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Abstract 
The Porous Shallow water Equations are widely used in the context of urban 

flooding simulation. In these equations, the solid obstacles are implicitly taken into 
account by averaging the classic Shallow water Equations on a control volume 
containing the fluid phase and the obstacles. Numerical models for the approximate 
solution of these equations are usually based on the approximate calculation of the 
Riemann fluxes at the interface between cells. In the present paper, it is presented the 
exact solution of the one-dimensional Riemann problem over the dry bed, and it is 
shown that the solution always exists, but there are initial conditions for which it is not 
unique. The non-uniqueness of the Riemann problem solution opens interesting 
questions about which is the physically congruent wave configuration in the case of 
solution multiplicity. 

1! Introduction 
The Shallow water Equations are widely used to study urban flooding events. These hyperbolic 

partial differential equations are non-linear, and admit the existence of discontinuities (moving bores, 
standing hydraulic jumps, wetting-drying boundaries) that develop in finite time, also if the initial 
conditions are smooth, i.e. continuous with higher-order derivatives [1, 2]. The Riemann problem is a 
special initial value problem where the initial conditions are discontinuous, and it is used to model the 
cited flow field discontinuities [1, 2]. 

EPiC Series in Engineering
Volume 3, 2018, Pages 476{484

HIC 2018. 13th International
Conference on Hydroinformatics

G. La Loggia, G. Freni, V. Puleo and M. De Marchis (eds.), HIC 2018 (EPiC Series in Engineering, vol. 3),
pp. 476–484



Multiple Solutions for Riemann Problem in Porous Shallow Water Equations Cozzolino et al.

477



Multiple Solutions for Riemann Problem in Porous Shallow Water Equations Cozzolino et al.

478





.      (6) 

The supercritical flow with Froude number less than  is not able to sustain a hydraulic 
jump at the inlet of the sudden porosity decrement, and a shock moving upstream may be obtained. 

2.5! Hydraulic hysteresis region 
If the equality sign and FL = F1 are taken in eq. (5), the limit condition 
  

,        (7) 

 
is obtained [15]. The eq. (7) is represented in Figure 1 (continuous black line), and the 

corresponding graph consists of a subcritical reach AB and a supercritical reach BC. Based on eq. (5), 
the points of the plane (FL, AR) above the energy limit curve of eq. (7) refer to flows uL that are able 
to pass through the geometric discontinuity remaining smooth. 

If  is taken, the eq. (6) can be solved with respect to . Recalling that   

satisfies eq. (5) with the equality sign, the following limit condition [16, 17] is obtained 
 

.      (8) 

 
The corresponding curve, which is plotted in Figure 1 (curve BD with dashed black line), lies 

above the energy limit curve ABC. Based on eq. (6), the points of the plane (FL, AR) below the 
standing hydraulic jump limit BD are referred to supercritical flows  that do not pass through the 
geometric discontinuity, because they are turned into subcritical states  by a backward moving 
shock [16, 17]. 

The region of the plane between the curves BC and BD admits both an upstream supercritical flow 
passing through the discontinuity (above BC) and a supercritical upstream flow that is turned in 
subcritical (below BD). This phenomenon is called hydraulic hysteresis [16, 17]. Interestingly, in the 
hysteresis region, a third flow condition is possible, namely a standing hydraulic jump through the 
geometric discontinuity, where the upstream supercritical flow is turned in subcritical [17]. 

3! Solution configurations for the Riemann problem with right 
dry state 

Depending on the left Froude number FL and on the aspect ratio AR, eight different solution 
configurations for the Riemann problem on dry bed are possible. These solution configurations, 
whose fields of existence are plotted in Figure 1, are listed as follows. 
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3.1! Solution configuration not depending on AR 
SC (1). In this solution configuration, the condition  is satisfied, and the solution 

configuration coincides with the Case Ra of subsection 2.2. A rarefaction wave develops entirely to 
the left of the geometric discontinuity, and the velocity u is non-positive everywhere. In other words, 
there is not interaction between the flow and the geometric discontinuity. 

 
Figure 1: Field of existence of the solution configurations. 

3.2! Solution configurations with AR !  1 (sudden porosity increment) 
In this group of solution configurations, the flow corresponding to the Ritter solution (Case Rb and 

Case Rc of subsection 2.2) immediately to the left of x = 0 encounters a sudden porosity increment. 
For this reason, the geometric discontinuity is not an obstacle to the flow. 

SC (2). In this solution configuration,  (Case Rb). A rarefaction connects the state uL to 
the critical state u1, and the energy of the flow is sufficient to pass through the geometric discontinuity 
because F1 = 1 satisfies the eq. (5) with AR !  1. The supercritical state u2 is connected to u1 by means 
of the conditions of energy and discharge conservation. Finally, the dry bed state uR is connected to u2 
by means of a rarefaction. 

SC (3). In this solution configuration,  (Case Rc). The state u1 coincides with the 
supercritical state uL, and the energy of the flow is sufficient to pass through the geometric 
discontinuity because F1 > 1 satisfies the eq. (5) with AR !  1. The supercritical state u2 is connected 
to u1 by means of the conditions of energy and discharge conservation, while a rarefaction connects 
the state u2 to the dry bed. 
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The non-uniqueness of the Riemann problem solution is expected in the case that geometric 
discontinuities are present, and it is well documented in the context of the Shallow water Equations 
with a bed step [18, 19]. 
 

 

5! Conclusions 
The solution of the Riemann problem over the dry bed for the Porous Shallow water Equations 

always exists, and the main parameters on which it depends are the initial left Froude number FL and 
the aspect ratio AR, i.e. the ratio between the right and the left porosity. In addition, it is demonstrated 
that, contrarily to the case of the classic Shallow water Equations (Ritter solution), numerous different 
wave configurations are possible for t > 0, despite of the very simple initial conditions. These flow 
configurations differ for the number and the type of waves exhibited by the solution. 

Interestingly, there are values of FL and AR for which the problem solution is not unique, and 
multiple flow configurations are possible. This phenomenon, which appears for supercritical left 
states, has never been documented in the context of the Porous Shallow water Equations. The non-
uniqueness of the solutions opens interesting questions about which is the physically congruent wave 
configuration in the case of solution multiplicity, and about the foundations of the Porous Shallow 
water Equations themselves. 
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Solution 
configuration 

Waves 

SC (1) R 
SC (2) R, SW, R 
SC (3) SW, R 
SC (4) R, SW, R 
SC (5) S, SW, R 
SC (6) S, SW, R 
SC (7) SW, R 
SC (8) SW, R 

Table 1: Solution configurations 
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