
EPiC Series in Computing

Volume 76, 2021, Pages 105–116

SEDE 2020. 29th International Conference on
Software Engineering and Data Engineering

Multi-Objective Regression Test Selection

Yizhen Chen and Mei-Hwa Chen

SUNY at Albany, New York, U.S.A.
(ychen33, mchen)@albany.edu

Abstract

Regression testing is challenging, yet essential, for maintaining evolving complex soft-
ware. Efficient regression testing that minimizes the regression testing time and maximizes
the detection of the regression faults is in great demand for fast-paced software develop-
ment. Many research studies have been proposed for selecting regression tests under a time
constraint. This paper presents a new approach that first evaluates the fault detectability
of each regression test based on the extent to which the test is impacted by the changes.
Then, two optimization algorithms are proposed to optimize a multi-objective function
that takes fault detectability and execution time of the test as inputs to select an optimal
subset of the regression tests that can detect maximal regression faults under a given time
constraint. The validity and efficacy of the approach were evaluated using two empirical
studies on industrial systems. The promising results suggest that the proposed approach
has great potential to ensure the quality of the fast-paced evolving systems.

1 Introduction

Most software systems are continuously evolving to better serve user or market needs. When a
change is made to software or its execution context, regression testing should be performed to
ensure no regression fault is causing previously working features to fail. Although re-executing
all the test cases can reconfirm the working of the non-modified features, it can be time-
consuming when new tests are continually added to the test suite, and even worse, it may not
be feasible when the time to redeploy is limited. To minimize the maintenance time to prevent
service disruption of production software, an efficient and effective selection from the regression
test suite to perform regression testing is essential.

Techniques for improving the efficacy of regression testing have been well studied. The test
suite minimization approaches [10, 15, 18, 20] aim at removing obsolete test cases that are
no longer valid for the changed software and redundant test cases to form a minimum test
suite that satisfies the test requirements. The prioritization approaches [11, 22, 24] intend to
determine an order of test executions that can achieve the desired goal early, such that if the
testing process terminates early then the test cases that have potentially higher values such as
higher code coverage or estimated fault detection rate would be executed before the termination.
The minimization and the prioritization methods can reduce the number of test cases to be
retested, but they may overlook some fault-revealing test cases [21]. The selective regression
testing approaches [25, 5, 7, 10, 26, 21] identify modification-traversing test cases that execute

A. Redei, R. Wu and F. Harris (eds.), SEDE 2020 (EPiC Series in Computing, vol. 76), pp. 105–116

Multi-Objective Regression Testing Chen and Chen

the modified part of the program. Under a controlled environment, these approaches are safe
and can select all fault-revealing test cases. However, they may select many test cases that
cannot be executed within the time limit, and it can be unsafe if the execution context is
changed.

When executing all or selective regression tests cannot be done within the given time con-
straint, it is strongly desired that if the changed software is to fail then it should fail in very
few test executions, so if there are any regression faults they can be corrected immediately.
Taking the time constraint into account, several multi-objective regression testing approaches
have been proposed [27, 13, 6, 23], which apply multiple criteria to select a closed to an op-
timum subset of test cases that account for the selected criteria to obtain a maximal efficacy.
These approaches apply various optimization algorithms to find the best solution to balance
the trade-offs between the cost and code coverage. The existing approaches estimate the fault
detectability of the regression test case by code coverage, such as block or function coverage, or
fault detectability based on history. However, regression faults are introduced by the changes,
which do not exist before the changes and are relevant to the modified and affected parts of the
software only. It has been suggested that a test case is fault-revealing only if it is modification-
traversing [21]. Therefore, a test case that has a high code coverage but does not execute any
modified or affected code, i.e., not modification-revealing, will not be fault-revealing. There-
fore, it is not clear that the techniques based on code coverage or history can be effective for
detecting regression faults.

This paper presents a new approach that formulates a multi-objective function striving
to obtain an optimal solution to maximize the fault detection rate under a time constraint.
Our approach focuses on selecting the tests impacted most by the changes in the program,
upgrade/downgrade of the library, the changes in databases or configuration files. We use
program states before and after an invocation of a function to determine if the function is
affected by the change and can potentially have regression faults. A program state before a
function call denoted in the precondition of a function, including the properties required for the
successful execution of the function and the postcondition of a function, indicates the state of
the program after the execution of the function.

