
EPiC Series in Computing

Volume 46, 2017, Pages 181–199

LPAR-21. 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Decidable Linear List Constraints

Sabine Bauer1∗ and Martin Hofmann2

1 University of Munich, Germany
Sabine.Bauer@ifi.lmu.de

2 University of Munich, Germany
Hofmann@ifi.lmu.de

Abstract

We present new results on a constraint satisfaction problem arising from the inference of
resource types in automatic amortized analysis for object-oriented programs by Rodriguez
and Hofmann.These constraints are essentially linear inequalities between infinite lists of
nonnegative rational numbers which are added and compared pointwise. We study the
question of satisfiability of a system of such constraints in two variants with significantly
different complexity. We show that in its general form (which is the original formulation
presented by Hofmann and Rodriguez at LPAR 2012) this satisfiability problem is hard
for the famous Skolem-Mahler-Lech problem whose decidability status is still open but
which is at least NP-hard. We then identify a subcase of the problem that still covers all
instances arising from type inference in the aforementioned amortized analysis and show
decidability of satisfiability in polynomial time by a reduction to linear programming. We
further give a classification of the growth rates of satisfiable systems in this format and
are now able to draw conclusions about resource bounds for programs that involve lists
and also arbitrary data structures if we make the additional restriction that their resource
annotations are generated by an infinite list (rather than an infinite tree as in the most
general case). Decidability of the tree case which was also part of the original formulation
by Hofmann and Rodriguez still remains an open problem.

1 Introduction

Motivation. In this paper we study linear inequalities with variables ranging over infinite
sequences of numbers in the set D := Q+

0 ∪{∞}. This is a way to generalize linear programming
to infinitely many variables.

The inclusion of infinity is motivated from resource analysis; it represents availability of
unlimited resources in certain places. It also simplifies and streamlines the mathematical de-
velopment. However, our results remain true if we remove infinity, as we discuss in section
8.

An example for the inequalities in list notation is tl(x) ≥ x+3tl(tl(y)), which is understood
pointwise. These systems were introduced in [1] but only a heuristic approach for solving them

∗DFG Graduiertenkolleg 1480, with Technical University of Munich

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 181–199



Decidable Linear List Constraints Bauer and Hofmann

based on Fourier-Motzkin was given there. In this paper we show hardness of the general
case as formulated in loc. cit. for the Skolem-Mahler-Lech problem, which makes it unlikely
to be decidable and in any case very hard. However, we have identified a subcase covering
in particular an important application, namely resource analysis of object-oriented programs,
and provide polynomial-time algorithms for deciding satisfiability and also for the growth rate
of minimal solutions. We remark that this is the first nontrivial decidability result for linear
inequalities with infinitely many variables. Before we go into detail we will briefly recall the
motivation from resource analysis.

Linear arithmetic constraints were used by Hofmann and Jost in the context of automatic
type-based amortized resource analysis by the potential method [2] where it was applied to first-
order functional programs. In this approach the available resources of expressions are captured
in type annotations (resource types). The idea is to automatically generate constraints on the
resource types from a program such that their solutions allow to compute the resource usage
of the program. The constraint systems appearing in this analysis have finitely many variables
and can be reduced to linear programming. The same was true for subsequent extensions to
higher-order functions and more complex potential functions [3, 4, 5, 6, 7]. The extension of this
method to object-oriented programs in a language RAJA (Resource Aware JAva, a fragment
of Java with inheritance, recursive methods and extended with resource annotations in the
types) [8, 9, 10, 1] led to the use of constraints involving infinite lists or trees whose entries are
numerical variables. In this case, it is no longer a direct option to solve the constraints with
linear programming. A heuristic procedure was developed [10], which allowed to find solutions
in many cases, but the general question of decidability of these infinitary constraint systems
remained open. It is precisely this question that we treat in this paper.

The contributions of this paper are the following:

• We prove that the list constraint problem is computationally hard.

• We identify a subclass which captures all instances from program analysis,

• give a polynomial decision procedure for this subclass and

• determine bounds on the growth rates for the minimal solutions of systems of constraints.

With this knowledge and the ability to solve the constraints, it is now possible to analyse the
resource usage of list programs in RAJA.

Related work. Although our list constraint problem has a very simple and natural formula-
tion (see section 2), it has not yet been studied extensively and it is not subsumed by existing
decidability or growth rate results, such as [11] and [12]. The authors of these papers use dif-
ference bound constraints on infinite sequences. Our constraints contain more conditions than
difference bounds, and further the array logic used in [11] does not allow to add entire lists
pointwise, just comparison of two lists and constant differences are allowed. We could cover
this with our constraints, but on the other hand there are operations we do not have (modulo
constraints and relations between indices). Other related publications are [1] and [13] and both
of them also notice that there exists only very few research on constraint systems with infinitely
many variables. The first paper [1] introduced the problem we are interested in and the second
paper [13] is about satisfiability of constraints with Boolean variables and higher-dimensional
index arithmetic, which leads to undecidability in most cases.
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Organization. The remainder of this paper is organized as follows: In section 2 we introduce
the syntax and semantics of list constraints. In section 3 we establish a reduction from the
Skolem-Mahler-Lech problem to the general case which makes it unlikely to be decidable. In
section 4 we identify a hitherto unexplored fragment of the general problem which is still
sufficient for the purposes of amortized resource analysis and prove in section 5 that satisfiability
is decidable for that fragment. Section 6 describes estimates on the growth rate of solutions
to satisfiable systems. In particular, we provide nontrivial upper bounds on such solutions.
However, we cannot at this point prove tightness of such bounds in all cases and thus the
question whether a given constraint system admits a solution that lies below a fixed bound
remains open. In section 7, we further explain the connection to resource analysis and the
applications of our results. We conclude in section 8.

