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Abstract

The Leo and Leo-II provers have pioneered the integration of higher-order and first-
order automated theorem-proving. To date, the Leo-II system is, to our knowledge, the
only automated higher-order theorem-prover which is capable of generating joint higher-
order–first-order proof objects in TPTP format. This paper discusses Leo-II’s proof ob-
jects. The target audience are practitioners with an interest in using Leo-II proofs within
other systems.

1 Introduction

The higher-order automated theorem-prover Leo [11; 7] was originally designed as a fully-
automated subsystem of the interactive proof assistant and proof planner OMEGA [29]1. Simi-
lar in spirit to Andrews’ pioneering TPS system [2], Leo was intended to solve selected subgoals
fully-automatically in order to save user interaction or support a proof planner. Hence, the pro-
vision of detailed proof information has always been a necessary feature of Leo’s. This also
holds true for Leo-II2, which has recently been integrated with Sigma [27] – the ontology en-
gineering environment used in the SUMO project [26]. Moreover, Leo-II is currently being
integrated with Isabelle/HOL [24] and the Hets toolset [23]. We seek to present the details
of Leo-II’s proof objects in order to support projects such as these, which are interested in
consuming Leo-II proofs.

Understanding Leo-II’s proofs can be non-trivial. This is partly because Leo-II’s proof
search is based on a higher-order RUE-resolution approach [6; 7], a formalism that is arguably
rather poorly suited for human use. Furthermore, recent versions of Leo-II also adapt normal-
isation techniques, such as splitting (§4.5), which might not help in producing readable proofs.
Moreover, Leo-II’s proof search integrates calls to automated first-order theorem-provers. By
default, Leo-II is linked with the prover E [28]. As a novel side contribution of this paper, Leo-
II now supports integrated higher-order–first-order proof objects – in which TPTP proof objects
delivered by E are first processed by Leo-II and subsequently merged into joint Leo-II+E proof
objects. An example of such a proof is given in Appendix A.

The main goal of this paper is to expose the proof calculus of the Leo-II prover. We also
outline Leo-II’s proof procedure, and describe some challenges in higher-order proof-search.
Our motivation is mainly practical: the paper provides information needed to understand Leo-
II’s proof output, in order to support the reconstruction, and verification, of those proofs.
Theoretical aspects will be addressed as far as required, and relevant pointers to more detailed
literature will be given.

Leo-II’s proof calculus is described in §4, and its proof procedure is outlined in §5. We
start with some background: first on the challenges faced when automating theorem-proving

1Leo stood for ‘Logic Engine for OMEGA’
2Leo-II can be downloaded from www.leoprover.org. This paper deals with the current version of Leo-II

(1.3).
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in higher-order logic (§3.1), then on some features of Leo-II’s implementation (§3.2). The ap-
pendix contains an example problem in THF, and the proof produced by Leo-II in collaboration
with E.

2 Preliminaries

2.1 Syntax

The syntactic conventions used in this article are mostly conformant with those used in the
higher-order automated theorem-proving (ATP) and Leo-II literature. Leo-II relies on a for-
malisation of higher-order logic based on simply-typed λ-calculus. We summarise the syntax of
this formalism here – a more detailed description was given by Benzmüller et al. [12].

Types (which shall be ranged-over by the metavariables τ, τ1, . . . , σ, . . .) are freely-generated
from o (the type of propositions), ι (the type of individuals), and τ1 → τ2 (functions from τ1 to
τ2). We will sometimes abbreviate τ1 → τ2 to τ2τ1. The type o contains two elements, tt and
ff, denoting truth and falsity respectively.

Terms are formed from variables, constants, parameters, abstractions and applications. The
metavariables M,N, . . . range over terms. Variables Xτ , Xτ

1 , Y
τ , . . . are denoted by identifiers

which start with upper-case letters, and range over values of type τ . Constants denote fixed
logical objects, such as ∨o→o→o, ¬o→o, and Π(τ→o)→o, standing for disjunction, negation, and
universal quantification respectively. Parameters cτ , cτ1 , . . . , d

τ , . . . start with lower-case letters
and denote some fixed value of type τ . Abstraction forms terms which denote functions. The
abstraction term λXτ .M denotes the function mapping some value X from τ to the value
denoted by the term M. We will drop the type annotations of variables or constants when this
information is redundant. Application is indicated by juxtaposition of terms, and it denotes
the application of a function to another value.

In λXτ .M, variable X is said to be bound in M, and the scope of the binding extends to
as far to the right as possible. If a variable in a term is not bound by an abstraction, then that
variable is said to be free. A term with no free variables is said to be closed. Formulas are
terms of type o, and sentences are closed formulas. A and B are metavariables ranging over
sentences. A formula is said to be atomic if it is a propositional (i.e. having type o) parameter,
or a propositional variable, or of the (application) form cM, where c is not a logical constant.

Leo-II implements a resolution proof calculus; inference involves manipulating clauses. In
this setting, a clause is a set of formulas. These formulas are implicitly disjoint. Clauses
containing only atomic formulas are said to be proper. C and D are metavariables ranging
over clauses. Members of clauses are called literals. Literals are formulas shown in square
brackets and labelled with a polarity (either tt or ff). For instance, the literal [¬Xo]ff denotes
the negation of ¬X.

Inference rules will be shown in the usual format. In the example below, the symbol ∨
stands for a meta-disjunction (i.e. between literals) since it occurs outside square brackets3.
Clauses are built using such meta-disjunctions. The example below is a dummy inference rule
which picks some literal [M]p and transforms it into [N]q. The symbol C denotes the rest of
the clause.

C ∨ [M]p

rule name
C ∨ [N]q

We will use [M/Xτ ], using postfix syntax, to denote the capture-avoiding substitution of

3The symbol ∨ is overloaded to stand for object-level disjunction when it occurs within square brackets.
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free occurrences of X with the τ -typed term M. Substitution may be applied to both terms
and clauses.