To maximize the fault detectability within a constrained time, we model the test selection
as a multi-objective Knapsack problem, which determines the number of each test case to select
so that the total execution time does not exceed the time limit while maximizing the number
of fault-revealing tests (failed tests). We apply two optimization algorithms commonly used
to solve the sensor placement problems to obtain an optimal set of test cases. To evaluate
the effectiveness of the proposed approach, we conducted three case studies on three industrial
systems and real regression faults. The results suggest that our approach is much more effective
than the existing code coverage-based approaches.

The contributions of this paper are:

1. Our multi-objective test selection takes the coverage of affected functions, modified
functions, and test execution time as the objective, which will select the test cases that are
more likely to expose regression faults.

2. Our approach can be fully automated, and we have implemented a prototype to conduct
the empirical studies. The results show that our approach significantly reduces the size of the
regression tests while selecting all the fault-revealing regression tests. Thus, regression testing
can be performed efficiently and effectively to maintain the quality of the software after changes.

2. The subject programs and the faults used in the studies are real industrial programs and
real regression faults. These regression faults were identified along with the evolution processes,
which demonstrates the feasibility of applying the proposed approach to the real-life industrial

106

Multi-Objective Regression Testing Chen and Chen

systems.
The remainder of this paper is organized as follows: the proposed approach is described in

Section 2. Section 3 presents the two case studies and Section 4 gives an overview of the related
techniques. The conclusions and future work are given in Section 5.

2 METHODOLOGY

The goal of our test selection technique is to identify test cases executed successfully before
the change of the program or the execution context, but they potentially can fail because of
the changes. To evaluate change impact on the regression tests, modification-revealing tests
have been suggested for their potential to detect regression faults [21]. Thus, we strive to select
the modification-revealing tests that are most likely to detect regression faults. Our approach
differs from the existing techniques in (1) it considers the change impact from both program
changes and execution context changes, and (2) it focuses on the change impact coverage, not
on the code coverage.

The basic unit of the investigation in our approach is function; we used the affected functions
to investigate if a test case is likely to be fault-revealing. To determine if a function is affected
by the change, we annotate pre- and postconditions of each function to detect change impact.
The precondition describes the state of the program before the execution of a function, which
includes the conditions (type and value range) of the input parameters, global variables and
class attributes used in the function, and the callees including functions, library, and external
APIs. The postcondition of a function depicts the state of the program after the execution
of the function, which includes the conditions (type and value range) of the outputs, global
variables, and class attributes manipulated by the function.

The pre- and postconditions can be annotated by the assertions obtained from static analysis
or created by the engineers. To automatically obtain pre- and postconditions, we developed
an annotator that parses the given program to instrument the pre- and postconditions of each
function. The current version of our annotator includes a Java-instrumentor adopted from
Daikon [12], and a JavaScript-instrumentor adopted from Fondue [2], which parses the source
code and instrument program states to the pre- and postconditions of each function. An
program state is denoted as an ordered pair < p, v >, where p is the program point, v is a set
of variables or function names.

Given a program P and a regression test suite T , we first run the annotated program on T to
create an program states traceability matrix (ITM), where a row in ITM is associated with an
program states that shows the occurrence of the program states in each test in T , and a column
is associated with a test case that shows the program states included in the test case. The
program states are indexed according to the precondition and postcondition of each function
call, including the program functions, library functions, and external APIs. Additionally, we add
the caller’s name in the precondition to record the caller-callee relationship. ITM can be created
during the testing phase when the test cases are created and executed. It is incrementally
updated when there are changes in the program states after a new test is executed.

2.1 Change Impact Analysis

Given a program P , a regression test suite T , the modified program P ′, the execution context
EC, and ITM .

(1) If a function f in P is changed to f ′ in P ′, then every test t in T that executes f is
modification-traversing. An unmodified function g in P and P ′ is affected if there is at least

107

Multi-Objective Regression Testing Chen and Chen

one program state i in the precondition of g and i is in the postcondition of f . This implies
that at least one variable used in g is manipulated in f ; thus i and g are affected.

(2) When a new function g is added to P ′, some functions in P will be modified in P ′ to
call g.

