
EPiC Series in Computing

Volume 59, 2019, Pages 65–78

Proceedings of Pragmatics of SAT 2015 and 2018

Competitive Sorter-based Encoding of PB-Constraints into

SAT
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Abstract

A Pseudo-Boolean (PB) constraint is a linear inequality constraint over Boolean vari-
ables. A popular idea to solve PB-constraints is to transform them to CNFs (via BDDs,
adders and sorting networks [5, 11]) and process them using – increasingly improving –
state-of-the-art SAT-solvers. Recent research have favored the approach that uses Binary
Decision Diagrams (BDDs), which is evidenced by several new constructions and opti-
mizations [2, 21]. We show that encodings based on comparator networks can still be very
competitive. We present a system description of a PB-solver based on MiniSat+ [11] which
we extended by adding a new construction of selection network called 4-Way Merge Selec-
tion Network, with a few optimizations based on other solvers. Experiments show that on
many instances of popular benchmarks our technique outperforms other state-of-the-art
PB-solvers.

1 Introduction

One of the ways to solve hard decision problems is to reduce them to Boolean satisfiability
(SAT) problem and use recently-developed SAT-solvers to find the solution. Using only clauses
as a tool to describe such problems can be a big challenge on its own. We can improve this
situation by using high-level constraints as a bridge between our problem and SAT.

A Pseudo-Boolean constraint (PB-constraint) is a linear inequality with integer coefficients,
where variables are over Boolean domain. More formally, PB-constraints are of the form a1l1 +
· · ·+ anln ∼ k, where ai’s and k are integers, li’s are Boolean literals (that is, variables or their
negations) and ∼ is a relation from the set {<,≤,=,≥, >}. PB-constraints are more expressive
and more compact than clauses to represent some Boolean formulas, especially for optimization
problems. PB-constraints are used in many real-life applications, for example, in cumulative
scheduling [22], logic synthesis [3] or verification [7].

There have been many approaches for handling PB-constraints in the past, for example, ex-
tending existing SAT-solvers to support PB-constraints natively or extending variables’ domain
to finite sets or unbounded integers. One of the most successful ideas was introduced by Eén
and Sorensson [11], where they show how PB-constraints can be handled through translation
to SAT without modifying the SAT procedure itself. They implemented techniques based on
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binary adders, sorting networks and binary decision diagrams in a tool called MiniSat+. This
tool has served as a base for many new solvers and has been extended to test new constructions
and optimizations in the field of PB-solving. Similarly, we have developed a system based on
MiniSat+ which encodes PB-constraints using the new sorter-based algorithm. We describe
this system here and we show experimentally that it is competitive to other state-of-the-art
solvers.

1.1 Related work

Recent development in PB-solvers show superiority of encodings based on Binary Decision
Diagrams (BDDs). The main advantage of BDD-based encodings is that the resulting size of the
formula is not dependent on the size of the coefficients of a PB-constraint. Ab́ıo et al. [2] show
a construction of Reduced Ordered BDDs (ROBDDs), which produce arc-consistent, efficient
encoding for PB-constraints. Sakai and Nabeshima [21] extend the ROBDD construction to
support constraints in band form: l ≤ 〈Linear term〉 ≤ h. They also propose an incremental
SAT-solving strategy of binary/alternative search for minimizing values of a given goal function
and their experiments show significant speed-up in SAT-solver runtime.

Another approach to handle large coefficients in PB-constraint is to decompose the con-
straint into a number of interconnected sorting networks, where each sorter represents an adder
of digits in a mixed radix base – this was implemented in MiniSat+ [11]. This construction
requires the good choice of a mixed radix base and the goal is to find a base which minimizes
the size of the sorting networks. Codish et al. [8, 12] show that solving optimal base problem
– the problem of finding an efficient representation for a given collection of positive integers –
can lead to smaller encodings of PB-constraints.

