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Abstract

We describe our initial experiments with several state-of-the-art automated theorem
provers on the problems in Tarskian Geometry created by Beeson and Wos. In comparison
to the manually-guided OTTER proofs by Beeson and Wos, we can solve a large number
of problems fully automatically, in particular thanks to the recent large-theory reasoning
methods.

1 Introduction

In their 2014 paper [1] Beeson and Wos report on their project which uses OTTER [12] to find
proofs of theorems in Tarskian geometry proved in Part I of the book “Metamathematische
Methoden in der Geometrie” by Schwabhuser, Szmielew and Tarski [15]. We have become
interested in their work for a couple of reasons.

First, we have recently started to look at good ways to apply Veroff’s techniques such as hints
and proof sketches [19] on large-theory problems coming from ITPs like Mizar [7], Isabelle [10],
and HOL [6]. Under the hints strategy, a generated clause is given special consideration if it
matches (subsumes) a user-supplied hint clause. A proof sketch for a theorem T is a sequence of
clauses giving a set of conditions sufficient to prove T . Typically, the clauses of a proof sketch
identify potentially notable milestones on the way to finding a proof. The hints mechanism
provides a natural and effective way to take full advantage of proof sketches in the search for
a proof. It can be very effective to include as proof sketches proofs of related theorems in the
same area of study. The large number of related problems coming from the ITP libraries seem
to be a natural target for such techniques.

This, however, turns out to be nontrivial. Hints currently work on the clause level, and
consistency of their symbols (i.e., the same symbol always having the same meaning) across
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different problems is assumed. This works for the algebraic clausal problems that Prover9 [11]
is typically applied to. The large-theory problems, however, are formulated in FOF, and their
Skolemization typically produces many symbols that might not be consistently used among
the different problems. This, and the large number of problems, formulas and symbols so
far confuses the hints technique. The Tarski problems seem to be right in between the two
kinds of problems: they are clausal and do not contain too many symbols, yet they at least
partially also qualify as large-theory problems. The number of clauses is about 200, and the
more advanced problems typically contain all the previously proved lemmas as axioms. Making
the hints method work on the Tarski problems would be a useful step towards making hints
work on the ITP-generated large-theory problems.

The large-theory aspect of the Tarski problems is another motivation. It turns out that
some of the problems really need many axioms (e.g., 59 for an automatically found proof of
Satz10.12a by the E.T system [5]). Quite a bit of work has been done recently to develop
methods that select the most relevant lemmas for proving a particular conjecture [2] and to
develop specialized strategies for solving large-theory problems [18]. Beeson and Wos do not use
such methods. Instead, they use OTTER and often revert to what is quite close to interactive
theorem proving: writing manually intermediate lemmas that guide the proof search. Looking
at the results of recent CASC and its large-theory divisions [17, 16], it would be quite surprising
if the performance of unguided OTTER run in an automated mode on the problems would be
anywhere near the state-of-the-art systems. That’s why we first simply try to run some of those
and see how many problems we can today prove without any interactive guidance. Here we
report the results and issues found so far.

2 Running Several ATPs on the Tarski Problems

We started by downloading 164 problems in the OTTER format from the web site of the project,
and re-proved 163 of them with OTTER (using all the tricks used by Beeson and Wos). The
remaining Satz11.15b.in – which was marked as work-in-progress – was eventually proved in
19000 s by OTTER.

We first wrote a script that commented out the main sources of “guiding information” in
the files: the special parameter settings, the hints and the demodulators. Then we ran OTTER
and Prover9 on such “blank” problems in auto mode for 300 s. OTTER solved 72 problems
and Prover9 102. In 20 s Prover9 solved only 92 problems . This indicated that using more
CPU time and different strategies would likely help further.

To be able to use other ATPs, we have used the ladr to tptp translator, followed by some pre-
and post-processing that gets around using some symbols both as functions and as predicates
in the OTTER problems. Since the problems are large and may profit from conjecture-oriented
clause selection mechanisms in E [14, 13], we also renamed the status of the conjecture-originated
axioms to “negated conjecture”. Then we ran E 1.8 (using “–auto-schedule”, i.e., its strategy
scheduling mode) for 300 s solving 125 problems, and E.T 0.1 also for 300 s, solving 129
problems. E.T uses more strategies than E, and applies stronger axiom pruning. The strongest
system is, however, Vampire 3.0 [9], which solves 137 of the problems in 300 s. We have also
tried Z3 [3] (to get some more solutions), which solves 92 files in 300 s. All the systems together
can prove 141 problems in 300 s at this point – about twice as many as unguided OTTER.
The manual coding of the proofs by providing intermediate steps to OTTER could have been
largely avoided with quite limited resources.