We will occasionally use the following abbreviations for n-fold application and disjunction

respectively: M N
n

for M N1 . . . Nn, and [Mi = Ni]p
i≤k

for [M1 = N1]p ∨ . . . ∨ [Mk = Nk]p.

2.2 TPTP Annotated Formulas

TPTP [31] stands for ‘Thousands of Problems for Theorem Provers’ but it is also much else
besides. It includes a family of languages for encoding input to theorem-provers. These lan-
guages include CNF (clausal first-order logic), FOF (first-order problems in ‘natural form’),
TFF (typed first-order form) and THF (typed higher-order form). THF [32] is a relatively
recent addition to TPTP. It is a language for encoding problems in higher-order logic. Both
E and Leo-II parse TPTP languages: E parses CNF and FOF, and Leo-II parses CNF, FOF
and THF.

Formulas in TPTP are annotated with additional information: a name, role, and other
optional information (e.g. relating to inferences). The name of an annotated formula serves to
reference that formula (e.g. in proofs). Possible formula roles include: definition, axiom, lemma,
and conjecture. Additional annotation information could indicate the source of a formula, or
its derivation from other formulas by inference. This last kind of annotation is used to encode
proofs as chains of TPTP annotated formulas. Thus, TPTP languages are not only used
to encode logic problems, but also to encode their proofs. Leo-II produces such proofs (see
Appendix A.2 for an example), and the goal of this article is to define the inference rules used
in the higher-order segments of Leo-II proofs.

3 Background

3.1 First-order vs higher-order automated reasoning

This section outlines some core differences between first-order and higher-order automated
theorem-proving. It is intended to support the technical description of Leo-II’s calculus in
the remainder of the paper. In this paper we only concern ourselves with classical logic.

Benzmüller et al. [12] give a tour of systems of models of higher-order logic (HOL). These
systems form a family of weak models for HOL, for which complete calculi can be defined.
In a way, equality is ‘native’ in HOL – for instance, the weakest of these models validates β-
equivalence. The strongest of these systems is called Henkin semantics, and it is the semantics
under which Leo-II works.

Unlike in FOL, terms in HOL have a native equality defined on them through λ-conversion.
In Henkin semantics, this relation corresponds to αβη-conversion. In HOL, terms may be
function-valued, and formulas are simply Boolean-valued terms. Term equivalence is taken to
be modulo λ-conversion. Terms are represented, and βη-reduced, in Leo-II as graphs.

Comprehension is another strength of HOL over FOL. Comprehension is a device for defining
sets through formulas. In FOL, comprehension axioms need to be explicitly stated, but these
axioms are native to HOL since sets are defined as formulas4. Benzmüller and Kerber [9]
identify comprehension as being an enabler for significantly shorter proofs in HOL, compared
to using FOL.

4Andrews [1, p207] gives the Comprehension Axiom scheme as ∃Uσ→τ∀V σ . UV = Aτ which when written
in λ-notation shows up as the β-conversion rule.
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Handling equality is more challenging in HOL since it now applies to function-valued and
Boolean-valued terms, and arriving at Henkin completeness requires handling the extensionality
of functions and propositions. The respective axiom and scheme for Boolean extensionality (or
propositional extensionality) and functional extensionality) are

∀XoY. (X ←→ Y ) −→ X = Y
∀F τ→σG. (∀Xτ . FX = GX) −→ F = G

As with equality-handling in FOL, better performance is achieved by extending a proof calculus
with equality-related rules rather than adding the characterising axioms to the logic.

Leo-II does not yet support a calculus-level treatment of the axiom of choice (AC). (Choice
is, however, supported in Satallax [16].) Choice is related to Skolemization. In HOL, Skolemiza-
tion is not as straightforward as in FOL. If it were to be directly adapted for HOL, Skolemization
is unsound wrt Henkin models that invalidate AC, and incomplete wrt Henkin models that val-
idate AC [4]. That is, näıve Skolemization makes instances of AC derivable, but does not make
all instances of AC derivable [8, §3.2].

Leo-II is a resolution-based prover. In first-order resolution-based theorem-proving, clause
normalisation is only carried out once at the beginning of the process. In higher-order theorem-
proving, clause normalisation might be carried out several times (at different points during the
proof process) since variables may be instantiated with formulas, and this may turn normal
clauses into non-normal ones.

In FOL, unification is decidable, and it is used as an eager filter during resolution. Higher-
order unification is undecidable in general, and the application of unification is more delicate.
Leo-II relies on a variant of Huet’s pre-unification [17] procedure, which is semi-decidable. It
checks for the existence of unifiers without actually producing them – as pointed out by Huet,
this is usually sufficient to produce refutations where possible [18]. It works by accumulating
flex-flex unification pairs as unification constraints. When a clause consists only of flex-flex
constraints then it is considered to be empty, since, as Huet showed [19], such a system of
equations always has solutions.

Resolution and factorisation may be applied to the unification constraints too. Despite the
theoretical benefit of lazy filtering, this produces problems in practice owing to accumulation,
as described by Benzmüller [5, §3.3]. Benzmüller explains that there is a tension between per-
formance and completeness, and advocates applying eager unification (with a depth bound)
despite that this makes the system incomplete. Though it was originally intended as an alter-
native option for Leo-II’s architecture, lazy unification has not yet been implemented. Eager
unification in Leo-II works as follows: pre-unification is applied to clauses with a predefined
depth bound (e.g. maximally five5 nestings of the branching FlexRigid rule; cf.§4.3). The
solved unification constraints are exhaustively applied (with rule Subst; cf.§4.3) in the result-
ing clauses, and any remaining flex-flex unification pairs are kept as unification constraints of
the result clause. Pre-unification may return an empty clause – that is, a clause which is either
literally empty or which consists only of flex-flex unification constraints, which always have a
solution.