A particular considered case of Pseudo-Boolean constraints is the one of Cardinality Con-
straints (CCs), where all coefficients ai are equal to 1. In this context, multiple papers showed
that encodings based on comparator networks give very good results. Codish and Zazon-Ivry [9]
introduced pairwise selection networks that were later improved in [14]. Ab́ıo, Aśın et al. [1, 4]
defined encodings that implemented selection networks based on the odd-even sorting networks
by Batcher [6]. Recently, we used generalized model of comparator network, where we not only
use sorters of order 2, but also m-sorters, for arbitrary natural number m. We fixed m = 4 and
proposed encoding based on 4-Odd-Even Selection Network [15]. In our construction we use the
idea of the multiway merge sorting networks by Lee and Batcher [17] that generalizes the tech-
nique of odd-even sorting ones by merging simultaneously more than two subsequences. The
new selection network merges 4 subsequences in that way. Based on this construction, we can
encode more efficiently comparators in the combine phase of the network: instead of encoding
each comparator separately by 3 clauses and 2 additional variables, we propose an encoding
scheme that requires 5 clauses and 2 variables on average for each pair of comparators. The
experiments show that this method is very good in practice for solving CCs. All constructions
mentioned in this paragraph are arc-consistent [13].

1.2 Our contribution

To replicate the success of our algorithm [15] in the field of PB-solving, we implemented the 4-
Odd-Even Selection Network in MiniSat+ and removed the 2-Odd-Even Sorting Network from
the original implementation [11]. In [15] we show a top-down, divide-and-conquer algorithm
for constructing 4-Odd-Even Selection Network. The difference in our new implementation
is that we build our network in a bottom-up manner, which results in the easier and cleaner
implementation.
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We apply a number of optimization techniques in our solver, some based on the work of other
researchers. In particular, we use optimal base searching algorithm based on the work of Codish
et al. [8] and ROBDD structure [2] instead of BDDs for one of the encodings in MiniSat+. We
also substitute sequential search of minimal value of the goal function in optimization problems
with binary search similarly to Sakai and Nabeshima [21]. We use COMiniSatPS [19] by
Chanseok Oh as the underlying SAT-solver, as it has been observed to perform better than the
original MiniSat [10] for many instances.

We experimentally compare our solver with other state-of-the-art general constraints solvers
like PBLib [20] and NaPS [21] to prove that our techniques are good in practice. Since more
then a decade there have been organized a series of Pseudo-Boolean Evaluations [18] which aim
to assess the state-of-the-art in the field of PB-solvers. We use the competition problems from
the PB 2016 Competition as a benchmark for the solver proposed in this paper.

1.3 Structure of the paper

In Section 2 we briefly introduce how MiniSat+ uses sorting networks to translate PB-
constraint into SAT and we describe how we have extended MiniSat+ using new selection
algorithm and other optimizations. In Section 3 we present experimental results and we leave
concluding remarks in Section 4.

2 System Description

The main tool in our solver is a comparator network. Traditionally comparator networks are
presented as circuits that receive n inputs and permute them using comparators (2-sorters)
connected by ”wires”. Each comparator has two inputs and two outputs. The ”upper” output
is the maximum of inputs, and ”lower” one is the minimum. The standard definitions and
properties of them can be found, for example, in [16]. The only difference is that we assume
that the output of any sorting operation or comparator is in a non-increasing order.

2.1 4-Way Merge Selection Network

The MiniSat+ uses Batcher’s original construction [6] – the 2-Odd-Even Sorting Network.
What we propose to use is a selection network. A selection network of order (n, k) is a com-
parator network such that for any 0-1 input of length n outputs its k largest elements. Those
k elements must also be sorted in order to easily assert the given constraint, by asserting only
the k-th output.

The main building block of our encoding is a direct selection network, which is a certain
generalization of a comparator. Encoding of the direct selection network of order (n, k) with
inputs 〈x1, . . . , xn〉 and outputs 〈y1, . . . , yk〉 is the set of clauses {xi1 ∧ · · · ∧xip ⇒ yp : 1 ≤ p ≤
k, 1 ≤ i1 < · · · < ip ≤ n}. The direct n-sorter is a direct selector of order (n, n), therefore we
need n auxiliary variables and 2n − 1 clauses to encode it. This shows that n should be small
in order to avoid exponential blowup in the number of clauses.

It has already been observed that using selection networks instead of sorting networks is more
efficient for the encoding of constraints [9]. This fact has been successfully used in encoding
CCs. We now apply this technique to PB-constraints. Here we describe the algorithm for
constructing a 4-Odd-Even Selection Network. Proof of correctness and analysis can be found
in our previous paper [15]. We extended our construction in a way that we mixed them with
the direct encoding for small values of parameters n and k – the technique which was first
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Figure 1: An example of 4-Odd-Even Selection Network, with n = 18 and k = 6.

implemented by Ab́ıo et al. [1]. Furthermore, in our previous paper we present our algorithm
in a top-down, divide-and-conquer manner. Here we use a bottom-up, iterative approach. This
leads to easier and cleaner implementation.