(3) If a function f in P is deleted, then every function g in P that calls f needs to be
modified.

(4) If an attribute a (a variable) in P is changed (type or name change) in P ′, then every
function f that uses a (a is in the precondition of f) and the program states associated with a
in the precondition of f will be affected.

(5) If a changed function l is in a library L or is an external API in EC, then every function
f in P that calls l (l is in the precondition of f) and the program states associated with l will
be affected.

(6) Most modern software applications use Object Relational Mapping to create relationships
between database entities and program entities. If a database schema is changed, then all the
entity objects associated with the changed table are affected. If a database entity is changed
(type, name, or constraint change), then every function f that references the entity object o (o
is in the precondition of f) associated with the changed database entity and the program states
associated with o will be affected. If ORM is not used by the program, then an additional effort
will be required by using the parser to capture the variables used in the SQL statements.

(7) If a setting in a configuration file is changed (name, or value if the variable denotes a
path or URL), any variable v in the program that refers to this setting is affected. Then every
function that uses this affected variable v (v is in the precondition of f) and the program states
associated with v will be affected.

2.2 Multi-Objective Regression Test Selection

Our goal in the multi-objective regression test selection is to maximize the number of regression
faults that can be detected with the selected test cases and to ensure that the cost of the test
execution time will not exceed the budgeted time constraint. To model this problem, we adopt
the model-based sensor placement approach to develop efficient and effective algorithms for
selecting the test cases. The criteria we use include the coverage of the affected program states,
modified functions, and execution time. The aim is to select the test cases that have a high
number of affected program states, cover more modified functions, and have low execution time.

Given the input domain T and the objectives defined as above, the goal is to find a set of test
cases S from T that have minimal overall detection risk F (S) that accounts for the coverage,
and minimal overall cost C(S), which is the cost of the test execution time, subject to a budget
constraint on C(S): C(S) ≤ K, where K is the time allocated for the regression testing. This
is a multi-criterion optimization problem and the scalarization approach [8] is commonly used
to find such Pareto-optimal solutions. In particular, we optimize the following problem

min
S∈T

O(S) = F (S) + λC(S) s.t. C(S) ≤ K (1)

by choosing the appropriate weight λ > 0. All possible Pareto-optimal solutions to the mini-
mization of O(S) subject to the budget constraint C(S) ≤ K can be obtained by varying the
weight λ. Problem (1) is a hard-combinatory optimization problem, and an exhaustive search
of the optimal set is usually unfeasible. We note that there is no unique form of the objective
function O(S), which varies depending on its application domain. Hence, we design customized
algorithms by exploring the specific structure of the problem under different situations.

108

Multi-Objective Regression Testing Chen and Chen

We applied two algorithms to solve the problem: Algorithm 1: a sub-modular for test
selection that is a combinatorial search based on sub-modular optimization. Algorithm 2:
a projected gradient descent algorithm for test selection which is a graph-structured convex
optimization based on continuous relaxation. Problem (1) is called a sub-modular minimization
problem subject to knapsack constraints if there is no network topology constraint and can be
solved in nearly linear time with the approximation factor (1 − 1/e) ≈ 0.632 using the greedy
algorithm [19], as shown in Algorithm 1. This algorithm starts from an empty set S = ∅, and
adds the element maximizing the discrete derivative ∆(s|S) = O(S ∪ s)−O(S) (line 3 and line
4). The approximation factor is defined as O(S)/O(S∗) where S refers to the approximated set
of program states, and S∗ refers to the optimal set.

Furthermore, we want to consider the function interaction relationship to identify which
affected function or modified function has the highest coupling with the other functions. For
example, a function has the highest number of callers. If the function is affected, then the
more calling contexts the function has, the more likely the regression faults, if they exist, in
this function can be detected. Under this assumption, we utilize the function call graph in
each test as a network graph, where a node represents a function and an edge denotes a call
relationship and select the nodes that have higher incoming edges. By considering the network
graph constraint, the problem becomes neither super-modular nor sub-modular. We can instead
apply convex optimization techniques to solve problems (1) based on continuous relaxation. We
first define a vector format of S as z ∈ {0, 1}|U|, and S = supp(z) as the set of nonzero entries
in z. The two objective functions F (S) and C(S) can be reformulated as the functions based
on z as f(z) and c(z), respectively. The constraint S ∈ T can be reformulated as supp(z) ∈ T.
Problem (1) can then be reformulated as:

