their positive 

and negative LogFC values. Highly over-expressed genes tend to have significantly increased 

expression in the metastatic region while highly under-expressed metastatic gene expressions are 

significantly shrunk. Thus, highlighting patterns in both cases. This distinct pattern will be slowly 

diminished with the reduction of LogFC value. Seemingly, top-ranked genes show a greater pattern in 

differential expression while others barely display a pattern. As per the investigation carried out, none 

of the top genes was from Y-chromosome. Concisely, Y-chromosome genes that are differentially 

expressed in the prostate cancer cannot be accurately identified just by the statistical ranking method, 

but another more sophisticated approach is required. Therefore, a combined approach containing a 

statistical ranking method and a supervised learning model was used in this research. 
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3.1 Model Building and Classification 
For each SVM model, ~200 genes were classified as vital for cancer and ~200 genes were considered 

to have no effect for cancer. These classifications were done based on LogFC values. Top-ranked genes 

from each category having the highest LogFC values (LogFC > 1.5) [17] are classified as vital (boolean 

1) and the genes from the bottom of the ranking table having lowest LogFC are considered as neutral 

(boolean 0); thus, creating a training dataset of ~400 genes out of 12625 total genes. Alternatively, all 

NA values were replaced by zero. We have used a 70:30 dataset split ratio based on the size of the 

available dataset [7]. Therefore, our training set has ~280 samples, leaving ~120 samples for the test 

data. In statistics, training datasets less than ~100 samples in size tend to have a greater variance 

resulting in low accuracy models. Thus, around 85% of data is recommended to use as the training set. 

Since our training set contains more samples, we refrained from using a higher split ratio. 

Using the dataset both linear and non-linear SVM models were evaluated with 10-fold cross-

validation. This evaluation resulted in better accuracy for the linear model as illustrated by the bar plot 

in Figure 2. Therefore, a linear SVM model was adapted for our approach. Moreover, a cost-grid 

ranging from 0.05 to 35 was used to find the best regularization parameter for each model as illustrated 

in Figure 3. The train function from the Limma package selects the optimum cost value from the range 

and sets to the training model. The accuracy tent to be constant after cost is 25; hence, we limited the 

range up to 35. After classification, the prediction results from each of the 8 models were observed to 

derive conclusions. Figure 4 shows the architectural setup of the procedure followed in our study. 

 

 
 

 

Figure 4. The architecture of the experimental setup 

Figure 2. Comparison of linear & non-linear model 

accuracies 

Figure 3. Variation of the accuracy of SVM models 

against a range of cost values 

A SVM Model for Candidate Y-chromosome Gene Discovery in Prostate Cancer Rasanjana et al.

133



4. Results and comparison 

We analyzed 171 samples taken from 171 patients and from different conditions in the human body. 

Those contain both cancerous and healthy samples from tissues in both prostate gland and other organs 

(only metastatic samples are taken from other organs). All the samples contain 12625 total gene probes, 

which we use as samples for training, testing and prediction, summing up to 2,158,875 out of which 67 

NA values are replaced by zero. We built 8 SVM models to identify and interpret the Y-chromosome 

genes that are differentially expressed across different tissues. In addition, we simultaneously 

investigated over-expressed genes and under-expressed genes under those 8 models. Finally, we 

compared our results with the existing findings from the literature. Table 3 and Table 4 display results 

and comparison of expression change between candidate Y-chromosome genes across different models. 

Table 3. Under-expressed genes  

 

Initially, we considered the significantly differentiated samples, which are highly cancerous and 

highly normal. NOR-MET model contained genes from normal prostate tissue samples (samples that 

are neither diagnosed nor pathologically altered) and metastatic cancer samples (samples taken from 

different metastatic cancer locations such as lungs, liver or lymph nodes). In the ADJ-MET model, we 

analyzed genes from tissue samples that are adjacent to the prostate gland and genes from metastatic 

locations. In both models, we have achieved over 99% model accuracy and the outputs were almost 

identical in both cases. We identified seven over-expressed Y-chromosome genes and six under-

expressed genes namely; VAMP7, USP9Y, ASMTL, KDM5D, DDX3Y, SLC25A6 and CD99, 

LOC101928634, AKAP17A, TXLNGY, SLC25A6, RPS4Y1 as illustrated in columns 3, 4 and 5 of Table 

3. USP9Y and DAZ4 genes do not show over-expression in the NOR-MET model. NOR-ADJ-MET 

model was created to justify our findings of NOR-MET and ADJ-MET models. The results under-

expression from this category were similar to the first two categories except for the loss of DDX3Y and 

over-expression was different for some genes. When the normal and adjacent samples are combined 

into one category, the expression patterns become less significant compared to when they are evaluated 

separately. Thus, causing difficulty for accurate classification. 
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VAMP7 v v v    v v 