2 Syntax and Semantics

The constraint systems are described as follows. One has finitely many unknowns ranging over
infinite lists (sequences) of nonnegative rational numbers including∞. Let us denote this latter
set by D := Q+

0 ∪ {∞}. Terms and constraints are built from those unknowns by addition
(+) and comparison (≥) understood pointwise, and the tail function (tl) that removes the first
element of a sequence. Furthermore, constraint systems may contain ordinary linear arithmetic
constraints involving the heads of the lists as given by the function hd.

An example of such a constraint is tl(tl(x)) ≥ tl(x) + x, which states that the unknown list
tl(tl(x)) is growing at least as fast as the Fibonacci sequence (depending on the initial variables
hd(x) and hd(tl(x))). To illustrate our list notation further, we view infinite lists as arrays,
and this constraint becomes x[i] ≥ x[i − 1] + x[i − 2]∀i ≥ 2 in array notation. The pointwise
inequalities state not only that the i’th position of the list x has to be greater than or equal to
the i’th position of the Fibonacci list with starting variables hd(x) and hd(tl(x)) for all i, but
that in each position i the entry there has to be greater than or equal to the sum of the previous
two entries. For instance, the list 1, 1, 2, 99, 5, 8, 13, . . . is greater than a Fibonacci sequence
with initial values 1 and 1. However, it does not fulfill the constraint since 5 is not greater than
2+99. The minimal continuation of this list beginning at index 5 is 101, 200, 301, 501, 802, . . . .

Example 1. The following constraint system is satisfiable:

Arithmetic Constraints List Constraints
hd(x) = hd(z) = 2 tl(y) ≥ y
hd(tl(x)) = 5 z ≥ tl(z) + tl(z)
hd(y) ≥ 1 tl(tl(x))) ≥ tl(x) + x + tl(y) + tl(y)

and has the equivalent formulation in array notation

Arithmetic Constraints List Constraints
x[0] = z[0] = 2 y[i+ 1] ≥ y[i]∀i ≥ 0
x[1] = 5 z[i] ≥ z[i+ 1] + z[i+ 1]∀i ≥ 0
y[0] ≥ 1 x[i+ 2] ≥ x[i+ 1] + x[i] + y[i+ 1] + y[i+ 1]∀i ≥ 0

It has the (minimal) solutions y a constant list, z a list with first element 2 and the rest zero
and x a “Fibonacci list” as above, with an additional summand.

y = 1, 1, . . . , z = 2, 0, 0, . . . ,

x = 2, 5, 9, 16, 27, 45, ..,xn−1,xn,xn + xn−1 + 2, . . . .
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If we add the constraint x ≤ z, (i.e. x[i] ≤ z[i],∀i ≥ 0) the constraints become unsatisfiable,
since a maximal solution to the list constraint on z is an exponentially decreasing list

z = 2, 1,
1

2
,

1

4
,

1

8
, . . . ,

1

2n
, . . . .

We remark that tree constraints without arithmetic constraints are always satisfiable with
infinite lists of zeros. In the sequel, we will only use the list notation with hd and tl.

3 Hardness of the Problem for General Linear List Con-
straints

In order to establish the announced hardness and also for the subsequent development it is
useful to draw a connection between list constraints and recurrences and rational generating
functions as for example in [14, 15]. In this section, we use this connection to show the hardness
of the list constraint problem. We consider the two decision problems in Figure 3 and establish
a reduction between them.

Figure 1: Decision problems

• Skolem-Mahler-Lech Problem (SML)

Given: A homogeneous linear recurrent sequence of degree k with initial values b1, . . . , bk
and constant rational coefficients of the form

xn = a1xn−1 + · · ·+ akxn−k, n > k

x1 = b1, . . . , xk = bk

ai, bi ∈ Q, bi ≥ 0, for all i = 1, . . . , k, ak 6= 0.

Asked: Is there an index n such that xn = 0?

• List Constraint Satisfiability Problem (LC)

Given: A finite system C of list constraints and arithmetic constraints.

Asked: Is there a set of lists, which simultaneously satisfies all constraints of the system
in D?

The SML problem is not known to be decidable and is believed to be computationally very
hard (see [16, 17, 18]).

Theorem 1. The list constraint satisfiability problem is hard for the Skolem-Mahler-Lech-
Problem.

We give an example for the translation between recurrences and list constraints. With this
we can express the question

Is xi ≥ 0 for all i? (SML′)

in terms of the constraints. Now C is satisfiable if and only if (SML′) for x has a positive
answer and, according to [16, 19], SML can be reduced to SML′.
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Example 2. Consider the recurrence

x1 = x2 = · · · = x10 = 1,

xn = −1

2
xn−1 + 2xn−3 + xn−10, n > 10.

The constraint system C consisting of the constraints

tl10(x) + tl10(x) + tl9(x) Ri tl7(x) + tl7(x) + tl7(x) + tl7(x) + x + x, i = 1, 2

hd(x) = hd(tl(x)) = hd(tl2(x)) = · · · = hd(tl9(x)) = 1

for R1 = ” ≥ ” and R2 = ” ≤ ” describes the list with entries exactly the elements of the
recurrence, since the inequality in the constraint holds pointwise for all entries of the list after
position 10.

Corollary 1. The problem LC is NP-hard.

This follows from the NP-hardness of the SML problem [17] and from the fact that the
reduction was polynomial many-to-one. The size of the constraint system C is linear in the
length of the encoding for the recurrence.

Further, we remark that certain behaviors cannot arise as unique solutions (i.e. solutions
described by a recurrence relation) to type inference problems (described in terms of list con-
straints). A concrete example is the harmonic sequence ( 1

n )n, because it has a logarithmic
generating function [20], whereas all linear recurrence sequences have a rational generating
function. Clearly, the harmonic sequence is a non-unique solution, for instance to the con-
straint x ≥ tl(x).