min
z∈{0,1}|U|,supp(z)∈T

o(z) = f(z) + λc(z), s.t. c(z) ≤ K, (2)

which can be approximated using graph-structured convex optimization techniques [9, 16],
where “graph-structured” means that the constraint supp(z) ∈ T is defined based on graph
topology. Algorithm 2 shows the basic steps of the projected gradient descent approach for
solving problem (2), where ∇f(z) refers to the gradient of f(z) with respect to z, and ∇c(z) is
defined similarly.

The vector ∇f(z(i))+λ · ∇c(z(i)) calculated in line 4 is the gradient of the overall objective
function o(z). The vector b(i) is the gradient descent update, which is the same as the update
of the standard gradient descent algorithm, and λ refers to the step size. As b(i) is often not
within the graph-structured domain T, line 5 is to project b(i) to the input domain T based on
the following projection operator:

T (b(i)) = min
z∈{0,1}|U|,supp(z)∈T

‖z − b(i)‖22 s.t. c(z) ≤ K, (3)

where supp(z) refers to the set of non-zero entries in z.

109

Multi-Objective Regression Testing Chen and Chen

Algorithm 1 A submodular algorithm for
test selection
Require: the ground set of test cases T.
Ensure: S
1: S = ∅
2: while C(S) < K do

3: s = argmax
s∈T

O(S) − O(S ∪ s) s.t.

S ∪ s ∈ T

4: S = S ∪ {s}
5: end while

Algorithm 2 A projected gradient descent
algorithm for test selection

Require: Network G and the ground set of
program states U.

Ensure: S
1: i = 0
2: z(i) = 0
3: repeat

4: b(i) = z(i)−
(

∇f(z(i)) + λ · ∇c(z(i))
)

5: z(i+1) = T(b(i))
6: i = i+ 1
7: until Convergence
8: S=supp(zi)

3 CASE STUDIES

We conducted two case studies to evaluate the feasibility and effectiveness of the proposed
approach. The research questions we asked in these studies are: (1) How efficiently can Al-
gorithm 1 detect all the regression faults as compared to the existing approaches? (2) How
efficiently can Algorithm 2 detect all the regression faults with the help of the network graph?
These studies were conducted on three industrial systems with real test cases and regression
faults. We applied our two algorithms on these programs to compare the effectiveness of select-
ing fault-revealing tests and fault detectability. In addition, we computed the average of fault
age (the number of regression tests executed to detect the regression fault) suggested by Kim
and Porter [17] for measuring the effectiveness of regression test selection, by using different
objectives.

At the beginning of these studies, we annotated the program to instrument the pre- and
postconditions for each function and ran the annotated program with the test suite to create
ITM. We used the coverage of modified functions, modification revealing program states, func-
tion calls, and execution time as the criteria to form the objective function. We first define:

Risk Modified Fn(s) = total number of uncovered modified function

total number of modified function

Risk Affected Program States(s) = total number of uncovered affected program states
total number of affected program states

Function Call Coverage(S) = total number of uncovered function calls

total number of function calls

We developed three Multi-Objective functions:
Algorithm 1a uses Algorithm 1 to get a set of test cases that minimizes the objective function.

F (s) = Risk Modified Fn(s) +Risk Affected Program States(s)

C(s) : The sum of the execution time for each test case

O(S) = F (s) + λC(s)

110

Multi-Objective Regression Testing Chen and Chen

Table 1: The results of the case study I.

Case
Algorithm 1a Algorithm 1b Algorithm 2

5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 1 2

1
f t 5 5 5 5 9 9 1 1 2 4 4 4 5(29.8%) 9(34.5%)
r f 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2
f t 8 16 22 37 86 97 3 17 47 51 77 79 89(41.2%) 98(56.1%)
r t 2 3 3 3 3 3 1 3 3 3 3 3 3 3

3
f t 19 39 68 89 140 147 11 29 61 93 115 121 140(43.9%) 150(58.5%)
r f 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4
f t 5 11 43 58 60 61 0 5 9 25 42 46 60(40.3%) 66(52.4%)
r f 1 1 1 1 1 1 0 1 1 1 1 1 1 1

5
f t 1 3 3 3 3 3 0 0 0 0 0 0 3(8.5%) N/A
r f 1 1 1 1 1 1 0 0 0 0 0 0 1 N/A

Algorithm 1b uses code coverage and execution time as the objectives and applies Algorithm1.
Algorithm 2 uses Algorithm 2 to find an optimal set of test cases that minimizes the objective
function.