The procedure can be described as follows. Assume k ≤ n and that we have the sequence
of Boolean literals x̄ of length n and we want to select k largest, sorted elements, then:

• If k = 0, there is nothing to do.

• If k = 1, simply select the largest element from n inputs using a direct network.

• If k > 1, then split the input into subsequences of either the same literals (of length at
least 2) or sorted 5 singletons (using a direct selection network of order (5,min(5, k))).
Next, sort subsequences by length, in a non-increasing order. In loop: merge each 4
(or less) consecutive subsequences into one (using 4-Odd-Even Merging Network as a
sub-procedure) and select at most k largest items until one subsequence remains.

Example. See Figure 1 for a schema of our selection network (where n = 18 and k = 6)
which selects 6 largest elements from the input 011000010000001011.

Code notation. Assume x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 are Boolean sequences. Then
x̄ :: ȳ = 〈x1, . . . , xn, y1, . . . , ym〉. We use also the following notation: x̄odd = 〈x1, x3, . . .〉,
x̄even = 〈x2, x4, . . .〉, x̄a,...,b = 〈xa, . . . , xb〉, 1 ≤ a ≤ b ≤ n, and the prefix/suffix operators:
pref(i, x̄) = x̄1,...,i and suff(i, x̄) = x̄i,...,n, 1 ≤ i ≤ n. The length of x̄ is denoted by |x̄| and
the number of occurrences of a given value b in x̄ is denoted by |x̄|b. A sequence x̄ is top k
sorted, for k ≤ n, if 〈x1, . . . , xk〉 is sorted and xk ≥ xi, for each i > k.
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Algorithm 1 oe 4combinesk
Input: A pair of sorted sequences 〈x̄, ȳ〉, where k ≤ s = |x̄|+ |ȳ|, |ȳ| ≤ bk/2c, |x̄| ≤ bk/2c+ 2

and |ȳ|1 ≤ |x̄|1 ≤ |ȳ|1 + 4.
1: Let x(i) denote 0 if i > |x̄| or else xi. Let y(i) denote 1 if i < 1 or 0 if i > |ȳ| or yi,

otherwise.
2: for all j ∈ {1, . . . , |x̄|+ |ȳ|} do
3: i = dj/2e
4: if j is even then aj ← max(max(x(i + 2), y(i)),min(x(i + 1), y(i− 1)))
5: else aj ← min(max(x(i + 1), y(i− 1)),min(x(i), y(i− 2)))

6: return ā
Ensure: The output is sorted and is a permutation of the inputs.

Algorithm 2 oe 4mergesk
Input: A tuple of sorted sequences 〈w̄, x̄, ȳ, z̄〉, where 1 ≤ k ≤ s = |w̄| + |x̄| + |ȳ| + |z̄| and

k ≥ |w̄| ≥ |x̄| ≥ |ȳ| ≥ |z̄|.
1: if |x̄| = 0 then return w̄

2: if |w̄| = 1 then return selectsk(w̄ :: x̄ :: ȳ :: z̄) . Note that s ≤ 4 in this case

3: sa = d|w̄|/2e+ d|x̄|/2e+ d|ȳ|/2e+ d|z̄|/2e; ka = min(sa, bk/2c+ 2);
4: sb = b|w̄|/2c+ b|x̄|/2c+ b|ȳ|/2c+ b|z̄|/2c; kb = min(sb, bk/2c)
5: ā← oe 4mergesaka

(w̄odd, x̄odd, ȳodd, z̄odd) . Recursive calls.

6: b̄← oe 4mergesbkb
(w̄even, x̄even, ȳeven, z̄even)

7: return oe 4combineka+kb

k (pref(ka, ā), pref(kb, b̄)) :: suff(ka + 1, ā) :: suff(kb + 1, b̄)
Ensure: The output is top k sorted and is a permutation of the inputs.