Unification is used to find instantiations of variables of arbitrary type. In higher-order
theorem-proving, an additional form of instantiation is required for completeness. This form
of instantiation only concerns predicate variables. For example, in order to prove ∃P.P or

5The pre-unification depth is a parameter in Leo-II that can be specified at the command line. By default
Leo-II currently operates with values up to depth 8. So far there has been no exhaustive empirical investigation
of the optimal setting of the pre-unification depth.
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∃P∃X.P X we cannot use unification. This form of instantiation is called primitive substitu-
tion. Guessing instantiations for such variables is a comprehensive challenge since the search is
infinitely-branching. Whereas in FOL one can have a complete resolution calculus using only
the factorisation and resolution rules, in higher-order resolution we need an additional rule for
primitive substitution.

3.2 More on LEO-II

Leo-II [15] is implemented in OCaml and implements several improvements over the original
Leo prover. Leo-II’s calculus is based on RUE resolution: in Leo-II, unification constraints
are disagreement pairs, and are amenable to resolution. Leo-II supports primitive equality
handling – in contrast with Leo which expanded equality using the Leibniz definition. Use
of primitive equality also facilitates the link-up with first-order theorem-provers since Leibniz
equality is not a first-order definition, and the target prover usually has an optimised handling
of equality. The original Leo used Leibniz equality but in order to link it up with a first-
order theorem-prover an intermediate primitive-equality representation was used [13, §3.3]; the
intermediate representation was made available only to the first-order theorem-prover.

First-order subproofs may appear in Leo-II proofs, indicating that those subproofs were
found by a first-order theorem-prover (usually E [28]) collaborating with Leo-II. Indeed, Leo-
II must collaborate with a first-order prover since it fails to prove most problems alone. Leo
had previously been interfaced with Bliksem [13]. Periodically – by default, every 10 iterations
of the main reasoning loop – Leo-II submits problems to first-order provers. These problems
consist of clauses which are essentially first-order. A clause is checked for its first-order char-
acter upon the clause’s formation, and tagged accordingly. Leo-II supports two translations
from higher-order to first-order logic, one by Kerber [21] and the other by Hurd [20]. Either
translation can be used by setting a flag. Hurd’s translation is used by default.

Earlier work showed that using a single higher-order strategy, when a higher-order prover
is combined with a first-order prover, is better than using multiple higher-order strategies [13,
§4]. The original Leo included multiple strategies [5], but Leo-II currently only implements
the SOS strategy.

In Leo-II problems are read, and proofs written, in TPTP syntax. Further improvements
over the original Leo are that terms in Leo-II are indexed and shared for more efficient storage
and lookups [33], and Leo-II implements goal splitting based on the description by Nonnengart
and Weidenbach [25].

4 Calculus

We break down the proof calculus used by Leo-II into five sets of rules based on their function.
Leo-II’s proof output will report inferences which are instances of the rules whose names are
shown in sans in this section. An example of such a proof is provided in Appendix A.2. It
might be useful to refer to the example proof as we go through Leo-II’s calculus. Not all the
inferences in a Leo-II proof can be described here – this is because the Leo-II proof may contain
inferences carried out by external theorem-provers it relies on. For instance, lines 221-244 in
Appendix A.2 are E inferences.

Rule labels shown in typefaces other than sans will not appear in Leo-II’s proof output.
Such rules are drawn from other sources for comparison, or are used by Leo-II but not reported
– i.e. they form part of a more powerful Leo-II rule.
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4.1 Normalisation

These rules deal with the normalisation of clauses, and this section is based on [7, p49]. Each
rule name has a suffix consisting of ‘pos’ or ‘neg’, referring to the polarity of the focussed
literal in that rule. The rules are straightforward – for instance, extcnf or pos lifts object-level
disjunction to meta-level (i.e. clause-level) disjunction. Similarly, the rule extcnf not pos removes
a dominant negation from a literal and flips the literal’s polarity.

C ∨ [A ∨B]tt

extcnf or pos
C ∨ [A]tt ∨ [B]tt

C ∨ [¬A]tt

extcnf not pos
C ∨ [A]ff

C ∨ [A ∨B]ff

extcnf or neg
C ∨ [A]ff

C ∨ [B]ff

C ∨ [¬A]ff

extcnf not neg
C ∨ [A]tt

C ∨ [ΠτA]tt Xτ fresh variable
extcnf forall pos

C ∨ [AX]tt

C ∨ [ΠτA]ff skτ Skolem term
extcnf forall neg

C ∨ [A skτ ]ff

C ∨ [ΠτA]tt canonical Bτ
n

n = Card(τ) n ∈ ω
extcnf forall special pos

C ∨ [A B]tt
n

Rule extcnf-forall-special-pos is a special instance of the rule extcnf forall pos; it is used for the
exhaustive instantiation of some finite types τ having cardinality n. The rule instantiates n
clauses, each with a different term of type τ . Currently, this only applies when τ is o, o→ o or
o→ o→ o.

Examples of these rules’ instances can be seen in Appendix A.2. For example, lines 175-180
show an instance of extcnf or neg (projecting the right disjunct from the hypothesis into the
conclusion):

[(sK2 6= λSXι
0. SX0) ∨ ¬((λSXι

0. sK3 (sK2 SX0)) 6= sK3)]ff

[¬((λSXι
0. sK3 (sK2 SX0)) 6= sK3)]ff

Perhaps more interesting is an instance of extcnf forall neg on lines 216-220, in which the bound
variable SVι

3 is replaced with the Skolem constant sK4:

[∀SVι
3. sK3 (sK2 SV3) = sK3 SV3]ff

[sK3 (sK2 sK4) = sK3 sK4]ff

There are three rules which appear in Leo-II’s proof output but which are not explicitly
formalised above. Rule sim carries out trivial simplifications, including rewriting using idempo-
tency identities. Rule extcnf combined is a combination of the rules described in sections 4.1 and
4.2. Lacking more specification, the inferences that are made in an extcnf combined step need to
be rediscovered by proof search when reconstructing the proof. Rule standard cnf refers to the
use of a combination of rules shown in §4.1. This rule is only applied during a preprocessing
stage while splitting.
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4.2 Extensionality

C ∨ [Mστ = Nστ ]tt Xτ fresh variable
FuncPos

C ∨ [MX = NX]tt

C ∨ [Mo = No]tt

BoolPos
C ∨ [Mo ←→ No]tt

Starting with Leo-II version 1.2.7, rules FuncPos and BoolPos have been combined into
the rule extcnf equal pos . The rule FuncPos is called Func′ in [7, p70], where BoolPos is
called Equiv ′.