F (s) = Risk Modified Fn(s) + Risk Modification Revealing Program States(s) +
Function Call Coverage(s)

C(s) = the sum of the execution time for each test cases

O(s) = F (s) + λC(s)

The cost function was modeled at 5%, 10%, 20%, 30%, 40%, and 50% of the total execution
time of the regression test suite. Algorithm 2 used the projected gradient descent algorithm,
which obtained a local optimal point when it converged. After its first convergence, we re-
calibrated the objective function to obtain the next optimal point.

3.1 Case Study I

The first study was conducted on an education software, Idea Thread Mapper [3], used in
k-12 schools located in four countries, including the US, Canada, Singapore, and Taiwan. The
system is built based on the microservices and is implemented in JavaScript, D3.js, Java, and
uses MySQL. The current version contains 39 Java classes, 1,085 functions, and 142,908 lines
of code. At the beginning of the study, there were 397 test cases created by the testing group,
and in the end there were 412 test cases after removing obsolete test cases and adding new
test cases during this study. Each test case takes several minutes to an hour to execute. There
is often very limited time for regression testing and retesting all the test cases will delay the
restoring of the services and may disrupt the classroom use, which is not viable. There were
five corrective activities during this study, including the fixes after a missing database table, a
change to a global variable, a change to a session, a change of URL in the configuration, and
a change of library. The results of this study are summarized in Table 1, where f t denotes
the total number of selected fault-revealing tests and r f denotes the total number of detected
regression faults.

In Case 1, there were nine fault-revealing tests and one regression fault. Algorithm 2 used
29.8% of the cost and detected the regression fault, and used 34.5% of the cost selecting all

111

Multi-Objective Regression Testing Chen and Chen

the fault-revealing tests; Algorithm 1a used 5% of the cost detecting the regression fault and
selected all the fault-revealing tests with 40% of the cost. Algorithm 1b also detected the
regression fault with 5% of the cost, but it only selected four fault-revealing tests with 50% of
the cost. The average fault age for Algorithm 1a and 1b was 12 and 18, respectively.

In Case 2, there were 98 fault-revealing tests and three regression faults. Algorithm 1a and
Algorithm 1b detected all three regression faults by using 10% of the cost. Algorithm 2 used
41.2% of the cost to detect the three faults. For the fault-revealing tests, Algorithm 1a selected
97 tests and Algorithm 1b selected 79 tests with 50% of the cost. Algorithm 2 selected all
98 tests with 56.1% of the cost. The average fault age for Algorithm 1a and 1b was 6 and 8,
respectively.

In Case 3, there were 150 fault-revealing tests and one regression fault. Algorithm 1a and
Algorithm 1b detected the regression fault by using 5% of the cost. Algorithm 2 used 43.9% to
detect the fault. For the fault-revealing tests, Algorithm 1a selected 147 tests and Algorithm
1b selected 121 tests with 50% of the cost. Algorithm 2 selected all 150 tests at 58.5% of the
cost. The average fault age for Algorithm 1a and 1b was 2 and 3, respectively.

In Case 4, there were 66 fault-revealing tests and one regression fault, which was detected
by Algorithm 1a at 5% of the cost, by Algorithm 1b at 10% of the cost, and by Algorithm 2 at
40.3% of the cost. For the fault-revealing tests, Algorithm 1a selected 61 tests and Algorithm
1b selected 46 tests at 50% of the cost, and Algorithm2 selected all 66 test cases at 52.4% of
the cost. The average fault age for Algorithm 1a and 1b was 8 and 34, respectively.