The merging procedure uses a technique based on the odd-even merging, which Batcher
and Lee called the multiway merging [17]. We implemented 4-way merger with 2 recursive
sub-mergers. The pseudo code for this procedure is presented in Algorithm 2. The algorithm
recursively merges subsequences with odd and even indices (lines 5–6) and then uses a combine
operation to fix the order of elements (line 7). For base cases, since we assume that |w̄| ≥ |x̄| ≥
|ȳ| ≥ |z̄|, we need only to check – in line 1 – if x̄ is empty (then only w̄ is non-empty) or – in
line 2 – if w̄ contains only a single element – then the rest of the sequences contains at most
one element and we can simply order them with a selector. In other cases we have |w̄| ≥ 2 and
|x̄| ≥ 1, thus |w̄odd| < |w̄| and |w̄even| < |w̄|, so the sizes of subproblems solved by recursive
calls decrease.

Example. In Figure 1, in dashed lines, a schema of 4-Odd-Even merger is presented with
s = 18, k = 6, |w̄| = |x̄| = |ȳ| = 5 and |z̄| = 3. First, the inputs are split into two by odd and
even indices, and the recursive calls are made. After that, a combine operation fixes the order
of elements, to output the 6 largest ones.

In the case of 4-way merger, the combine operation by Batcher and Lee [17] uses two layers
of comparators to fix the order of elements of two sorted sequences x̄ and ȳ, as presented in
Figure 2. The combine operation takes sequences 〈x0, x1, . . .〉 and 〈y0, y1, . . .〉 and performs a zip
operation: 〈x0, y0, x1, y1, x2, y2, . . .〉. Then, two layers of comparators are applied: [yi : xi+2],
for i = 0, 1, . . . , resulting in 〈x′0, y′0, x′1, y′1, . . .〉, and then [y′i : x′i+1], for i = 0, 1, . . . , to get
〈x′′0 , y′′0 , x′′1 , y′′1 , . . .〉.
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Figure 2: Comparators of oe 4combine86 from Figure 1.

If we were to directly encode each comparator separately in a combine operation we would
need to use 3 clauses and 2 additional variables on each comparator. The novelty of our
construction is that the encoding of a combine phase requires 5 clauses and 2 variables on
average for each pair of comparators, using the following observations:

y′i = max(yi, xi+2) ≡ yi ∨ xi+2 i = 0, 1, . . .

x′i = min(yi−2, xi) ≡ yi−2 ∧ xi i = 2, 3, . . .

and

y′′i = max(y′i, x
′
i+1) = y′i ∨ x′i+1 = yi ∨ xi+2 ∨ (yi−1 ∧ xi+1),

x′′i = min(y′i−1, x
′
i) = y′i−1 ∧ x′i = (yi−1 ∨ xi+1) ∧ yi−2 ∧ xi

= (yi−1 ∧ yi−2 ∧ xi) ∨ (yi−2 ∧ xi ∧ xi+1) = (yi−1 ∧ xi) ∨ (yi−2 ∧ xi+1)

In the above calculations we use the fact that the input sequences are sorted, therefore yi−1 ∧
yi−2 = yi−1 and xi ∧ xi+1 = xi+1. By the above observations, the two calculated values can be
encoded using the following set of 5 clauses:

yi ⇒ y′′i , xi+2 ⇒ y′′i , yi−1 ∧ xi+1 ⇒ y′′i , yi−1 ∧ xi ⇒ x′′i , yi−2 ∧ xi+1 ⇒ x′′i

if 1’s should be propagated from inputs to outputs, otherwise:

y′′i ⇒ yi−1 ∨ xi+2, y
′′
i ⇒ yi ∨ xi+1, x

′′
i ⇒ xi, x

′′
i ⇒ yi−2, x

′′
i ⇒ yi−1 ∨ xi+1.

This saves one clause and two variables for each pair of comparators in the original combine
operation, which scales to 1

2k clauses and k variables saved for each two layers of comparators
associated with the use of a 4-way merger. The pseudo code for our combine procedure is
presented in Algorithm 1.

2.2 Introduction to Mixed Radix Base Technique

To demonstrate how sorters can be used to translate PB-constraints, consider the following
example from [11]:

x1 + x2 + x3 + x4 + x5 + x6 + 2y1 + 3y2 ≥ 4

70



Competitive Sorter-based Encoding of PB-Constraints into SAT Karpiński and Piotrów

The sum of coefficients is 11. We build a sorting network of size 11, feeding y1 into two of the
inputs, y2 into three of the inputs, and all the signals xi into one input each. To assert the
constraint, one just asserts the fourth output bit of the sorter.

