
 Mutation Event and Fuzzy Active Rule
Processing in a Graph Database System

Ying Jin and Vaidehi Rakesh Shah
Department of Computer Science,

California State University, Sacramento,
Sacramento, CA 95819-6021, USA

jiny@csus.edu

Abstract
A graph database system is a type of NoSQL databases that is based on the graph data

model using nodes and arcs. Existing graph databases are passive and can only handle
crisp data. Information in the real world can be imprecise and vague rather than crisp.
Integrating fuzzy logic into database systems allows users to use uncertain data, which
presents the degree to which something is true. Compared with passive databases, active
databases support event handling by monitoring and reacting to specific circumstances
automatically. This paper describes our approach of incorporating fuzzy concepts and
active rules into a graph database system. Our recent publication has described our work
of temporal event processing. This paper focuses on mutation events handling and active
rule processing in a fuzzy system, covering the language model, the execution model, and
architecture design. The language model defines the rule structure and contains the
metadata for rule processing. Architecture design identifies the system's architectural
components and user interfaces including rule specification interface and query interface.
The execution model handles rule processing and execution at run time. A supply chain
application is used to demonstrate the examples of active rule specification and execution.

1 Introduction
Traditional databases only handle crisp and precise data. To handle imprecise data, fuzzy database

systems extend the capabilities by allowing fuzzy values be to stored and queried. Fuzzy logic computes
the degree to which something is true [1]. Compared to that, crisp logic is considered binary, in which
a value is either true or false.

Passive database management systems execute database operations only upon commands issued
by users. Traditional database systems are passive as they lack the functionality of automatic reaction
to events. An active database system provides declarative specification and automatic event handling

EPiC Series in Computing

Volume 89, 2022, Pages 21–30

Proceedings of 35th International Conference on
Computer Applications in Industry and Engineering

Y. Shi, G. Hu, K. Kambhampaty and T. Goto (eds.), CAINE 2022 (EPiC Series in Computing, vol. 89),
pp. 21–30

mailto:jiny@csus.edu

using active rules [2]. An active rule consists of three parts: an event, a condition, and an action. When
an event occurs, the condition is evaluated. If the condition is fulfilled, the action part conducts a
sequence of operations on the database. Active rules are also known as event-condition-action or ECA
rules. Triggers are simplified active rules in relational database systems.

Graph database systems are one type of NoSQL databases. Graph database systems are based on
the graph model, using node and arcs to present data and its relationships. This research incorporates
fuzzy logic and active rules into Neo4j [3], a predominant graph database system. Two types of events
can trigger rules: mutation events and temporal events. Timer rules are triggered by temporal events
that occur at a specific time or time interval. Mutation events are raised by the Create, Update, and
Delete operations, which are write operations to the databases. Our previous research described our
design and implementation on temporal event handling and timer rule processing in a fuzzy graph
database [4]. This paper focuses on processing rules triggered by mutation events. Specifically, we will
present our research on the language model, system architecture design, and implementation of rule
processing and execution. The language model covers rule definition and metadata for language
processing. The condition-action part of a rule is based on a Cypher query [5]. In addition to using
crisp values in a rule, users can use fuzzy expressions to specify their business logic. Architecture design
identifies the architectural components and user interfaces in the system. The execution model handles
rule processing at static time and rule execution at run time. Our system is a general system, which is
not restricted to a specific application. To illustrate the rule definition and execution logic, we use a
supply chain example with products, distributors, retailers, and customers. Retailers order products
from distributors. Customers will go to the retailers to purchase products. Further details can be found
in [6].

The rest of the paper is organized as follows. Chapter 2 provides the background of fuzzy logic and
discusses related research. Chapter 3 presents the language model with the rule structure. Chapter 4
explains the system architecture and rule processing. Chapter 5 summarizes the research and provides
future work.