4 Unilateral Subcase

Unilateral constraints are sufficient for amortized analysis. Fortunately, the hardness
construction does not carry over to type inference in RAJA. Indeed, we were able to identify
a well-delineated subcase of LC which contains the image of the translation from type-based
resource inference and, as we will show, enjoys decidable satisfiability.

We call a list constraint unilateral, if it has only one summand on the greater side of the
inequality. This means it is of the form

x ≥ y1 + · · ·+ ym,

where x,yi are terms of the form tlj(z) for some variable z and j ∈ N0. Note that with this
definition we do not allow negative coefficients, in contrast to the general case. This causes a
significant decrease of complexity, as we will see in section 5.

Definition 1. ULC is the special case of LC where all list constraints are unilateral.

For space reasons, we will neither show the constraint generation nor the proof that unilateral
constraints are sufficient for resource inference, but we give a short informal argument. In
RAJA, variables are refined with resource annotations and their resources can be used to ”pay”
for costs arising from field update, use as parameter, recursive calls, etc. Inequalities between
these variables then come from subtyping (subtypes have at least the same potential as their
supertypes, recursive calls can just be done with subtypes of the type the method belongs to)
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and aliasing (i.e. multiple use of the same variable), where the potential of the variable itself
has to be at least the sum of the potential of the aliases. There is no rule in the constraint
generation that yields inequalities such that a sum of lists that is greater than another term.
Accordingly, it is not allowed to collect potential from several lists infinitely many times to pay
for operations. Note that in contrast to list constraints, the arithmetic constraints underlie no
restriction.

Normal form for unilateral constraints. We have developed a procedure, which enables
us to analyze the class of list programs by deciding ULC. Before we present this result, we
make another simplification. With x(i) we denote tli(x). We further write nx for the repeated
addition x + · · · + x. Let an unilateral constraint system be given. We apply the elimination
procedure in [1] to these constraints in order to bring it in a suitable form for our algorithm.
This procedure essentially eliminates variables, which appear only on one side of the inequalities
in the style of Fourier-Motzkin elimination [21] without affecting satisfiability.

One can show that after the procedure, the constraints of the system take the form (which
we will call normal form in the sequel)

x(i) ≥ lin(x) + R, (1)

where lin(x) is a nonempty sum of terms tlj(x) and R is a (possibly empty) sum of other terms
of the form tlj(y) with x 6= y. Additionally, we may have constraints on the same variables
(i.e. those variables for which a constraint of the form (1) exists): x(i) ≥ R. In other words, the
constraints in normal form consist of inequalities between non-eliminable (w.r.t. the procedure
in [1]) variables, namely those which appear on two sides of an inequality.

For example, the constraint system

x(3) ≥ y(3),y(3) ≥ x(2) + z(1), z(1) ≥ x(1).

yields after two applications of the elimination procedure (eliminating y and z) the inequality
x(3) ≥ x(2) + x(1) and is now in normal form and the elimination procedure can no longer be
applied. Since the constraints hold pointwise, this implies x(3+i) ≥ x(2+i) + x(1+i), for all i.

Example 3. The constraints

x(2) ≥ x(1) + y(3), (2)

x(2) ≥ 2x(1) + 3y, (3)

y(2) ≥ 4y(1) + x(1), (4)

hd(y(1)) = 1, (5)

hd(x(2)) ≤ 2. (6)

form a constraint system from ULC with two constraints on the variable x. It is unsatisfiable
in D, since the constraints (2) and (4) imply

x(2) ≥ x(1) + 4y(2) + x(2),

which means hd(x
(1)

) and hd(y
(2)

) have to vanish or hd(x
(2)

) = ∞. If hd(y
(2)

) = 0, then

(4) and (5), which together imply hd(y
(2)

) ≥ 4 (or (6) if hd(x
(2)

) = ∞, respectively) cannot
be satisfied.
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5 Decidability of ULC

We now show our decidability result for unilateral list constraints. Let us call an infinite list
x0, x1, x2, . . . periodic if there exist k ≥ 0, l > 0 such that xi = xi+l holds for all i ≥ k.

Lemma 1. If there are two constraints of the form

x(i) ≥ x(j) + R, j < i (LB)

x(i) ≥ x(k) + R′, i < k (UB)

with R,R′ arbitrary sums of terms tlj(z), every satisfying solution maps x to a periodic list.
Moreover, the period length is bounded by lcm(i− j, k− i) and the periodicity starts after at

most i steps.

Proof. Since R is nonnegative, we have x(i) ≥ x(j), and thus we know that x is non-decreasing
in each (i − j)th position beginning from entry number j. We also have x(i) ≥ x(k), which
means it is non-increasing in each (k− i)th position from position i on; thus it is periodic with
the period length at most lcm(i− j, k − i).

Remark 1.

• We will call constraints of the forms (LB) and (UB) lower and upper bounds. Upper
bounds have as solutions at most constant lists and lower bounds have solution lists that
are at least constant.

• The upper bound on the period length can be sharpened by applying the theorem of Fine
and Wilf [22], but for our purposes it is not necessary.

The importance of Lemma 1 lies in the fact that we can replace a list variable with finitely
many arithmetic variables. Note that the premise to Lemma 1 may be satisfied by a single
constraint which is simultaneously a lower and upper bound, as x(2) ≥ x(1) + x(3). In many
cases such periodic constraints with two summands on the smaller side of the inequality are
unsatisfiable. Nevertheless, we first exploit the periodicity by replacing the lists by arithmetic
variables. If the constraints are unsatisfiable, the constraints on these arithmetic variables will
be contradictory, too. This will become clearer in the proof of Theorem 2 .