In Case 5, there were three fault-revealing tests and one regression fault. Algorithm 1a
detected the regression fault at 5% of the cost, and Algorithm 2 detected the fault at 8.5% of
the cost. Algorithm 1b failed to detect the fault with 50% of the cost. All three fault-revealing
tests were selected by Algorithm1a at 10% of the cost and by Algorithm 2 at 8.5% of the cost.
Algorithm 1b did not select any of them at 50% of the cost. The average fault age for Algorithm
1a and 1b was 1 and 223, respectively.

Discussion: In this case study, we observed that Algorithm 1a performed much better than
Algorithm 1b for detecting regression faults and selecting fault-revealing tests. Algorithm 2 was
able to select all the fault-revealing tests with 8.5% to 58.5% of the cost. It detected all the
regression faults but used more test cases than Algorithm 1a; when there were large numbers
of the affected functions and modification revealing program state, Algorithm 2 required a long
time to converge and obtain a local optimum. Algorithm 1b used function coverage and failed
to detect the regression fault within the budget in Case 5. It is suggested that if it is desired to
find a regression fault early and fix it immediately, then Algorithm 1a will be the better choice.
When the regression testing is to be performed automatically to find all the fault-revealing tests
within the budget, then Algorithm 2 will be the better choice.

3.2 Case Study II

The second case study was conducted on two health-related projects developed for the National
Cancer Institute [4]. The first project was Microarray, a service that analyzes biology data
and provides visualization of the analyzed results. It is a web application powered by Node.js,
React.js, and R programming language. There are 21,409 lines of code, 40 functions, and 84
test cases.

A program issue was reported in JIRA due to a change in one of the APIs that returns
data and its schema. The program receives the data and uses the schema to extract the data
for visualization. The API changed data schema, which introduced one regression fault in the
search function (Case 1) and one in the sorting function (Case 2). Among the 84 test cases.

112

Multi-Objective Regression Testing Chen and Chen

Table 2: The results of the case study II - Microarray.

Case
Algorithm 1a Algorithm 1b Algorithm 2

5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 1 2

1
f t 1 2 3 5 7 9 0 0 0 1 3 3 7(38.1%) 9(42.3%)
r f 1 2 2 2 2 2 0 0 1 1 1 1 2 2

2
f t 1 2 2 2 2 2 0 0 0 0 1 1 2(8.2%) N/A
r f 1 1 1 1 1 1 0 0 0 1 1 1 1 N/A

The results are summarized in Table 2.

In Case 1, there were nine fault-revealing tests and two regression faults. Algorithm 2 used
42.3% of the cost to select all the fault-revealing tests. Algorithm 1a selected all the fault-
revealing tests within 50% of the cost. Algorithm 1b only selected three tests with 50% of the
cost. For the two regression faults. Algorithm 1a detected one regression fault by using 5%
of the cost and two regression faults by using 10% of the cost. Algorithm 1b used 30% of the
cost to detect one regression fault and failed to detect the second regression fault by 50% of
the cost. Algorithm 2 used 38.1% of the cost to detect the first fault and 42.3% of the cost to
detect both faults. The average fault age for Algorithm 1a and 1b was 2 and 22.5, respectively.

In Case 2, there were only two fault-revealing tests. Algorithm 1a selected both tests with
10% of the cost and Algorithm 2 used 8.2%. Algorithm 1b only selected one tests within the
budget. Algorithm 1a used 5% of the cost to detect the regression fault, Algorithm 2 used 8.2%,
and Algorithm 1b used 30% of the cost. The average fault age for Algorithm 1a and 1b was 1
and 42, respectively.

The second project was the Cancer Epidemiology Descriptive Cohort Database (CEDCD)
[1], which contained descriptive information about cohort studies that follow groups of persons
over time for cancer incidence, mortality, and other health outcomes. The CEDCD program
facilitates collaboration and highlights the opportunities for research within existing cohort
studies. It is a web application maintained by the Epidemiology and Genomics Research Pro-
gram (EGRP), located in the Division of Cancer Control and Population Sciences, National
Cancer Institute’s (NCI’s), National Institutes of Health.

The program is powered by Node.js, React.js, and uses MySql database. It has 32,796 lines
of code, 155 functions, and 190 test cases. Two modifications that introduced the regression
faults were reported in JIRA. The first change was a business logic change, which modified a
stored procedure and changed its output. The return value was a data table that has a column
to indicate genders. Before the change, the gender was an integer, -1(unknown), 0(both),
1(male), -1(female). After the change, the gender was changed into a String Type as male,
female, unknown, and both, which caused one test case to fail. A second change was made to
a drop-down selection box, which changed “no cancer” to “No Cancer”. This change caused
five test cases to execute a function that takes “no cancer” as input to fail. The results are
summarized in Table 3.