2 Related Work
Information can be ambiguous, imprecise, and uncertain in the real world. Fuzzy data presents the

property that an attribute is not associated with one unique value. For instance, the term "hot" can refer
to a numerical range, from 60 to 80 Celsius in a given context. Fuzzy set theory is a generalization of
crisp sets that allows the presentation of information in a matter of degrees. Membership functions are
used in the fuzzy set theory to compute crisp values. Linguistic variables and their respective linguistic
values are defined in a membership function. For instance, in the sentence "The soup is hot”, "soup" is
a linguistic variable or fuzzy variable; and "hot" is a linguistic value. With the use of membership
functions, linguistic values can be converted to numerical values. Different membership functions can
be used by different distributions. This research covers three types of distribution: 1) trapezoidal
distribution, 2) possibility interval, and 3) triangular distribution. We described three types of
distributions in our previous publication [4] for temporal event handling. We use the same way to
handle the distributions in this paper.

 Our previous publications have presented our research on fuzzy XML databases [7]. There is
limited research on incorporating fuzzy logic or active rules into graph databases. The research in [8]

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

22

described the approach of “Trigger-By-Example” to implement triggers in graph databases, including
both BEFORE INSERT trigger and AFTER INSERT trigger. This approach is a variation of the
traditional Query-By-Example approach. Users can specify rules using its graphical interface. The work
in [9] introduced a system architecture to handle triggers in the graph databases. The architecture
contains a one-time query processor to handle the simple type of events such as insert, update, and
delete. It also has a continuous query processor to save the subgraph-action rules to perform specified
actions. Both [8] and [9] only allow users to specify the rules containing crisp values. The research in
[10] added fuzzy logic to Neo4j, which defined “fuzzy data” as a new data type. It presented its system
using a social network application. The work in [11] and [12] also introduced fuzzy logic into graph
databases. Compared with the related research, this project incorporates both active rules and fuzzy
logic into a graph database management system. In our system, users can specify fuzzy terms in an
active rule, thus allowing active behaviours to be specified in a fuzzy manner in a graph database
environment.

3 Language
The structure of rules is shown in Figure 1. Rules are specified based on the Cypher Query

Language. Cypher is the query language of Neo4j, which allows users to query and manipulate nodes
and arcs (relationships) in the graph. The details of Cypher can be found in [5]. A mutation event is
raised from operations of creating nodes and/or relationships, update nodes and/or relationships, and
delete nodes and/or relationships. BEFORE/AFTER specifies when to execute the condition and action
part of the rule. “Before” rule executes the condition and action before executing the Create, Update,
Delete operation. “After” rule executes the condition and action after the operation. The condition and
action part of the rule is specified using extended Cypher, which extends Cypher by allowing fuzzy
logic in a Cypher query.

Figure 1: Rule Structure

A rule example is shown in Figure 2, which describes the business logic related to distributors and
retailers. A retailer usually orders a product from its “primary” distributor that is its first preference.
When a distributor increases the cost, if its “secondary” distributor offers a better price and the rating
is “high”, then the preference of “primary” and “secondary” will be switched. Four parameters are
defined in the rule. For example, the “distName” parameter is for the distributor. The same rule can be
used by multiple distributors with different distributor names without the need to define a rule for each
distributor to cover the same business logic. The event part is raised by the operation of cost changes,
defined by a Neo4j Cypher query. The condition-action part compares the price and checks the rating.
If the conditions of price and rating are true, then action is performed to modify preference. The
condition and action are also based on Cypher query. Cypher query is extended to accept fuzzy terms.
In this example, the linguistic variable is “rating” and the linguistic value is “high”. Threshold can also

CREATE RULE RuleName ($parameter 1, …$parameter n)
EVENT

Cypher query such as Create, Update, Delete
BEFORE/AFTER
CONDITION AND ACTION

Extended Cypher query

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

23

be specified, such as “dis.dRating = #high WITH THOLD = 0.4” to combine with the fuzzy term to
control the range of the corresponding crisp values. More fuzzy terms can be specified in other rules.
For example, when a new shipment arrives, a rule can check if profit = [10,20], popularity = ~ 2, and
the product is perishable, then a 10 percent discount is applied to the product’s original sale price.