Our aim is now to deduce periodic constraints (i.e. list constraints as in Lemma 1) in
list constraint systems. For that, we introduce a weighted graph G for the list constraints by
creating a node for each variable. Note that we have w.l.o.g. only terms of the form v(n)

on the left hand side of the inequalities, with v a variable and n the same number for all
variables (possibly after applications of tl, e.g. the constraints x(2) ≥ x(1),y(3) ≥ y(2) become

x(3) ≥ x(2),y(3) ≥ x(2) and a new constraint hd(x
(2)

) ≥ hd(x
(1)

) is added to the set of
arithmetic constraints). We create an edge weighted with i ∈ Z from node x to node y if in a
constraint for x(n) a term y(n+i) appears. For instance, if we start with x(20) for the constraints
in Fig. 2, we get bounds in both directions:

x(20) ≥ max(x(22),x(18))

by using either the cycle of weight 2 in the graph or by visiting the nodes in the order
x, z,y, z,y, z,x. Note that if we have cycles with zero weight, as for instance x(20) ≥ x(20) +R,
then all lists in R have to vanish.

We use this graph to show the following.
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x(10) ≥ x(12) + y(6) + z(13)

y(10) ≥ z(15)

z(10) ≥ x(9) + y(3)

x

y z

5

-7

-1 3
-4

2

Step 1 + cycles - cycles
x 1 0
y 0 1
z 1 1

Step 2 + cycles - cycles
x 1 1
y 1 1
z 1 1

Figure 2: Example: from the constraints to the graph

Lemma 2. We can compute in polynomial time the following data:

• a partition of the variables X = Xp ∪Xp′ ∪X0 ∪X∞

• natural numbers s and d

such that any solution S will map the variables in Xp (”necessarily periodic variables”) to peri-
odic lists with period d starting at s and such that changing (in S) the valuations of the variables
in Xp′ (”periodic variables”) to periodic lists and the valuations of X0 (”zero variables”) to 0s
(only zeros after s) and those of the variables in X∞ (”infinity variables”) to ∞s (infinity after
s) yields a solution as well.

Proof. We divide the list variables into those with positive cycles, those with negative cycles
and those which have both. We use the Bellman-Ford algorithm to detect negative cycles in
the graph G beginning at node x. We can also find positive cycles by multiplying the labels
with -1. Negative cycles correspond to lower bounds and positive cycles to upper bounds on x.
Thus we have a periodic constraint if there are both positive and negative cycles.

We set up a table with rows labeled with the variables and columns labeled with ”+” and
”-”. We will have 1 in row x and column ”+” (resp. ”-”) if there is a positive (resp. negative)
cycle beginning from x, else we fill in 0. We start with filling in the cycles that contain each
variable only once (Step 1 in Figure 2) and update the table in the following way (Step 2 in
Figure 2): If a positive (resp. negative) cycle from variable x contains a variable y (i.e. they
are in the same strongly connected component) and if y has a negative (resp. positive) cycle,
we can conclude that x has a negative (resp. positive) cycle. This follows from the fact that
we can run around this additional cycle from y as many times as are necessary to change the
sign of the weight of the resulting cycle.

The lists with 1 in both columns of the table in Fig. 2 belong to Xp. Now only those
variables remain for which we have either only positive or only negative cycles.

We now say that a variable x has a lower (resp. upper) bound if it has a negative (resp.
positive) cycle or if it is greater (resp. less) than another variable y. For X0 and X∞ we can

188



Decidable Linear List Constraints Bauer and Hofmann

argue by induction on the position of the variables in G for the constraint system. If there are
only lower bounds for some list x, which means the node x in the graph has only negative cycles
and no incoming edges from other variables, then we set x(n) to the list ∞s, which consists
only of infinity. If there are only upper bounds for a list x(n), which means that the node x has
only positive cycles and no outgoing edges to other variables, we set x(n) to the zero list 0s.

If there are both upper and lower bounds on a list x(n), which do not fit into the situation
from Lemma 1, then there are three possible cases.

Case 1 : (see Fig. 3): there is a negative cycle in x and x is not reachable from other
variables y with a positive cycle. This means x is bounded from above only by other variables
z that are all unbounded from above. Then we set also x(n) to ∞s.

Figure 3: Case 1

x y

z z′ z′′

±

±

±

−− −

not present

+

−
Figure 4: Case 2

x z

y y′ y′′

± ±

±

++ +

not present

−

+

Case 2 (see Fig. 4): In this case x has a positive cycle and no other variables y with negative
cycle are reachable from x. This means that x is only bounded from below by variables that
have no lower bound. In this case we intend to set x to a list that finally vanishes. But we
cannot simply set x(n) to 0s, because there may be a constraint on x like

x(n) ≥ x(n+j) + y(i), i < n (7)

and, for instance, an arithmetic constraint hd(y(i)) ≥ 1.(Recall that until position n−1 we can
have arithmetic constraints.) We observe that, if we have a path of weight −j from x to y, as
in (7), we cannot have a path with weight less than j from y to x because then we would have
a negative cycle in x.

In the example (7) we can set y(n) = 0s and x(2n) = 0s. According to the observation, all
constraints on y only contain terms of x with index at least 2n and from this position on x can
be set to 0s, so the problem does not occur any more.

In order to generalize this to more variables, we now build a new directed graph G′, which
has no negative cycles. As nodes, we take all variables with only positive cycles. The edges of
G′ are the negative weighted edges in the original graph G. We begin with the variables that
have only incoming edges and set all of them to lists vanishing from the n’th position. All other

nodes x have edges to variables y1, . . .yk. If all y
(n′)
i have been set to 0s in the previous steps,

we set also x(n+n′) to 0s.

Case 3 (see Fig. 5): Now only the case remains where we have a variable x with a negative
cycle which is reachable from y, which has a positive cycle. This means that a list with lower
bound constraint is less or equal to a list with upper bound constraint.
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Figure 5: Case 3

xy
±

+

−

We argue that then there is a solution with x and y periodic lists. More precisely, if there
is a constraint that enforces one of the variables to be strictly increasing or decreasing, then
the system is unsatisfiable.