Finally, we did some experiments with higher time limits. Three more problems could be
solved by running Vampire 3.0 in the CASC mode for 1 hour. Running Vampire for longer
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in this mode does not work – it seems that the CASC mode is limited to such shorter overall
times. Vampire and E.T (run with even higher time limits) together add 6 more problems,
making the final count so far at 147 fully automatically solved problems out of the 164. These
results are, however, a bit questionable due to the issues described next.

3 Problems with the Problems

During the translation to TPTP and the initial runs with other ATPs we encountered several
kinds of problems with the files. Some of them – e.g. problems with naming of clauses – prevent
us so far from running strong learning-based large-theory systems such as MALARea [8] on the
problems.

These problems arose because the input files were created and edited by hand, and theorems
were hand-Skolemized once proved for use in proving subsequent theorems. A number of errors
were introduced in this process. Beeson and Wos independently recognized the need for a more
systematic approach to ensuring the correctness of the input files, and eventually solved that
problem by using a “master list” of theorems and their Skolemizations, with the Skolemizations
machine-checked, and the input files mechanically generated from the master list using a PHP
script. The files now posted on the project website were produced by this method. They
did not have time for this correctness-checking before the original posting (before the IJCAR
deadline), and unfortunately the corrected versions came after the experiments reported here.
In the interest of emphasizing the point that when working with a large theory, one needs to
automate the Skolemization and the generation of input files, we list the problems that we
encountered with the hand-generated files:

• In several cases, the statement of a particular lemma or definition is different in different
problems. This is really dangerous in a larger formalization and could lead to many issues.
Sometimes this only involves naming of the variables, but sometimes the clauses really
differ. This could not happen in an ITP-based development, where each lemma/definition
is stated only once, and ATP problems are generated automatically by the corresponding
hammer systems. Even pervasive use of simple ATP mechanisms such as includes should
be enough to prevent this.

• Using manual Skolemization and the clausal form has its dangers: some of the different
statements of the same formula from the book are caused by bugs in manual Skolemization,
or even just by introducing differently named Skolem functions and constants. This could
be prevented by switching to formulas instead of clauses.

• While the OTTER/Prover9 format occasionally allows more mathematician-friendly no-
tation than TPTP, unlike in TPTP the name of a clause is just an unchecked comment
that can be anywhere and have typos in it. This already prevents simple duplication/-
consistency checking as done by the TPTP tools, and also more advanced checking of the
proofs (and formulas uses in them) as done, e.g., by the GDV verifier.

• In some of the clauses there are clear typos, leading, e.g., to the appearance of singleton
variables. If a Prolog-friendly language such as TPTP was used, they would be easily
detected and reported when loading the formulas into Prolog.

We were quite surprised that relatively many such issues have escaped not only the authors,
but also the IJCAR’14 refereeing – at least there is no mention of the debugging processes in
the paper. In the conferences focused on interactive theorem proving as well as when reviewing
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submissions to some large formal libraries, it is today a common practice to not only run and re-
check the formal developments, but also to look at and point out various issues with definitions,
obvious naming problems, dangerous use of additional axioms, etc. It would be good if IJCAR
– and in general the ATP community – adopted similar refereeing practices in such cases.

4 Future Work

Our plan is to try to prove as many Tarski problems as possible by the standard (large-theory)
techniques available in systems like E, Prover9 and Vampire, and then proceed to test Prover9
techniques that transfer hints between the problems. We plan to switch to the new – more
automatically produced – version of the problems. It is likely that in this almost-large-theory
setting we will need to complement the hints method with methods that select only the most
relevant hints for a particular problem. Such methods are similar to the recent methods for
premise and lemma selection developed in the context of large theories. We hope that this
way we will eventually (thanks to the Tarski problems) also arrive at good techniques for hint
guidance in large theories. A useful future extension would be to import and verify the whole
development in a safe ITP such as HOL Light [4], using the existing TPTP proof importing
capabilities.
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