The shortcoming of this approach is that the resulting size of a CNF after transformation
of the sorting network can get exponential if the coefficients get bigger. Consider an example
from [2]:

3x1 + 2x2 + 4x3 ≤ 5, 30001x1 + 19999x2 + 39998x3 ≤ 50007

Both constraints are equivalent. The Boolean function they represent can be expressed, for
example, by the clauses x̄1∨ x̄3 and x̄2∨ x̄3. But clearly, a sorting network for the left constraint
will be smaller.

To remedy this situation the authors of MiniSat+ propose a method to decompose the
constraint into a number of interconnected sorting networks, where sorters play the role of
adders on unary numbers in a mixed radix representation.

In the classic base r radix system, positive integers are represented as finite sequences of
digits d = 〈d0, . . . , dm−1〉 where for each digit 0 ≤ di < r, and for the most significant digit,
dm−1 > 0. The integer value associated with d is v = d0+d1r+d2r

2+· · ·+dm−1r
m−1. A mixed

radix system is a generalization where a base B is a sequence of positive integers 〈r0, . . . , rm−1〉.
The integer value associated with d is v = d0w0 +d1w1 +d2w2 + · · ·+dm−1wm−1 where w0 = 1
and for i ≥ 0, wi+1 = wiri. For example, the number 〈2, 4, 10〉B in base B = 〈3, 5〉 is interpreted
as 2× 1 + 4× 3 + 10× 15 = 164 (values of wi’s in boldface).

The decomposition of a PB-constraint into sorting networks is roughly as follows: first, find
a ”suitable” finite base B for the set of coefficients, for example, in MiniSat+ base is chosen
so that the sum of all the digits of the coefficients written in that base, is as small as possible.
Then for each element ri of B construct a sorting network where the inputs to i-th sorter will
be those digits d (from the coefficients) where di is non-zero, plus the potential carry bits from
the (i− 1)-th sorter. For examples of how this procedure works we refer to the papers [11] and
[8].

In the following subsections we explain how we have extended the MiniSat+ solver to make
the above process (and the entire PB-solving computation) more efficient.

2.3 Simplifying Inequality Assertions

We use the following optimization found in NaPS [21] for simplifying inequality assertions in
a constraint. We introduce this concept with an example. In order to assert the constraint
a1l1 + · · ·+anln ≥ k the encoding compares the digits of the sum of the terms on the left side of
the constraint with those from k (in some base B) from the right side. Consider the following
example:

5x1 + 7x2 ≥ 9

Assume that the base is B = 〈2, 2〉. Then 9 = 〈1, 0, 2〉B, but if we add 7 to both sides of the
inequality:

7 + 5x1 + 7x2 ≥ 16

then those constraints are obviously equivalent and 16 = 〈0, 0, 4〉B. Now in order to assert the
inequality we only need to assert a single output variable of the encoding of the sum of LHS
coefficients (using a singleton clause). The constant 7 on the LHS has a very small impact on
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the size of LHS encoding. This simplification allows for the reduction of the number of clauses
in the resulting CNF encoding, as well as allows better propagation.

2.4 Optimal Base Problem

We have mentioned that MiniSat+ searches for a mixed radix base such that the sum of all
the digits of the coefficients written in that base, is as small as possible. In their paper [11]
authors mention in the footnote that:

The best candidate is found by a brute-force search trying all prime numbers < 20.
This is an ad-hoc solution that should be improved in the future. Finding the optimal
base is a challenging optimization problem in its own right.

Codish et al. [8] present an algorithm which scales to find an optimal base consisting of
elements with values up to 1, 000, 000 and they consider several measures of optimality for
finding the base. They show experimentally that in many cases finding a better base leads also
to better SAT solving time. We use their algorithm in our solver, but we restrict the domain
of the base to prime numbers less than 50, as preliminary experiments show that numbers in
the base are usually small.

2.5 Minimization Strategy

The key to efficiently solve Pseudo Boolean optimization problems is the repeated use of a SAT-
solver. Assume we have a minimization problem with an objective function f(x). First, without
considering f , we run the solver on a set of constraints to get an initial solution f(x0) = k.
Then we add the constraint f(x) < k and run the solver again. If the problem is unsatisfiable,
k is the optimal solution. If not, the process is repeated with the new (smaller) candidate
solution k′. The minimization strategy is about the choice of k′. If we choose k′ as reported
by the SAT-solver, then we are using the so called sequential strategy – this is implemented in
MiniSat+.