Figure 2: Rule Example

4 System Architecture and Execution Model
4.1 System Architecture and Execution Flow

As shown in Figure 3, the architecture components include rule interface, query interface, rule
parser, fuzzy rule repository, crisp rule repository, mutation event handler, and rule engine. The system
has two interfaces: Active Rule Specification Interface and Query Interface. The Rule Interface allows
users to specify rules. The Query Interface is used to enter a Cypher command that may raise an event
to trigger a rule. Users can define a rule through the rule specification interface, according to the rule
structure defined in Figure 1. The rule parser parses the rule and stores the rule in the fuzzy rule
repository. Next, the fuzzy rule is converted to a crisp rule. Crisp rules are stored in the crisp rule
repository.

The other interface, Query Interface, allows users to enter Cypher commands. If the command is a
read operation to query the database without data modification, and if this operation only contains crisp
values, then it is executed in the Neo4j database directly. On the other hand, if the read operation
contains fuzzy terms, it is processed using fuzzy query processing method first, before querying the
Neo4j database. If the command is a write operation, e.g. Create, Update, or Delete, then it can be a
candidate to trigger a rule. The mutation event handler processes the event and passes it to the rule
engine. Rule engine fetches the rules from the Crisp Rule Repository if there are any. If at least one
rule is matched, the fetched rules are executed based on the “before/after” definition. That is, the rule
is executed either before or after the Cypher command.

CREATE RULE RetailerDistributorRelationship ($itemSoldbyDist, $cost, $distName, $retailerName)
EVENT
MATCH n=(d:Distributor)-[de:Delivers]->(r:Retailer)
WHERE d.name = $distName AND
de.productName = $itemSoldbyDist AND
r.name = $retailerName
SET de.cost = $cost
AFTER
CONDITION and ACTION
WITH d, r, de MATCH n1= (dis:Distributor)-[del:Delivers]->(ret:Retailer)
WHERE del.productName = $itemSoldbyDist AND
ret.name = $retailerName AND
del.type = "Secondary" AND
dis.dRating = #high AND
del.cost < de.cost
SET de.type = "Secondary" , del.type = "Primary"

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

24

Figure 3: System architecture of mutation event handling

4.2 Fuzzy Rule Repository
Fuzzy Rule repository stores fuzzy rules. The Fuzzy Rule Repository is in a JSON format and

contains two lists based on the rule types. “Rule_Mutation” is the list of fuzzy rules which are triggered
by mutation events. “Rule_Timer” is the list of fuzzy timer rules that are triggered by temporal events.
The “RetailerDistributorRelationship” rule shown in Figure 2 is an example of rules triggered by
mutation events, specifically, the update operation. Figure 4 shows the stored structure of this rule.
“Rule Name” is the name of the rule. “Input Parameters” has the list of the input parameters. Input
parameters start with a ‘$’ symbol. “Event” is the Cypher command such as create or update. The block
of “Condition and Action” contains a fuzzy query. In this case, “dRating” is a linguistic variable. “Type
of rule” specifies as “Before” or “After”. “Before” rule is executed before the operation that raises the
event; “After” rule is executed after the operation.

4.3 Fuzzy to Crisp Conversion
The “Condition and Action” part of the rule can contain fuzzy terms. We need to convert the fuzzy

terms into their crisp presentation, because Neo4j can only accept the crisp values. As described in
Section 2, our system covers three types of distributions: possibility interval, trapezoidal distribution,
and triangular distribution. These linguistic values are converted to their respective crisp values using
the distribution defined in Fuzzy Meta Knowledge Base (FMKB). FMKB contains the values of alpha,
beta, gamma, delta, and margin which are used by the three types of distribution to handle the fuzzy
information. Figure 5 shows the trapezoidal distribution, in which the fuzzy to crisp conversion can be
specified in (1) and (2). THOLD is the threshold. A fuzzy value is converted to a range of crisp values
of [min, max].