We first describe the situation where this happens: Constraints that admit as solution only
strictly falling lists can have no solutions for which a lower bound constraint exists (except that
this bound is zero and thus periodic). The reason for this is that lists with lower bounds are at
least periodic. Thus these lists must fall in case 2 and can be set to 0s preserving satisfiability.
Similarly, constraints that admit as solutions only strictly increasing lists are either of the form
x(n) ≥ xn−j + R, with R having a lower bound (i.e. being at least periodic, which means of
constant growth) or x(n) ≥ R, with R strictly increasing. One observes that at least for one
variable in the set {v|v variable in R} ∪ {x} a constraint of the first form must hold, and thus
x is at least linear.

Now we go back to the general situation of case 3 without the strictness assumption. Due
to the normal form of the constraint syntax, which allows sums only on the smaller side of the
inequality, y has the constraint (rewritten with the greatest index on the left) yn+j ≤ y(n)−R
with R nonnegative. Thus y is at most periodic. Similarly, x is at least periodic.

Thus y can only be greater than x if x is bounded from above by a constant a and y is
bounded from below by a constant b ≥ a. According to the above facts, then there must be a
solution with both lists periodic.

Let n′ be the maximum of the lengths of the aperiodic initial parts given by case 2 and the
arithmetic constraints and k the least common multiple of all index differences that appear.
With the index differences of a constraint x(n) ≥ y1

(l1) + · · ·+ ym
(lm) we denote the numbers

|n − yj | for all j. Let d be the least common multiple of k and all period lengths of the
lists that have been set to periodic list so far. Further, let h be the number of variables that
remain. For all these remaining variables x we set x(hn′) = x(hn′+d). Note that this is a
large overestimation of aperiodic initial parts (by length s = hn′) and period lengths d, but it
simplifies the construction.

Theorem 2. The satisfiability problem for our list constraint systems in D is decidable in
polynomial time.

Proof. Given a list constraint system, we assume that there is a solution as in Lemma 2 and
replace the thus obtained lists by finitely many variables (namely polynomially many variables in
the number of lists). Then we translate the constraints in inequalities between these arithmetic
variables (see Example 4). Recall that we may have more than one constraint per variable that
we must take all into account. More precisely, for each constraint C of the form

x ≥ y1 + · · ·+ yk,
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where some of the yj may be terms x(i), we have the equivalent formulation

x0x1 . . . xm(x′1 . . . x
′
l)
ω ≥y1,0y1,1 . . . y1,m1

(y′1,1 . . . y
′
1,l1)ω + . . .

+yk,0yk,1 . . . yk,mk
(y′k,1 . . . y

′
k,lk

)ω.

For this inequality, we iteratively carry out the following procedure to translate it into arithmetic
constraints. We add an arithmetic constraint

hd(x0x1 . . . xm(x′1 . . . x
′
l)
ω) ≥hd(y1,0y1,1 . . . y1,m1

(y′1,1 . . . y
′
1,l1)ω) + . . .

+hd(yk,0yk,1 . . . yk,mk
(y′k,1 . . . y

′
k,lk

)ω),

and then drop the first element of all lists and continue with the constraint

tl(x0x1 . . . xm(x′1 . . . x
′
l)
ω) ≥tl(y1,0y1,1 . . . y1,m1(y′1,1 . . . y

′
1,l1)ω) + . . .

+tl(yk,0yk,1 . . . yk,mk
(y′k,1 . . . y

′
k,lk

)ω)⇔
x1 . . . xm(x′1 . . . x

′
l)
ω) ≥y1,1 . . . y1,m1

(y′1,1 . . . y
′
1,l1)ω) + . . .

+yk,1 . . . yk,mk
(y′k,1 . . . y

′
k,lk

)ω),

This procedure stops after at most maxi(m,mi +lcmj(l, lj))+1 steps, when no new constraints
are derived any more, and yields a finite set of arithmetic constraints. If the resulting purely
arithmetic system is satisfiable then clearly the original system is as well.

Conversely, if there is a solution S at all then its modification as in Lemma 2 yields a solution
of the arithmetic system.

Example 4. Consider the constraints

x(4) ≥ x(2) + 2x(3),x(4) ≥ x(7).

According to Lemma 1, we can conclude that we have a periodic list of period starting at position
4 and of length at most 6 = lcm(7− 4, 4− 2), x(4) = x(10). Thus we have

x = x1x2x3x4(abcdef)ω,x(2) = x3x4(abcdef)ω,

x(3) = x4(abcdef)ω,x(4) = (abcdef)ω,

with x1, x2, x3, x4, a, b, c, d, e, f arithmetic variables. If we translate the list constraints into
arithmetic constraints for these variables, we obtain finitely many different inequalities, namely
for the first constraint

a ≥ x3 + 2x4, b ≥ x4 + 2a, c ≥ a+ 2b, d ≥ b+ 2c,

e ≥ c+ 2d, f ≥ d+ 2e, a ≥ e+ 2f, b ≥ f + 2a.

and for the second

a ≥ d, b ≥ e, c ≥ f, d ≥ a, e ≥ b, f ≥ c.

In this example the only solution is a list with x1, x2 arbitrary and the rest zero or infinity.
For all nontrivial lists we have a contradiction since the first constraint ensures exponential
growth and the second is an upper bound.
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6 Estimation of Growth Rates

So far we have studied the problem of satisfiability. In practical applications it will also be of
importance to get information about the growth rate of solutions or, even better, to compute
solutions of minimal growth rate. For the general list constraints (those that are hard for
SML) the two problems are closely related: In order to know whether x is less than, say, a
given polynomial or exponential function f(n), just add a variable y, the constraint y ≥ x
and constraints ensuring that y(n) = Θ(f(n)) and check whether the resulting system is still
satisfiable. However, such constraints do not fall into the fragment ULC. On the other hand,
ULC has the property that in presence of nontrivial upper bounds (i.e. constraints of the form
(UB) in section 5), all growth behaviors are bounded by a constant. This also means that if
there are such upper bounds and strictly increasing lower bounds on the same variables, the
system immediately becomes unsatisfiable (see proof of Theorem 2).