In Case 1, there were five fault-revealing tests and one regression fault. Algorithm 2 used
26.5% of the cost to select all the fault-revealing tests. Algorithm 1a used 30% and Algorithm
1b only selected three tests within the 50% budget. The regression fault was detected by
Algorithm 1a with 5% of the cost, Algorithm 1b with 30%, and Algorithm 2 with 21.3%. The
average fault age for Algorithm 1a and 1b was 8 and 65, respectively.

In Case 2, there were only one fault-revealing test and one regression fault. Algorithm 1a
used 5% of the cost to select the test and detect the regression fault. Algorithm 1b used 30%
and Algorithm 2 used 2% of the cost to select the test and detect the regression fault. The

113

Multi-Objective Regression Testing Chen and Chen

Table 3: The results of the case study II - CEDCD.

Case
Algorithm 1a Algorithm 1b Algorithm2

5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 1 2

1
f t 1 1 3 5 5 5 0 0 0 1 1 3 4(21.3%) 5(26.5%)
r f 1 1 1 1 1 1 0 0 0 1 1 1 1 1

2
f t 1 1 1 1 1 1 0 0 0 1 1 1 1(2.6%) N/A
r f 1 1 1 1 1 1 0 0 0 1 1 1 1 N/A

average fault age for Algorithm 1a and 1b was 1 and 76, respectively.

Discussion: In this case study, the number of the affected functions and program states
was much less than the ones in the Case study I, and we observed that Algorithm 1a performed
much better than Algorithm 1b for selecting fault-revealing tests and detecting regression faults.
Algorithm 2 converged faster in this study than in Case study 1. For the regression fault
detection, the performance of Algorithm 1a and Algorithm 2 was about the same. Thus,
Algorithm 2 will be the better choice when the impact of the change is small.

4 Related Work

A number of multi-objective regression testing techniques have been proposed. Yoo and Harman
[27, 14] introduced a multi-objective regression test optimization (MORTO) framework and
proposed a Pareto efficient approach that includes a two-objective formulation combining code
coverage and cost, and a three-objective formulation combining code coverage, cost, and fault
history. They evaluated the effectiveness of the three algorithms used to solve these two multi-
objective problems. In addition, they provided an approach(algorithms) to optimize multi-
objective formulation with conflicting constraints. The constraints (code coverage) can be used
to limit the type of program’s modification that can be covered.

Garousi et al. [13] adopted MORTO framework and developed a customized genetic algo-
rithm to provide full coverage of the affected (changed) requirements while considering multiple
cost and benefit factors such as minimizing the number of test cases and maximizing the cu-
mulative number of detected faults by each test suite. However, the affected requirements are
only associated with code changes and no context change is addressed.

Anwar and Ahsan [6] applied Fuzzy Logic to optimize regression test selection; they used
fault detection rate, execution time, requirement coverage, and the impact of failure require-
ments as the objectives and applied to two case studies.

Sampath et al. [23] presented a uniform representation of hybrid criteria. They formulated
three hybrid criteria, including rank, merge, and choice, and observed that these hybrid criteria
outperformed their constituent individual criterion. Their studies show that a hybrid crite-
rion that combines several individual criteria performs better than a single criterion. But the
effectiveness depends on which criteria are used.

In summary, the existing multi-objective regression test selection approaches apply various
factors to select the test cases that are most likely to be modification-revealing with minimum
cost, but they only consider the modifications made to the code, not to the execution context.

114

Multi-Objective Regression Testing Chen and Chen

5 Conclusions and Future Work

We have presented two algorithms to select a close to an optimum set of test cases that have
the highest potential fault detection capability while keeping the execution time within the
budget constraint. Our approach considers impact from changes in the program as well as in
its execution context, and our multi-objective function selects an optimal subset of test cases
that are likely fault-revealing and the total execution time is within the given time constraint.
The results of our case studies show that by focusing on the affected functions, our approach
is much more effective than the existing approaches to detect regression faults under the time
constraint.