Sakai and Nabeshima [21] propose the binary strategy for the choice of new k′. Let k be the
best known goal value and l be the greatest known lower bound, which is initially the sum of
negative coefficients of f . After each iteration, new constraint p ⇒ f(x) < b(k(q − 1) + l)/qc
is added, where p is a fresh variable (assumption) and q is a constant (we set q = 3 as default
value). Depending on the new SAT-solver answer, b(k(q − 1) + l)/qc becomes the new upper
or lower bound (in this case p is set to 0), and the process begin anew.

In our implementation we use binary strategy until the difference between the upper and
lower bounds of the goal value is less than 96, then we switch to the sequential strategy. We do
this in order to avoid a situation when a lot of computation is needed when searching for UNSAT
answers, which could arise if only binary strategy was used. This was also observed in [21] and
the authors have used it as a default strategy. Moreover, they propose to alternate between
binary and sequential strategy depending on the SAT-solver answer in a given iteration.

2.6 ROBDDs Instead of BDDs

One of the encodings of MiniSat+ is based on Binary Decision Diagrams (BDDs). We have
improved the implementation of this encoding by using the more recent Reduced Ordered BDD
(ROBDD) construction [2]. Now ROBDD is used to create a DAG representation of a constraint.
One of the advantages of ROBBDs is that we can reuse nodes in the ROBDD structure, which
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Figure 3: Construction of a BDD (left) and a ROBDD (right) for 2x1 + 3x2 + 5x3 ≤ 6.

results in a smaller encoding. This concept is illustrated in Figure 3, which shows an example
from [2] of BDD and ROBDD for the PB-constraint 2x1 + 3x2 + 5x3 ≤ 6. Two reductions
are applied (until fix-point) for obtaining ROBDD: removing nodes with identical children and
merging isomorphic subtrees. See [2] for a more detailed example.

2.7 Merging Carry Bits

In the construction of interconnected sorters in MiniSat+ carry bits from one sorter are being
fed to the next sorter. In the footnote in [11] it is mentioned that:

Implementation note: The sorter can be improved by using the fact that the carries
are already sorted.

We go with this suggestion and use our merging network to merge the carry bits with a sorted
digits representation instead of simply forwarding the carry bits to the inputs of the next
selection network.

2.8 SAT-solver

The underlying SAT-solver of MiniSat+ is MiniSat [10] created by Niklas Eén and Niklas
Sörensson. It has served as an extension to many new solvers, but it is now quite outdated. We
have integrated a solver called COMiniSatPS by Chanseok Oh [19], which have collectively won
six medals in SAT Competition 2014 and Configurable SAT Solver Challenge 2014. Moreover,
the modification of this solver called MapleCOMSPS won the Main Track category of SAT
Competition 20161.

3 Experimental Evaluation

Our extension of MiniSat+ based on the features explained in this paper, which we call KP-
MiniSat+, is available online2. It should be linked with a slightly modified COMiniSatPS,

1See http://baldur.iti.kit.edu/sat-competition-2016/
2See https://github.com/karpiu/kp-minisatp
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solver
DEC-SMALLINT-LIN OPT-BIGINT-LIN OPT-SMALLINT-LIN
Sat UnSat cpu Opt UnSat cpu Opt UnSat cpu

KP-MS+ 432 1049 647041 359 72 1135925 808 86 1289042
NaPS 348 1035 816725 314 69 1314536 799 81 1330536
PBLib 349 922 1104508 – – – 691 56 1611247
MS+ 395 951 895774 149 71 1647958 715 73 1515166

MS+COM 428 1027 703269 174 71 1609433 734 71 1491269

Table 1: Number of solved instances of PB-competition benchmarks.

also available online3. Detailed results of the experimental evaluation are also available online4.
The set of instances we use is from the Pseudo-Boolean Competition 20165. We use instances

with linear, Pseudo-Boolean constraints that encode either decision or optimization problems.
To this end, three categories from the competition have been selected:

• DEC-SMALLINT-LIN - 1783 instances of decision problems with small coefficients in
the constraints (no constraint with sum of coefficients greater than 220). No objective
function to optimize. The solver must simply find a solution.