Proposition 1. Let C be a ULC problem and write C ′ for C with all upper bounds removed,
such that only constraints of the following form remain:

x(n) ≥ x(i1) + · · ·+ x(im) + R,∀l : il < n (8)

(with R restricted not to contain y(j) for which constraints y(j) ≥ x(k), k ≥ n can be obtained
as in Figure 2). If C is satisfiable then the minimal solutions of C and C ′ coincide.

Now we draw a connection between matrix recurrences and constraint systems. For a system
of lower bound constraints we consider the associated recurrence relations, which consists of
all constraints with inequality replaced by equality. Homogeneous recurrence relations (xn)n of
order d, that correspond to constraints with only one list variable x, can be rewritten using their
companion matrix [23]. This matrix contains the coefficients of the recurrence in its first row, 1
on the lower minor diagonal and the rest zero. It yields the vector (xn, . . . , xn−d) when applied
to the vector (xn−1, . . . , xn−d−1). The rational expansion theorem for linear recurrences [20]
ensures that, if the greatest root (w.r.t. the modulus) of the matrix is simple and positive, the
sequence becomes monotone with exponential growth rate and is in particular not oscillating
between negative and positive values [17, 16]. Now we generalize the companion matrix to
constraint systems. The following example shows the idea.

Example 5. For the constraints

x(n) ≥ x(n−2) + 2y(n−1),

y(n) ≥ 3y(n−1) + 2x(n−1)

the matrix version is

~xn =

 hd(x
(n)

)

hd(x
(n−1)

)

hd(y
(n)

)

 =

0 1 2
1 0 0
2 0 3


hd(x

(n−1)
)

hd(x
(n−2)

)

hd(y
(n−1)

)

 = A~xn−1 .

In general, where we have more than one constraint per variable, the associated recurrence
for a constraint system contains in addition to + also the max operator:

~xn = max(A1~xn−1, . . . , Ak~xn−1),

where ~xn is a d-dimensional vector and the Ai are d× d matrices with nonnegative integers as
entries. We first treat the case, where k = 1 and where we have no maximum.
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6.1 One Constraint per Variable

In case that we have only one constraint per variable, the companion matrix for the system is
unique and the following holds.

Let us fix a constraint set with one constraint per variable and also fix a particular variable
in that set. We are interested in determining the asymptotically least solution for that variable.
Let us write L for the set of solutions to that variable. Also let A be the companion matrix to
the constraint system.

Lemma 3. There is d ∈ N and polynomials pi(n) and complex numbers λi for i = 1 . . . d and
a d-dimensional convex set C specified by finitely many linear inequalities such that

• For each (v1, . . . , vd) ∈ C the list (x(n))n with x(n) =
∑d

i=1 vipi(n)λni is in L

• For each (x(n))n ∈ L there exists (v1, . . . , vd) ∈ C such that the list (x(n))n with x(n) ≥∑d
i=1 vipi(n)λni .

Proof. Clearly, every solution is bounded below by a solution to the associated system of linear
recurrences obtained by replacing inequality by equality. These solutions can be written in
the form x(n) = eTAnv where A is the companion matrix, e is a unit vector singling out the
variable we’re focusing on and v is a start vector which must satisfy the arithmetic constraints.
Since the latter form a convex set we can conclude using the standard formula [24] for powers
of a Jordan normal form. We also notice that the λi are among the eigenvalues of A.

Lemma 4. Let λ1, . . . λd ∈ C be pairwise distinct and for all i let |λi| = 1. Let the numbers
v1, . . . , vd not all be 0. Then there is a constant c, such that∣∣∣∣∣∑

i

viλ
n
i

∣∣∣∣∣ ≥ c for infinitely many n

Proof. Let zn =
∑

i viλ
n
i . Not all of the z0, z1, ...zd−1 can be zero. This can be seen using the

Vandermonde matrix and the formula

 z0
...

zd−1

 =


1 1 . . . 1
λ1 λ2 . . . λd
λ21 λ22 . . . λ2d

. . .

λd−11 λd−12 . . . λd−1d


v1...
vd


where the matrix determinant is nonzero given that the λi are distinct. Thus let zj 6= 0. If the
arguments of all λi are rational multiples of 2π, then let N be the least common multiple of the
denominators and we have zj+kN = zj , k = 0, 1, 2, 3, 4, . . . . In the other case, c = |zj | may not
be reached again, but since we can approximate irrational arguments with arbitrary precision
by rationals, we know that at least c

2 will be exceeded infinitely often.

Lemma 4 then yields the following result.

Theorem 3. Let L be the set of solutions for a particular variable in a list constraint system
with one constraint per variable. We can effectively find (in polynomial time) k ∈ N and r ≥ 0
and c > 0 such that

• for all x ∈ L

x(n) ≥ cnkrn for infinitely many n.
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• there exist a constant c′ ∈ R and x ∈ L with

x(n) ≤ c′nkrn.

Thus the asymptotic growth of the minimal solution is nkrn.

Proof. Write x1(n), . . . , xd(n) for the functions xi(n) = pi(n)λni from Lemma 3 and let C be
the convex set of start vectors from that lemma. We assume w.l.o.g. that the xi are sorted in a
way that those xi which belong to an eigenvalue of greater modulus have a greater index than
those xi with a smaller eigenvalue and also that those xi with equal eigenvalue are grouped
together and those xi with same eigenvalue are sorted by the degree of their polynomial pi.

Now we want to find out, whether there are initial values v ∈ C such that in the represen-
tation of v as a linear combination of the xi the ”greatest” xi (i.e. those that belong to the
greatest eigenvalue λxi

), do not appear. For instance, if xd und xd−1 belong to the eigenvalue λ
with |λ| > max(λxd−2

, . . . λx1
), then we check whether there is v ∈ C with (0 . . . 001)v = 0 and

(0 . . . 010)v = 0. We continue this way until we have found r ∈ R, such that there is necessarily
an xi with corresponding eigenvalue λ in the linear combinations for all v ∈ C with |λ| = r, but
none of modulus greater than r.