An example of extcnf equal pos can be seen on line 197 in Appendix A.2. The inference being
carried out there is the following instance of extcnf equal pos:

[sK2 = λSXι
0.SX0]tt

[∀SVι
1. sK2 SV1 = SV1]tt

That is, a positive equality between functions is turned into an equality between individuals.
Rule extcnf equal neg collects the negative Boolean and function extensionality rules shown

below. These rules could be classified as unification rules (described in the next section) but it
might be more consistent to describe them here together with the extensionality rules.

C ∨ [Mστ = Nστ ]ff skτ a Skolem term
FuncNeg

C ∨ [M sk = N sk]ff

C ∨ [Mo = No]ff

BoolNeg
C ∨ [Mo ←→ No]ff

4.3 Unification

This set of rules implements pre-unification and is based on [7, p50]. Leo-II does not report
the specific unification steps it makes – rather, it packages unification steps (which may include
applications of rule extcnf equal neg described above) into a rule called extuni. The set of rules
shown below differs slightly from [7, p50]: rule Leib is not used in Leo-II, rules Func and Equiv
are collected under extcnf equal neg (§4.2), and rule Dec appears differently6.

C ∨ [A = A]ff

Triv
C

C ∨ [hστUα
k

= hστVα
k
]ff

Dec

C ∨ [Ui = Vi]ff
i≤k

C ∨ [X = A]ff X 6∈ FV(A)
Subst

C[A/X]

C ∨ [F τU
n

= hV
m

]ff G ∈ AB(h)
τ

FlexRigid
C ∨ [F = G]ff ∨ [FU

n
= hV

m
]ff

In rule FlexRigid (and again in rule prim subst below), we use the symbol AB(k)
τ to denote

the set of approximating/partial bindings parametric to a type τ and to a constant k. This is
explained further next, based on [7, p18], who in turn cites Snyder and Gallier [30]. Let type τ

be of the form σl → τ ′. Given a name7 k of type ρl → τ ′, term G having form λXσi≤l

l
.kV

m
is

6The decomposition rule used in Leo-II is taken from [10]. The version shown in [7, p50] is:

C ∨ [AστUαk = BστVαk]ff

Dec
C ∨ [A = B]ff ∨ [Ui = Vi]ff

i≤k

7where a name is either a constant or a variable
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a partial binding of type τ and head k. Each Vi≤m has form HiXσj≤l

l
where Hi≤m are fresh

variables typed σl → ρi≤m. Projection bindings are partial bindings whose head k is one of
Xi≤l. Imitation bindings are partial binding whose head k is drawn from the set of constants
in the signature. AB(k)

τ is the set of all projection and imitation bindings modulo τ and k.

Leo-II may nominally use the rule flexflex to indicate that a clause consists only of flex-flex
unification constraints (which always have a solution). This rule is not written explicitly here
since Leo-II follows Huet in regarding such clauses to be empty.

The example proof in Appendix A.2 contains an instance of an extuni inference in lines 143-
145. This inference follows the inference in clause 14 (lines 135-142) and instantiates variable
SV1 in the latter with the term λSXι

0.SX0 (the identity function). This instantiation then
allows us to rewrite lines 136-140 to

(λSYι
27.sK1 SY27) = (λSYι

28.sK1 SY28)

which is obviously true, thus leading to ff = tt in line 144.

4.4 Resolution

[A]p1 ∨C [B]p2 ∨D p1 6= p2
res

C ∨D ∨ [A = B]ff

[A]p ∨ [B]p

fac restr
[A]p ∨ [A = B]ff

This section is based on [7, p50]. Rule res is the resolution rule and fac restr is the restricted
factorisation rule. The full factorisation rule is described in [7, p50], but Leo-II uses a re-
stricted form of factorisation which targets binary clauses, as formalised above. Resolution and
restricted factorisation are applied only to proper clauses in Leo-II.

We now turn to the rule prim subst, which is called Prim in [7, p50]. This is the prim-
itive substitution rule used to instantiate predicate variables, as mentioned in §3.1. Prim-
itive substitution is applied only to proper clauses in Leo-II. This rule requires some con-
text beforehand: Let Σ be the logic’s signature, and κ ⊆ Σ range over logical constants, i.e.
κ = {¬,∨} ∪ {Π(σ→o)→o,=σ→σ→o: σ ∈ T }, where T is the set of types. Let τ, σ ∈ T range
over types, and p range over truth values {tt, ff}. Let Qτ be a flexible literal head – i.e. τ must
have the form σ → o. Finally, the prim subst rule, which simulates Huet’s splitting rule in his
resolution calculus, is formalised as follows:

[QτU
n
]p ∨C P ∈ AB(k)

τ
prim subst

([QτU
n
]p ∨C)[P/Q]

As an example consider the formula ∃P∃X.P X. Negating and normalising the formula
gives the clause [P X]ff . Rule prim subst offers the clause [¬HX]ff by using the instantiation
[(λX.¬HX)/P ]. Further normalisation and resolution will yield a singleton clause consisting
of a flex-flex constraint – that is, an effectively empty clause.

4.5 Logistic

Logistic rules include rules which handle book-keeping and other, perhaps extralogical, opera-
tions. We start with splitting. Rules split conjecture and solved all splits form a proof scheme; they
can be described together as shown below. In this scheme, note that (◦, p) ∈ {(∧, ff), (∨, tt)}.
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C ∨ [A1 ◦ . . . ◦An]p

split conjecture
C ∨ [A1]p

...