• OPT-BIGINT-LIN - 1109 instances of optimization problems with big coefficients in
the constraints (at least one constraint with a sum of coefficients greater than 220). An
objective function is present. The solver must find a solution with the best possible value
of the objective function.

• OPT-SMALLINT-LIN - 1600 instances of optimization problems. Similar to OPT-
BIGINT-LIN but with small coefficients (as in DEC-SMALLINT-LIN) in the constraints.

We compare our solver (abbreviated to KP-MS+) with two state-of-the-art general purpose
constraint solvers. First is the pbSolver from PBLib ver. 1.2.1, by Tobias Philipp and Peter
Steinke [20] (abbreviated to PBLib in the results). This solver implements a plethora of
encodings for three types of constraints: at-most-one, at-most-k (cardinality constraints) and
Pseudo-Boolean constraints. The PBLib automatically normalizes the input constraints and
decides which encoder provides the most effective translation. We have launched the program
./BasicPBSolver/pbsolver of PBLib on each instance with the default parameters.

The second solver is NaPS ver. 1.02b by Masahiko Sakai and Hidetomo Nabeshima [21]
which implements improved ROBDD structure for encoding constraints in band form, as well
as other optimizations. This solver is also built on the top of MiniSat+. NaPS won two of
the optimization categories in the Pseudo-Boolean Competition 2016: OPT-BIGINT-LIN and
OPT-SMALLINT-LIN. We have launched the main program of NaPS on each instance, with
parameters -a -s -nm.

We also compare our solver with the original MiniSat+ in two different versions, one using
the original MiniSat SAT-solver and the other using the COMiniSatPS (the same as used by
us). We label these MS+ and MS+COM in the results. We prepared results for MS+COM
in order to show that the advantage of using our solver does not come simply from changing
the underlying SAT-solver.

3See https://github.com/marekpiotrow/cominisatps
4See http://www.ii.uni.wroc.pl/%7ekarp/pos/2018.html
5See http://www.cril.univ-artois.fr/PB16/
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Figure 4: Cactus plot for DEC-SMALLINT-LIN division.

We have launched our solver on each instance, with parameters -a -s -cs -nm, where
-cs means that in experiments the solver used just one encoding technique, the 4-Odd-Even
Selection Networks combined with a direct encoding of small subnetworks.

All experiments were carried out on the machines with Intel(R) Core(TM) i7-2600 CPU @
3.40GHz. Timeout limit is set to 1800 seconds and memory limit is 15 GB, which are enforced
with the following commands: ulimit -Sv 15000000 and timeout -k 20 1809 <solver>

<parameters> <instance>.
We would like to note that we also wanted to include in this evaluation the winner of

DEC-SMALLINT-LIN category, which is the solver based on the cutting planes technique, but
we refrained from that for the following reason. We have not found the source code of this
solver and the only working version found in the author’s website6 is a binary file without
any documentation. Because of this, we were unable to get any meaningful results of running
forementioned program on optimization instances.

In Table 1 we present the number of solved instanced for each competition category. Sat,
UnSat and Opt have the usual meaning, while cpu is the total solving time of the solver
over all instances of a given category. Results clearly favor our solver. We observe significant
improvement in the number of solved instances in comparison to NaPS in categories DEC-
SMALLINT-LIN and OPT-BIGINT-LIN. The difference in the number of solved instances in the
OPT-SMALLINT-LIN category is not so significant. Solver PBLib had the worst performance
in this evaluation. Notice that the results of PBLib for OPT-BIGINT-LIN division is not
available. This is because PBLib is using 64-bit integers in calculations, thus could not be
launched with all OPT-BIGINT-LIN instances.

Figures 4, 5 and 6 show cactus plots of the results, which indicate the number of solved
instances within the time. We see clear advantage of our solver over the competition in the
DEC-SMALLINT-LIN and OPT-BIGINT-LIN categories.

6See http://www.csc.kth.se/%7eelffers/
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Figure 5: Cactus plot for OPT-BIGINT-LIN division.
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Figure 6: Cactus plot for OPT-SMALLINT-LIN division.

4 Conclusions

In this paper we proposed a new method of encoding PB-constraints into SAT based on sorters.
We have extended the MiniSat+ with the 4-way merge selection algorithm and showed that
this method is competitive to other state-of-the-art solutions. Our algorithm is short and easy
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to implement. Our implementation is modular, therefore it can be easily extracted and applied
in other solvers.
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