Let us now consider all xi with corresponding eigenvalue of modulus r. Those xi with
smaller corresponding eigenvalue can be neglected. Now we try, by an iteration that is similar
to the one above, to find v ∈ C such that the coefficient of the xi whose polynomial has maximal
degree, is zero. For example, let λ and µ be two eigenvalues of modulus r and xi functions
axm+O(xm−1λn) (respectively bxm+O(xm−1λn) and exm+O(xm−1µn)) and all other xi with
polynomials of degree less than m. Let va, vb, ve be the components of v for the functions xi.
We then check if there is a v ∈ C with ava + bvb = 0 and ve = 0. If yes, the deg(k) < deg(m);
if no, it is exactly k, according to Lemma 4.

6.2 At least two Constraints for one Variable

If there are several constraints on a variable, we have no longer tight asymptotic bounds but an
approximation by a range between two functions, where the minimal solution must lie. There
are k constraints on x, namely

x(n) ≥ a1,1x(n−1) + · · ·+ a1,mx(n−m),

. . .

x(n) ≥ ak,1x(n−1) + · · ·+ ak,mx(n−m),

where m is the maximum order of the constraints and without loss of generality all indices
on the left hand side equal n. Then we could build several companion matrices, one for each
of the m =

∏
x kx combinations of constraints, A1, . . . , Am, and calculate in each step of the

recurrence the maximal value for ~xn, such that ~xn ≥ maxi(Ai~xn−1). But it is possible that
the matrices where the maximum is taken are always changing, such that we do not obtain a
formula that can be efficiently computed. An example are the matrices

A1 =

(
2 3
4 1

)
, A2 =

(
3 2
4 1

)
.

These matrices belong to a system of two constraints x(n) ≥ 2x(n−1) + 3y(n−1) (resp. x(n) ≥
3x(n−1) + 2y(n−1)) on the first variable x and only one constraint y(n) ≥ 4x(n−1) + y(n−1) for
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the second variable y. We have for all initial vectors v

Av > Bv ⇒ BAv > AAv ∧Av < Bv ⇒ ABv > BBv.

This can be seen by a case distinction. If and only if v = (v1, v2)t and v1 > v2, A1v is less than
A2v. Thus in this step A2 will be the chosen matrix. After application of A2, the resulting
vector v′ = (v′1, v

′
2)t will have the second component v′2 greater than the first v′1 and thus in

the next step A1 will be chosen and so on. If we list the matrices where the maximum is taken
in each step, there are sequence which are not finally constant (as in the example), and other
examples suggest that we do not know yet if they are even finally periodic.

In case there is in total only one variable (i.e. we have two or more homogeneous recurrences
r1, . . . rn), we can already prove that if the maximum is obtained for the same matrix A as many
times as the degree d1 of the recurrence r1 for A is, then it will always be taken for A. Assume
for any B

Ai~xn ≥ BAi−1~xn, i = 1, ..., d1 .

Consider the characteristic polynomial of xd1 −
∑d1−1

i=0 aix
i, of which A is a zero by Cayley-

Hamilton, and calculate

Ad1+1~xn =

d1∑
i=1

ai−1A
i~xn ≥

d1∑
i=1

ai−1BA
i−1~xn = B

d1−1∑
i=0

aiA
i~xn = BAd1~xn .

The above considerations lead us from linear list constraints to the field of (possibly inhomoge-
neous) positive recurrences with maximums. We give the following heuristic to approximate the
behavior of optimal solutions. Replacing the multiple constraints on x by the new constraint

x(n) ≥ max(a1,1, . . . ak,1)x(n−1) + · · ·+ max(a1,m, . . . , ak,m)x(n−m), (9)

delivers an upper bound on the optimal solution. Note that this is only necessary, if for each
two constraints there are indices i, i′, j, k such that ai,j < ai′,j and ai,k > ai′,k. If there are
other variables than x, we take analogously the maximal coefficients of the additional terms.
This allows us to find a nontrivial upper bound on the systems growth.

7 Applications to Resource Analysis

In previous work, Hofmann and Jost gave a method for analyzing the heap space consumption
of functional programs.

In functional programs it is not possible to build circular data structures, whereas in object
oriented language there may be arbitrary and unpredictable chains of data structures where
one is an attribute of the other (such as a list denoted by tail(x) is an attribute of a list x).

Thus Rodriguez and Hofmann needed to take into account also infinite data structures for
their linear list constraints when considering the object oriented language RAJA. In the general
setting, objects are represented as infinite trees, where the objects themselves are nodes and the
degree of a node is the number of attributes the object has and its children are exactly these
attributes, which may again be objects. Now a program is correctly typeable (with resource
annotated types) if and only if the linear constraints derived by the type inference algorithm are
satisfiable. A heuristic procedure was developed ([10]) which allowed to find solutions in many
cases but the general question of decidability of these infinitary constraint systems remained
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open. It is precisely this question that we have solved in section 4, enabling us to analyse the
entire class of list programs.