[ff]tt . . .

C ∨ [An]p

...

[ff]tt

solved all splits
[ff]tt

The rule scheme could also be used to split on (⇔, ff) and (=, ff), both of which are used for
equality over propositions. For an example of this rule’s use, refer to clause 3 (lines 44-58) in
Appendix A.2, and how it splits into clauses 4 and 5.

Rule negate conjecture is another example of a proof scheme. It is used to build refutation
proofs. It formalises the contradiction proof method: the conjecture is negated at the start
of the proof, then the proof machinery attempts to refute the negated conjecture to prove the
original conjecture valid. An instance of negate conjecture can be seen in Appendix A.2, in lines
33-43.

¬A
negate conjecture

...

[ff]tt

A

Rule polarity switch flips the polarity of literals and negates their formulas. (Note that
extcnf not pos and extcnf not neg, seen in §4.1, only remove negations.) As one would expect,
this rule is only used in controlled settings to avoid nontermination. Let t̄t = ff and f̄f = tt,
then:

C ∨ [A]p

polarity switch
C ∨ [¬A]p̄

The inference fo atp e indicates that a subproof, relating to a particular formula in the proof,
was found using the E theorem prover. The formula in question appears as the conclusion of
the fo atp e inference; the inference also specifies the hypotheses from which the conclusion was
deduced. E’s proof is spliced back into Leo-II’s proof graph, as shown in the example in the
appendix. This splicing requires Leo-II to carry out several manipulations on the proof deliv-
ered by E. For example, a renaming of clauses is required to avoid clashes (clauses, representing
proof steps in proofs, are usually given numbers as names – and thus Leo-II must ensure that
all steps in the combined Leo-II+E proof are unique). Moreover, the correspondence between
the input clauses given to E and the originating clauses in Leo-II has to be established. This
is illustrated in Appendix A.2 by clauses 32 (lines 221-223) and 33: their annotation has been
modified by Leo-II such that a reference to the corresponding Leo-II clauses 27 an 30 is made,
together with the justification fully-typed-translation.

Rules unfold def, rename and copy carry out straightforward administrative tasks. Rule un-
fold def expands definitions – these are specially-marked equational axioms, of the form hτ = Aτ ,
where the LHS is a constant which does not appear on the RHS, and the constant does not
appear as the sole LHS in another definition. For an example of this rule in action, compare
lines 34-42 with lines 45-57 in Appendix A.2.
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Rule rename simply renames all free variables in a clause, and rule copy merely copies a
formula from a prior inference. This rule allows Leo-II to ‘forget’ annotation information asso-
ciated with the original formula – this annotation information is used as heuristic information
to help guide proof-search.

5 Proof procedure

Leo-II uses a DISCOUNT-based [3] given-clause reasoning loop and terminates upon generating
an empty clause, or after exceeding a timeout or maximum number of iterations. During
processing, clauses are checked for being first-order, in which case they are labelled with a flag
indicating such.

5.1 Preprocessing

Before starting the main reasoning loop the following preprocessing steps are carried out in the
order shown below.

Abbreviation expansion involves expanding non-logical definitions (i.e. Boolean-valued def-
initions, such as ∧ or −→, are not touched). Expansion of definitions is exhaustively
applied – see explanation of rule unfold def in §4.5. Recursive definitions cause Leo-II to
diverge.

Standard normalisation involves the application of clause normalisation rules but does not
use extensionality rules.

Splitting involves breaking up formulas dominated by connectives such as ∧ or ←→ into
separate problems – see the explanation of rule split conjecture in §4.5. Each subproblem
is then tackled as follows:

1. Abbreviation expansion is applied, but this time logical definitions may be ex-
panded (e.g. occurrences of ∧ or −→);

2. Each clause is extensionally normalised (this may include Skolemization) using
the extcnf-combined family of rules (§4.1);

3. Primitive substitution (rule prim subst described in §4.4) is used to instantiate
predicate variables;

4. Restricted factorization (rule fac restr described in §4.4);

5. Positive functional extensionality and positive Boolean extensionality (rule
extcnf equal pos described in §4.2);

6. Depth-bounded extensional pre-unification (which may include Skolemization)
appears as rule extuni and is described in §4.3;

7. Extensional normalisation (which may include Skolemization too) appears as rule
extcnf combined and is described in §4.1;

8. Finally clauses are simplified (rule sim described in §4.1).

Initialisation The active clauseset is initialised with the output from the above step, and
passive clauseset is initialised to the empty set.
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5.2 Reasoning loop

1. At regular intervals, dispatch first-order clauses to the external prover. The first-order
prover is called on essentially first-order clauses which have been recognised up to this
part of the process.8 If Leo-II is given a first-order problem then it is passed on to E
to solve at this point. Conclusions of refutations found by E are labelled by an fo-atp-e
inference, as described in §4.5.

2. Select a clause from the active set and rename its free variables to ensure freshness. The
selection function implements the ratio strategy [22]: the clause’s weight is the dominant
criterion, and the clause’s age (i.e. its identifier number) is a secondary criterion. Lighter
clauses are preferred over heavy ones, and older clauses over younger ones. The weight
of a clause is (currently) simply taken as the number of its literals (for future versions
of Leo-II it is planned to employ proper term weightings to obtain a more meaningful
weighting criterion).

3. If the selected clause is subsumed by a clause within the passive set then ignore the
selected clause. Otherwise:

(a) Add the selected clause to the passive set, and remove subsumed clauses from the
active set.

(b) Apply the following rules to the selected clause:

• resolution (rule res, §4.4) with all members of the active set;

• restricted factorisation (rule fac restr, §4.4);

• primitive substitution (rule prim subst, §4.4);

• positive Boolean extensionality (rule BoolPos, §4.2).