Min = (β – α) * THOLD + α (1)

Max = [(δ – γ) * (1 – THOLD)] + γ (2)

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

25

Figure 4: Example of rule storage structure

Figure 5: Trapezoidal Distribution

Figure 6 is the possibility interval distribution. The linguistic variable is defined on an interval [m,
n]. For example, we can define profit on [20, 30]. Triangle distribution is shown in Figure 7, where the
conversion is defined in (3) and (4).

Min = d – (margin* (1 - THOLD)) (3)

Max = d + (margin * (1 - THOLD)) (4)

Figure 6: Possibility Interval

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

26

Figure 7: Triangle Distribution

Special characters such as “#” are used before a linguistic variable to distinguish types of
distribution. Trapezoidal, possibility interval, and triangle distributions are signified by “#”, “[]”, and
“~”, respectively. The parser is based on our previous work in [4]. It is built based on JavaCC to
identify the linguistic variables, parse the fuzzy query, and generate the crisp presentation.

4.4 Crisp Rule Repository
After a rule is converted from fuzzy to crisp, it is stored in the crisp rule repository. For the fuzzy

rule example in Figure 2, the crisp rule generated is shown in Figure 8. In the crisp rule repository, a
rule has the information of “Rule Name”, “Input Parameters”, “Event”, and “Type of rule”. The
“Condition and Action” block contains the converted crisp query. The “Components” captures the key
information of an event. Our system uses the “component” structure to match the Cypher command
entered by a user with the rules stored in the crisp rule repository.

The “component” structure contains three important parts. “Nodes and Relationship labels” is a
list of node names and relationship names used in the Cypher command. The “Alias By Node or
Relation” is a list of pairs of values containing name of the node/relationship and the corresponding
aliases used. “Properties Map” is a list of pairs of values containing the name of the node/relationship
and its properties being accessed.

Our system builds the “component” structure for the event part of a rule. Then it is stored in the
crisp rule repository. At run time, when a user enters a Cypher command using the query interface,
another “component” structure is created for this user command. Only when these two component
structures match are the matching rules fetched from the crisp rule repository and executed.

4.5 Rule Execution
When a user enters a Cypher command using the Query Interface, the event handler processes the

event. The rule engine checks if this command can raise an event that matches the event part of a defined
rule in the crisp rule repository. If yes, the rule can be executed according to the rule type. The execution
flow is as follows: a user's Cypher command is sent to the searchRules() method to find the matching
rules in the repository. In searchRules() method, for every rule presented in the crisp rule repository,
the “component” structure in the rule and the “component” structure of the user's command are
compared. We use the matchStructure() method to compare nodes and relationship labels. If the labels
match, then the respective properties are checked. If both the labels and the properties match, then the
rule is considered to be a matching rule.

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

27

Figure 8: Crisp Rule Example

After the matched rules are fetched from the rule repository, the rules are sent to the replaceAlias()
function to replace the aliases used in the user's query. We use the regular expression and pattern
matching of Java to handle alias replacement. After the alias are replaced, switched WHERE condition
is handled in the system. Next, we use the replaceTokens() function to pass the actual values to the
input parameters and use these values in the “Condition and Action” part of the rule. After the
replacement logic is executed, a final query is generated by combining the “Event” and “Condition and
Action” parts of the rules.

4.6 Alternative Design
The overhead of using an active rule system is that the system spends time to match rules, retrieve

rules, and execute rules. We are working on evaluating various structures and storage options to reduce
the overhead. Instead of using JSON files as the fuzzy and crisp repository, one option is to use the
graph database itself to store the rules. The following attributes are in a node: rule name, event, input
parameters, component of node and relationship labels, component of alias, component of property
maps, condition and action, and type of rule.

Another option is to use other database systems’ power of query processing and optimization.
When the size of the rule base is large, the query processing time to match “component” structure is
critical for rule retrieval. Using relational database for query processing is a good candidate. When the
schema is designed properly, we can avoid substring processing within queries to reduce the time of
matching “component” structure. We design relational database tables as follows:

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

28

1) Rule (rule_name, event, condition_action, rule_type, component_alias), in which rule name is
the primary key;

2) Parameter (rule_name, rule_parameter), in which the combination of rule name and rule
parameter is the primary key and rule name is the foreign key referencing to the Rule table;

3) Component_property_map(rule_name, label, property_name), in which the combination of rule
name, label, and property_name is the primary key and rule name is the foreign key referencing to the
Rule table.