To put the problem in perspective we consider a piece of code in the Java-like language
RAJA (as defined in [10]), which implements the sieve of Eratosthenes and which can not be
analyzed with the methods presented in [10]. Here the classes List, Cons and Nil are defined
as usual, such that List is a superclass of Nil (the empty list) and Cons (a nonempty list) and
the methods eratos and filter of the class List are defined in the two subclasses.

c l a s s Cons extends L i s t
{

i n t elem ; L i s t next ;
//RAJA syntax : l e t = a <− b i s the same as a = b
L i s t f i l t e r ( i n t a )
{

l e t l = new Cons in
l e t = t h i s . elem <− t h i s . elem − ( a ∗ t h i s . elem / a ) in
i f ( t h i s . elem = = 0) then

l e t = l . next<−t h i s . next . f i l t e r ( a ) in
re turn l . next

e l s e
l e t = l . elem <− t h i s . elem in
l e t = l . next<−t h i s . next . f i l t e r ( a ) in
re turn l ;

}
L i s t e r a t o s ( )
{

l e t l = new Cons in
l e t = l . next<−t h i s . next . f i l t e r ( t h i s . elem ) . e r a t o s ( ) in
re turn l ;

}
}

In [6], this program was implemented in the functional language RAML, and analyzed with the
result that its resource consumption is quadratic. In our case, the existing RAJA tool cannot
handle the appearing constraints because they do not admit regular solutions over R+

0 , i.e.
solutions representing linear potential and hence space usage.

Now we illustrate how the constraint generation works. This is explained more precisely in
[1]. Since the constraints generated by the RAJA type inference algorithm for this program are
hundreds in number and the analysis is very involved, we decided to pick simpler (schematic)
program fragments to explain the constraint generation. Although they may seem artificial,
there are imaginable cases, where one wants to write such code. However, the aim of these
programs is to be as simple as possible and to generate constraints of a certain format. We
start with an example that has a cascade of recursive calls, which results in constraints with
solution an exponentially increasing list and exponential heap space consumption (in the size
of the input list):

c l a s s Cons extends L i s t
{

L i s t next ;
i n t elem ;
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L i s t m( i n t i )
{

l e t r e s = new Cons in
l e t res ’= new Cons in
// . . . some c a l c u l a t i o n . . .
l e t = r e s . next <− t h i s . next .m( i ) in
l e t = res ’ . next <− t h i s . next .m( i +1) in
re turn r e s ;

}
}

The resulting constraints include

x.next ≥ x + x.

where x ranges over infinite lists of nonnegative rational numbers (or infinity) and x.next
denotes the tail of x. Addition (+) is understood pointwise. Constraints of that form do not
admit regular solutions (except the list consisting only of infinity), but can be treated by the
method we have described.

We now explain the meaning of the above constraint. The list x = x0, x1, x2, . . . models
the potential assigned to the argument, i.e., this: x0 “dollars” for this itself, x1 dollars for
this.next (if present), etc.. The constraint then models the sharing of potential of this.next
between its two occurrences this.nexti, i = 1, 2 in the let-expressions, which means that their
potential sums to the potential of this.next itself. Since we invoke the method m of this

recursively with this.nexti, they must be subtypes of the type of this. This means that they
have at least the same potential as this.

One can modify this program by replacing one of the recursive calls by a call to another
method of the this object. This would result in a constraint of the form

x.next ≥ x + y,

where the potential requirements of the other method are captured in y. If the method requires
nontrivial (e.g. polynomial) potential, we obtain a x list with polynomially growing entries,
where the degree has increased by one.

Our new algorithm allows us to treat a wider class of programs than was the case previously.
We can decide satisfiability (i.e. the possibility of correct typing refined with potential) and in
many cases we are able to detect minimal solutions with respect to the heap space consumption.
In these cases we can guarantee that the program can execute successfully with a certain amount
of memory as a function of it input size. Unlike in [10] this function does not have to be linear.

8 Summary and Future Work

We have studied a constraint satisfaction problem arising from the amortized resource analysis
for object-oriented programs but which due to its simple and natural formulation may be of
interest in its own right.

We show that this problem is computationally hard in general but identified a natural
fragment which still covers the entire range of the resource analysis problems for list programs
and for which we demonstrate feasibility in the sense that both satisfiability and estimation
of growth rates can be decided in polynomial time. This special format encompasses systems
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whose minimal solutions exhibit polynomial or exponential growth, a case that was not within
the scope of the heuristic method proposed earlier [10]. Our method uses a novel combination
of ideas from constraint satisfaction, linear programming, and matrix theory.

Our results can be used to extend the existing amortized analysis, in particular such that
type inference becomes decidable for all kinds of list programs in RAJA and such that the tool
can derive resource bounds from the minimal solutions.

We now discuss what happens if we consider Q+
0 instead of D. Regarding satisfiability,

it remains true that once we have found periodic constraints we can replace them by finitely
many arithmetic variables as we did and solve the resulting constraints with linear programming.
Variables with lower bounds can not be instantiated with constant lists consisting of infinity,
but a solution can be found by reading them as recurrence relations, cf. section 6. This section
works without changes. One reviewer asked what happens if variables range over (nonnegative)
integers or reals. The use of real numbers is not motivated by the application, so we have
not considered it, but due to the linear nature of the constraints we expect no changes at all.
Regarding integers, the polynomial time result no longer holds, as integer linear programming
is NP-complete. Beyond that, we expect no further complications. For the amortized approach
to resource analysis this kind of integrality constraints do not arise.

We remark that as a consequence of the decision procedure in case of unsatisfiability the
contradiction can be proved with a finite number of hd and tl applications and translation of the
resulting constraints into arithmetic variables. This defines a complete proof procedure. The
number of steps is not known a priori, but it is known after carrying out the decision procedure
and thus can be used as a certificate for unsatisfiability in the style of Farkas’ lemma.

The natural next step will be the generalization of our method to decide satisfiability of
more general constraint systems involving D-labeled trees; our current investigations based on
results of [25, 26] suggest that this problem cannot be reduced to the case of lists. Further,
it involves complicated word combinatorics because of the different branchings. But with our
algorithm we can already now treat programs which involve trees with only one nonzero infinite
path or with all nodes on the same level equal. These special cases can directly be reduced to
the list case.

On a more practical side, we plan to implement our algorithms and to integrate them into
the existing RAJA tool.
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[11] Peter Habermehl, Radu Iosif, and Tomáš Vojnar. What Else Is Decidable about Integer Arrays?
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
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