To improve the applicability of the proposed approach, we are working on defining program
states for other languages. To increase precision, we are studying what types of program state
are more sensitive to the changed behavior and aim to only use these program states to improve
precision.

References

[1] Cedcd. https://cedcd.nci.nih.gov/home .

[2] fondue. https://github.com/adobe-research/fondue.

[3] Idea thread mapper. http://www.idea-thread.org.

[4] Nci. https://www.cancer.gov.

[5] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incremental regression testing. In
Software Maintenance, 1993. CSM-93, Proceedings., Conference on, pages 348–357. IEEE, 1993.

[6] Z. Anwar and A. Ahsan. Multi-objective regression test suite optimization with fuzzy logic. In
Multi Topic Conference (INMIC), 2013 16th International, pages 95–100. IEEE, 2013.

[7] T. Ball. On the limit of control flow analysis for regression test selection. ACM SIGSOFT Software
Engineering Notes, 23(2):134–142, 1998.

[8] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[9] F. Chen and B. Zhou. A generalized matching pursuit approach for graph-structured sparsity. In
IJCAI. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,
2016.

[10] T. Y. Chen and M. F. Lau. Dividing strategies for the optimization of a test suite. Information
Processing Letters, 60(3):135–141, 1996.

[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical
studies. IEEE transactions on software engineering, 28(2):159–182, 2002.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transactions on Software Engineering, 27(2):99–
123, 2001.

[13] V. Garousi, R. Özkan, and A. Betin-Can. Multi-objective regression test selection in practice: An
empirical study in the defense software industry. Information and Software Technology, 2018.

[14] M. Harman. Making the case for morto: Multi objective regression test optimization. In 2011
Fourth International Conference on Software Testing, Verification and Validation Workshops,
pages 111–114. IEEE, 2011.

[15] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the size of a test suite.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2(3):270–285, 1993.

[16] C. Hegde, P. Indyk, and L. Schmidt. A nearly-linear time framework for graph-structured sparsity.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 928–
937, 2015.

115

https://cedcd.nci.nih.gov/home
https://github.com/adobe-research/fondue
http://www.idea-thread.org
https://www.cancer.gov

Multi-Objective Regression Testing Chen and Chen

[17] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression testing in
resource constrained environments. In Proceedings of the 24th international conference on software
engineering, pages 119–129, 2002.

[18] J.-W. Lin, C.-Y. Huang, and C.-T. Lin. Test suite reduction analysis with enhanced tie-breaking
techniques. In Management of Innovation and Technology, 2008. ICMIT 2008. 4th IEEE Inter-
national Conference on, pages 1228–1233. IEEE, 2008.

[19] Y. H. Lucas Bordeaux and P. Kohli. Tractability: Practical Approaches to Hard Problems. Cam-
bridge University Press, 2014.

[20] N. Mansour and K. El-Fakih. Simulated annealing and genetic algorithms for optimal regression
testing. Journal of Software: Evolution and Process, 11(1):19–34, 1999.

[21] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM
Transactions on Software Engineering and Methodology (TOSEM), 6(2):173–210, 1997.

[22] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression
testing. IEEE Transactions on software engineering, 27(10):929–948, 2001.

[23] S. Sampath, R. Bryce, and A. M. Memon. A uniform representation of hybrid criteria for regression
testing. IEEE transactions on software engineering, 39(10):1326–1344, 2013.

[24] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Timeaware test suite prioritiza-
tion. In Proceedings of the 2006 international symposium on Software testing and analysis, pages
1–12. ACM, 2006.

[25] L. White and K. Abdullah. A firewall approach for regression testing of object-oriented software.
Software Quality Week, 27, 1997.

[26] L. J. White and H. K. Leung. A firewall concept for both control-flow and data-flow in regression
integration testing. In Software Maintenance, 1992. Proceerdings., Conference on, pages 262–271.
IEEE, 1992.

[27] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings of the
2007 international symposium on Software testing and analysis, pages 140–150. ACM, 2007.

116

	Introduction
	METHODOLOGY
	Change Impact Analysis
	Multi-Objective Regression Test Selection

	CASE STUDIES
	Case Study I
	Case Study II

	Related Work
	Conclusions and Future Work