(c) Apply the following rules to the resulting clauses:

• extensional normalisation (rule extcnf combined, §4.1);

• depth-bound extensional pre-unification (rule extuni, §4.3);

• simplification (rule sim, §4.1).

(d) Add the resulting clauses to the active set.

6 Conclusion

In this paper we sought to give more logical details of Leo-II than had previously been published
[15; 14]. It is hoped that this can be useful for interpreting Leo-II proofs, perhaps for subsequent
use or verification by other systems.
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A An example LEO-II proof

A.1 Simple example problem

The THF (see §2.2 for a brief outline of the syntax) script below starts by giving the type and
definition of the composition functional over elements of type $i – this denotes the type of
individuals in THF. The script then gives the type and definition of the identity function over
individuals. It then uses these definitions to conjecture a formula labelled thm. This formula
conjectures two properties: there exists a function F such that for any function G, F ◦G = G◦F ;
and for all functions F and G, if F is the identity function then F ◦G = G. The proof9 found
by Leo-II and E for this formula is shown in the next section.

thf(compose_type,type,(
compose: ( $i > $i ) > ( $i > $i ) > $i > $i )).

thf(compose_def,definition,
( compose
= ( ^ [F: $i > $i,G: $i > $i,X: $i] :

( G @ ( F @ X ) ) ) )).

thf(id_type,type,(
id: $i > $i )).

thf(id_def,definition,
( id
= ( ^ [X: $i] : X ) )).

thf(thm,theorem,
( ? [F: $i > $i] :

! [G: $i > $i] :
( ( compose @ F @ G )
= ( compose @ G @ F ) )

& ! [F: $i > $i,G: $i > $i] :
( ( F = id )

=> ( ( compose @ F @ G )
= G ) ) )).

9To obtain detailed proof information, as illustrated here, from Leo-II you must give Leo-II (versions 1.3
and higher) the argument ‘-po 2’ (‘-po’ stands for proof output). The E subproof is not shown when Leo-II is
called with the ‘-po 1’ or ‘-po 0’ options.

46



Understanding LEO-II’s proofs Nik Sultana and Christoph Benzmüller

A.2 A joint LEO-II+E proof for the example problem

This TPTP script is a proof in higher-order logic but contains a first-order proof segment which
was found by E. The parts contributed by E can easily be identified by the TPTP language (see
§2.2) of the proof’s clauses: those in FOF and CNF are contributed by E. The contradiction
found using FOL is used to finish the containing HOL proof.

Let us quickly outline the structure of lines in the proof, taking the following as an example:

1 thf(19,plain,

2 ( ( ( sK2

3 != ( ^ [SX0: $i] : SX0 ) )

4 | ~ ( ( ^ [SX0: $i] :

5 ( sK3 @ ( sK2 @ SX0 ) ) )

6 != sK3 ) )

7 = $false ),

8 inference(extcnf_not_pos,[status(thm)],[18])).

Line 1 tells us that the formula carried by the line is written in THF, that the line’s label
(think of this as a unique name) is “19”, and that its role is plain (i.e. it’s not an axiom, lemma,
definition, etc – see the TPTP Technical Report10 for a full list of roles). Lines 2-7 state the
THF formula [32] being concluded by this inference. Line 8 consists of an annotation providing
valuable proof information: it tells us that the inference is an instance of extcnf not pos, that the
inference is validity-preserving, and that the rule’s hypothesis is identified by the label “18”.
Rule extcnf not pos is described in §4.1. Clause 18, on which the inference described above relies,
is shown below – the boxes contain the parts of its formula affected by extcnf not pos.

thf(18,plain,

( ( ~ ( ( sK2

!= ( ^ [SX0: $i] : SX0 ) )

| ~ ( ( ^ [SX0: $i] :

( sK3 @ ( sK2 @ SX0 ) ) )

!= sK3 ) ) )

= $true ),

inference(unfold_def,[status(thm)],[17,compose,id])).

The full Leo-II+E proof for the problem described in Appendix A.1 is given next.

% SZS status Theorem for /tmp/SystemOnTPTPFormReply928/SOT_B5Kj_i (rf:0,ps:3,sos:true,u:8,ude:true,foatp:e)
%**** Beginning of derivation protocol ****
% SZS output start CNFRefutation
thf(tp_compose,type,(

5 compose: ( $i > $i ) > ( $i > $i ) > $i > $i )).
thf(tp_id,type,(

id: $i > $i )).
thf(tp_sK1,type,(

sK1: ( $i > $i ) > $i > $i )).
10 thf(tp_sK2,type,(

sK2: $i > $i )).
thf(tp_sK3,type,(

sK3: $i > $i )).
thf(tp_sK4,type,(

15 sK4: $i )).
thf(compose_def,definition,

( compose
= ( ^ [F: $i > $i,G: $i > $i,X: $i] :

10http://www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml
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( G @ ( F @ X ) ) ) )).
20 thf(id_def,definition,

( id
= ( ^ [X: $i] : X ) )).

thf(1,conjecture,
( ? [F: $i > $i] :

25 ! [G: $i > $i] :
( ( compose @ F @ G )
= ( compose @ G @ F ) )

& ! [F: $i > $i,G: $i > $i] :
( ( F = id )

30 => ( ( compose @ F @ G )
= G ) ) ),

file(’/tmp/SystemOnTPTPFormReply928/SOT_B5Kj_i’,thm)).
thf(2,negated_conjecture,

( ( ? [F: $i > $i] :
35 ! [G: $i > $i] :

( ( compose @ F @ G )
= ( compose @ G @ F ) )

& ! [F: $i > $i,G: $i > $i] :
( ( F = id )

40 => ( ( compose @ F @ G )
= G ) ) )

= $false ),
inference(negate_conjecture,[status(cth)],[1])).

thf(3,plain,
45 ( ( ? [SY0: $i > $i] :

! [SY1: $i > $i] :
( ( ^ [SY4: $i] :