This allows the retrieval of matching rules quickly using the database engine, however, it requires
additional database system.

5 Summary
Graph databases are gaining more and more attention because of their unique data model that is

suitable for processing highly interconnected data. This research incorporates active rules and fuzzy
concepts into Neo4j graph database system. This paper describes our language model and execution
environment for fuzzy active rules. Rule definitions are based on Cypher query language. Users can
specify fuzzy terms in the “Condition and Action” part of a rule. There are two types of events: temporal
event and mutation event. We have represented our work of temporal event processing in [4]. This
paper presents the details of handling mutation events and corresponding rule processing. To the best
of our knowledge, this is the first project that incorporates fuzzy logic and active rules into a graph
database system. Our future work is to refine the system, such as design a more user-friendly interface
and extend our approach to other database systems.

References
[1] LA Zadeh. “Fuzzy sets,” Information and control, vol. 8 (1965), pp. 338–353.
[2] L. Liu, T. Özsu (editors), Encyclopedia of Database Systems, Second Edition. Springer 2018
[3] Neo4j, “Neo4j Documentation,” [Online]. Available: https://neo4j.com/docs/.
[4] A. Vadwala, Y. Jin, "Event and Query Processing in a Fuzzy Active Graph Database System," in

Proceedings of 37th International Conference on Computers and Their Applications, vol 82,
March 2022, pp. 82-91.

[5] Neo4j, “The Neo4j Cypher Manual v4.4,” [Online]. Available: https://neo4j.com/docs/cypher-
manual/current/.

[6] V. R. Shan, “Mutation Event Handling in Neo4j,” Master project report, California State
University, Sacramento.

[7] Y. Jin, H. J. Mehta, C. Madalli, “An Active Rule-based Fuzzy XML Database System,” Journal
of Computational Methods in Science and Engineering (JCMSE) 12 (2012), IOS Press, The
Netherlands, pp. 103-111.

[8] K. Rabuzin and M. Šestak, “Creating Triggers with Trigger-By-Example in Graph Databases,” in
Proceedings Of the 8th International Conference on Data Science, Technology and Applications,
2019, vol. 1, pp. 137–144.

[9] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu. “Graphflow: An Active Graph
Database,” in Proceedings of the 2017 ACM International Conference on Management of Data,
Association for Computing Machinery, New York, NY, USA , 2017, pp. 1695–1698.

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

29

https://neo4j.com/docs/
https://neo4j.com/docs/cypher-manual/current/
https://neo4j.com/docs/cypher-manual/current/

[10] B. P. Costa and L. D. V. Cura, “An Neo4j implementation for designing fuzzy graph databases,”
in Proceedings of the 23rd International Database Applications & Engineering Symposium,
Association for Computing Machinery, New York, NY, USA, June 2019, pp. 1–6.

[11] O. Pivert, E. Scholly, G. Smits, and V. Thion, “Fuzzy Quality-Aware queries to graph
databases,” Information Sciences, 2020, 521, pp. 160-173.

[12] A. Castelltort and T. Martin “Handling scalable approximate queries over NoSQL graph
databases: Cypherf and the Fuzzy4S framework,” Fuzzy Sets and Systems, 2018, 348, 21-49.

Mutation Event and Fuzzy Active Rule Processing in a Graph Database System Y. Jin and V. Shah

30

	Abstract
	1 Introduction
	2 Related Work
	3 Language
	4 System Architecture and Execution Model
	4.1 System Architecture and Execution Flow
	4.2 Fuzzy Rule Repository
	4.3 Fuzzy to Crisp Conversion
	4.4 Crisp Rule Repository
	4.5 Rule Execution
	4.6 Alternative Design
	5 Summary
	References