USP9Y v v v      

ASMTL v v v  v v v v 

KDM5D v v v    v  

DDX3Y v v  v v v  v 

CD99 v v v v v v v v 

IL3RA    v  v  v 

RBMY1J       v  

UTY       v  

EIF1AY       v v 

Genes with changes of expression pattern in the majority of classes 
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Then we analyzed genes that are differentially expressed during the tumour growth process. In contrast, 

healthy normal prostate tissue samples and primary prostate tumour samples were considered. First, we 

compared normal prostate gland samples and primary prostate tumour samples, which is the NOR-TUM 

model. In the ADJ-TUM model, we considered samples that are adjacent to primary prostate tumour 

and samples taken directly from a primary prostate tumour. In addition, we analyzed the NOR-ADJ-

TUM model as well to justify the results. We could analyze them as a special scenario where these 

genes exhibit differential expressions only within a primary tumour and no differential expression in 

the metastatic stage. In which, they have resulted as candidates from NOR-TUM, ADJ-TUM and NOR-

ADJ-TUM categories while displaying no expression changes in NOR-MET, ADJ-MET and NOR-

ADJ-MET models. We could identify only one common under-expressed gene (CD99) across these 3 

models though there are many common over-expressed genes such as BPY2, XKRY2 and SRY etc. These 

genes that only exhibit early changes expression pattern are shown in gray colour in Table 4. 

 

Table 4. Over-expressed genes 
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LOC101928634 ^ ^ ^     ^ 

AKAP17A ^ ^ ^     ^ 

TXLNGY ^ ^  ^ ^ ^ ^ ^ 

SLC25A6 ^ ^    ^  ^ 

RPS4Y1 ^ ^    ^  ^ 

USP9Y  ^       

DAZ4  ^ ^      

IL9R    ^   ^  

BPY2    ^ ^ ^  ^ 

XKRY2    ^ ^ ^  ^ 

SRY    ^ ^ ^   

ASMT    ^ ^ ^ ^  

TSPY10    ^ ^ ^ ^ ^ 

TTTY15    ^ ^ ^   

PCDH11Y    ^ ^ ^  ^ 

LOC100509646     ^ ^   

ZFY     ^    

NLGN4Y     ^    

CDY1B     ^ ^   

CSF2RA     ^    

SHOX     ^ ^   

VCY1B       ^ ^ 
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Finally, we analyzed the genes from the TUM-MET (primary tumour samples and metastatic 

samples) model and ALL model. In the TUM-MET model, we attempt to focus on the cancer spread 

phenomena starting from a primary tumour to other organs. In ALL model we focused on identifying 

the genes that generally have a differential expression due to prostate cancer. Out of the resulting 

candidates, some of the Y-chromosome genes can be recognized as most vital since they significantly 

vary in expression level across all the categories as illustrated in Table 3 and Table 4. Figure 5.1 to 

Figure 5.8 depict heatmaps of row-normalized expression for critically identified genes across 8 models 

in which intensity decrease from red to yellow. High intensity conforms to high normalized-value in 

each of 4 rows. Next chapter presents important conclusions about our findings and insights into future 

research.  

Figure 5.4. NOR-TUM Figure 5.5. ADJ-TUM Figure 5.6. NOR-ADJ-TUM 

Figure 5.7. TUM-MET Figure 5.8. ALL 

Figure 5.1. NOR-MET Figure 5.2. ADJ-MET Figure 5.3. NOR-ADJ-MET 
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5. Conclusion and Future Work 

The analysis carried out by the categorical SVM model with a minimum accuracy of 95%, results in 

a set of decisive Y-chromosome genes namely CD99 (also known as MIC2), ASMTL, DDX3Y, and 

TXLNGY. Those genes are highlighted in yellow colour in Table 3 and Table 4. It is highly probable 

that the aforementioned Y-chromosome genes to be actively involved in prostate cancer generation and 

metastasis process when considering the high accuracy obtained for the SVM models. There are many 

biological studies carried out focusing on the CD99 gene and its involvement in prostate and other types 

of cancers [3][25]. Apart from that, Lau et al. [12] have found information about the involvement of 

many Y-chromosome candidates including ASMTL, ILR3, and RPS4Y1 in prostate cancer. In addition, 

the genes highlighted in gray colour rows might play vital a role in prostate tumour generation. Early 

medical precautions targeted on them may be able to prevent the cause of developing the tumour. These 

Y-chromosome genes do not exhibit significant expression patterns when compared to the top-ranked 

genes in differential expression analysis but the changes in their expressions from normal tissue to 

cancerous tissue are significant for closer observations. Table 3 and Table 4 contains information about 

many other genes from our findings, which are correlated with Lau’s work. Moreover, Dasari et al. [6] 

have done similar work to add stability to our findings.  

However, it should be highlighted that future work is needed to provide confirmation about these Y-

chromosome genes as to how they relate to the progression of prostate cancer. Microarray data may 

contain noise, which cannot be removed completely by data pre-processing. Therefore, the results 

obtained through the computational methods can never be accurate enough for direct acceptance. We 

suggest carrying out thorough narrowed down laboratory experiments on these genes to investigate the 

actual role they involved in the disease. In fact, it will be highly beneficial for the biological community 

to find out new cellular level treatments for prostate cancer. 
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