( SY1 @ ( SY0 @ SY4 ) ) )
= ( ^ [SY7: $i] :

50 ( SY0 @ ( SY1 @ SY7 ) ) ) )
& ! [SY8: $i > $i,SY9: $i > $i] :

( ( SY8
= ( ^ [X: $i] : X ) )

=> ( ( ^ [SY12: $i] :
55 ( SY9 @ ( SY8 @ SY12 ) ) )

= SY9 ) ) )
= $false ),
inference(unfold_def,[status(thm)],[2,compose,id])).

thf(4,plain,
60 ( ( ? [SY0: $i > $i] :

! [SY1: $i > $i] :
( ( ^ [SY4: $i] :

( SY1 @ ( SY0 @ SY4 ) ) )
= ( ^ [SY7: $i] :

65 ( SY0 @ ( SY1 @ SY7 ) ) ) ) )
= $false ),
inference(split_conjecture,[split_conjecture(split,[])],[3])).

thf(5,plain,
( ( ! [SY8: $i > $i,SY9: $i > $i] :

70 ( ( SY8
= ( ^ [X: $i] : X ) )

=> ( ( ^ [SY12: $i] :
( SY9 @ ( SY8 @ SY12 ) ) )

= SY9 ) ) )
75 = $false ),

inference(split_conjecture,[split_conjecture(split,[])],[3])).
thf(6,plain,

( ( ~ ( ? [SY0: $i > $i] :
! [SY1: $i > $i] :

80 ( ( ^ [SY4: $i] :
( SY1 @ ( SY0 @ SY4 ) ) )

= ( ^ [SY7: $i] :
( SY0 @ ( SY1 @ SY7 ) ) ) ) ) )

= $true ),
85 inference(polarity_switch,[status(thm)],[4])).

thf(7,plain,
( ( ~ ( ! [SY8: $i > $i,SY9: $i > $i] :

( ( SY8
= ( ^ [X: $i] : X ) )

90 => ( ( ^ [SY12: $i] :
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( SY9 @ ( SY8 @ SY12 ) ) )
= SY9 ) ) ) )

= $true ),
inference(polarity_switch,[status(thm)],[5])).

95 thf(8,plain,
( ( ! [SY0: $i > $i] :

( ( ^ [SY21: $i] :
( sK1 @ SY0 @ ( SY0 @ SY21 ) ) )

!= ( ^ [SY22: $i] :
100 ( SY0 @ ( sK1 @ SY0 @ SY22 ) ) ) ) )

= $true ),
inference(extcnf_combined,[status(esa)],[6])).

thf(9,plain,
( ( ( sK2

105 = ( ^ [X: $i] : X ) )
& ( ( ^ [SY26: $i] :

( sK3 @ ( sK2 @ SY26 ) ) )
!= sK3 ) )

= $true ),
110 inference(extcnf_combined,[status(esa)],[7])).

thf(10,plain,
( ( ! [SY0: $i > $i] :

( ( ^ [SY21: $i] :
( sK1 @ SY0 @ ( SY0 @ SY21 ) ) )

115 != ( ^ [SY22: $i] :
( SY0 @ ( sK1 @ SY0 @ SY22 ) ) ) ) )

= $true ),
inference(copy,[status(thm)],[8])).

thf(11,plain,(
120 ! [SV1: $i > $i] :

( ( ( ^ [SY27: $i] :
( sK1 @ SV1 @ ( SV1 @ SY27 ) ) )

!= ( ^ [SY28: $i] :
( SV1 @ ( sK1 @ SV1 @ SY28 ) ) ) )

125 = $true ) ),
inference(extcnf_forall_pos,[status(thm)],[10])).

thf(12,plain,(
! [SV1: $i > $i] :

( ( ( ^ [SY27: $i] :
130 ( sK1 @ SV1 @ ( SV1 @ SY27 ) ) )

= ( ^ [SY28: $i] :
( SV1 @ ( sK1 @ SV1 @ SY28 ) ) ) )

= $false ) ),
inference(extcnf_not_pos,[status(thm)],[11])).

135 thf(14,plain,(
! [SV1: $i > $i] :

( ( ( ^ [SY27: $i] :
( sK1 @ SV1 @ ( SV1 @ SY27 ) ) )

= ( ^ [SY28: $i] :
140 ( SV1 @ ( sK1 @ SV1 @ SY28 ) ) ) )

= $false ) ),
inference(extcnf_equal_neg,[status(thm)],[12])).

thf(16,plain,(
$false = $true ),

145 inference(extuni,[status(esa)],[14:[bind(SV1,$thf(^ [SX0: $i] : SX0))]])).
thf(17,plain,

( ( ( sK2
= ( ^ [X: $i] : X ) )

& ( ( ^ [SY26: $i] :
150 ( sK3 @ ( sK2 @ SY26 ) ) )

!= sK3 ) )
= $true ),
inference(copy,[status(thm)],[9])).

thf(18,plain,
155 ( ( ~ ( ( sK2

!= ( ^ [SX0: $i] : SX0 ) )
| ~ ( ( ^ [SX0: $i] :

( sK3 @ ( sK2 @ SX0 ) ) )
!= sK3 ) ) )

160 = $true ),
inference(unfold_def,[status(thm)],[17,compose,id])).

thf(19,plain,
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( ( ( sK2
!= ( ^ [SX0: $i] : SX0 ) )

165 | ~ ( ( ^ [SX0: $i] :
( sK3 @ ( sK2 @ SX0 ) ) )

!= sK3 ) )
= $false ),
inference(extcnf_not_pos,[status(thm)],[18])).

170 thf(20,plain,
( ( sK2
!= ( ^ [SX0: $i] : SX0 ) )

= $false ),
inference(extcnf_or_neg,[status(thm)],[19])).

175 thf(21,plain,
( ( ~ ( ( ^ [SX0: $i] :

( sK3 @ ( sK2 @ SX0 ) ) )
!= sK3 ) )

= $false ),
180 inference(extcnf_or_neg,[status(thm)],[19])).

thf(22,plain,
( ( sK2

= ( ^ [SX0: $i] : SX0 ) )
= $true ),

185 inference(extcnf_not_neg,[status(thm)],[20])).
thf(23,plain,

( ( ( ^ [SX0: $i] :
( sK3 @ ( sK2 @ SX0 ) ) )

!= sK3 )
190 = $true ),

inference(extcnf_not_neg,[status(thm)],[21])).
thf(24,plain,

( ( ! [SV1: $i] :
( ( sK2 @ SV1 )

195 = SV1 ) )
= $true ),
inference(extcnf_equal_pos,[status(thm)],[22])).

thf(26,plain,
( ( ( ^ [SX0: $i] :

200 ( sK3 @ ( sK2 @ SX0 ) ) )
= sK3 )

= $false ),
inference(extcnf_not_pos,[status(thm)],[23])).

thf(27,plain,(
205 ! [SV2: $i] :

( ( ( sK2 @ SV2 )
= SV2 )

= $true ) ),
inference(extcnf_forall_pos,[status(thm)],[24])).

210 thf(28,plain,
( ( ! [SV3: $i] :

( ( sK3 @ ( sK2 @ SV3 ) )
= ( sK3 @ SV3 ) ) )

= $false ),
215 inference(extcnf_equal_neg,[status(thm)],[26])).

thf(30,plain,
( ( ( sK3 @ ( sK2 @ sK4 ) )

= ( sK3 @ sK4 ) )
= $false ),

220 inference(extcnf_forall_neg,[status(esa)],[28])).
fof(32,axiom,(

! [X1] : ti(at(ti(sK2,ft(i,i)),ti(X1,i)),i) = ti(X1,i) ),
inference(fully_typed_translation,[status(thm)],[27])).

fof(33,axiom,(
225 ti(at(ti(sK3,ft(i,i)),ti(at(ti(sK2,ft(i,i)),ti(sK4,i)),i)),i) != ti(at(ti(sK3,ft(i,i)),ti(sK4,i)),i) ),

inference(fully_typed_translation,[status(thm)],[30])).
fof(35,plain,(

ti(at(ti(sK3,ft(i,i)),ti(at(ti(sK2,ft(i,i)),ti(sK4,i)),i)),i) != ti(at(ti(sK3,ft(i,i)),ti(sK4,i)),i) ),
inference(fof_simplification,[status(thm)],[33])).

230 fof(38,plain,(
! [X2] : ti(at(ti(sK2,ft(i,i)),ti(X2,i)),i) = ti(X2,i) ),
inference(variable_rename,[status(thm)],[32])).

cnf(39,plain,
( ti(at(ti(sK2,ft(i,i)),ti(X1,i)),i) = ti(X1,i) ),
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235 inference(split_conjunct,[status(thm)],[38])).
cnf(40,plain,

(ti(at(ti(sK3,ft(i,i)),ti(at(ti(sK2,ft(i,i)),ti(sK4,i)),i)),i) != ti(at(ti(sK3,ft(i,i)),ti(sK4,i)),i)),
inference(split_conjunct,[status(thm)],[35])).

cnf(42,plain,
240 ( $false ),

inference(rw,[status(thm)],[40,39,theory(equality)])).
cnf(43,plain,

( $false ),
inference(cn,[status(thm)],[42,theory(equality)])).

245 thf(44,plain,(
$false = $true ),
inference(fo_atp_e,[status(thm)],[43])).

thf(45,plain,(
$false ),

250 inference(solved_all_splits,[solved_all_splits(join,[])],[44,16])).
% SZS output end CNFRefutation
%**** End of derivation protocol ****
%**** no. of clauses in derivation: 36 ****

255 % END OF SYSTEM OUTPUT
% RESULT: SOT_B5Kj_i - LEO-II---1.3.0 says Unsatisfiable - CPU = 0.03 WC = 0.06
% OUTPUT: SOT_B5Kj_i - LEO-II---1.3.0 says CNFRefutation - CPU = 0.03 WC = 0.06

A.3 Visualising a LEO-II+E proof

The figure on the next page is an ad-hoc visualisation based on the output from Sutcliffe’s
Interactive Derivation Viewer (IDV) [34] – a tool for visualising TPTP proofs.

This visualisation illustrates the mixed character of the proof: the pentagonical node at the
top is the original conjecture (clause 1) which is subsequently negated (clause 2, appearing as the
downward-pointing pentagon). The non-logical definitions ‘compose’ and ‘id’ are then unfolded
(clause 3). Clause 3 is finally refuted at the bottom-right of the graph, by the derivation of
the empty clause (clause 45, which appears as the double-circular node at the bottom of the
graph).

The refutation of clause 3 is split in our example into two branches, both ending with
contradictions (clauses 16 and 44). The right branch, which consists of the clauses 4, 6, 8, 10-
12, 14 and 16, is a pure THF branch with a pre-unification step at the end. The grey circular
nodes indicate that the clauses they represent are written in THF.

The left branch of the split is a mixed higher-order–first-order proof as indicated by the
mixture of node borders and fills: grey circular nodes indicate THF clauses (clauses 5, 7, 9, 17-
24, 26-28, 30); circular nodes having dashed borders stand for FOF clauses (clauses 35 and 38);
circular nodes having dotted borders indicate CNF clauses (clauses 39 and 40). The triangles
indicate the FOF ‘axiom’ (or better, ‘input’) clauses used by E (clauses 32 and 33); they are
linked to corresponding THF clauses generated by Leo-II (clauses 27 and 30). The double-circle
nodes are empty clauses. Clauses 42 and 43 are such clauses generated by E, the last of which
is referenced again by a contradiction in Leo-II (clause 44). This closes the proof branch. The
two branches are then combined to close the proof in node 45.
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Figure 1: The proof from Appendix A.2
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