
Hierarchical Combination of Unification

Algorithms (Extended Abstract)

Serdar Erbatur5∗, Deepak Kapur1 †, Andrew M Marshall2 ‡, Paliath Narendran3 §

and Christophe Ringeissen4

1 University of New Mexico (USA)
2 Naval Research Laboratory (USA)
3 University at Albany, SUNY (USA)

4 LORIA – INRIA Nancy-Grand Est (France)
5 Dipartimento di Informatica Università degli Studi di Verona (Italy)

1 Introduction

A critical question in unification theory is how to obtain a unification algorithm for the com-
bination of non-disjoint equational theories when there exists unification algorithms for the
constituent theories. The problem is known to be difficult and can easily be seen to be undecid-
able in the general case. Therefore, previous work has focused on identifying specific conditions
and methods in which the problem is decidable. We continue the investigation in this paper,
building on previous combination results, [2, 4, 7] and [6]. We are able to develop a novel
approach to the non-disjoint combination problem. The approach is based on a new set of
restrictions and combination method such that if the restrictions are satisfied the method pro-
duces an algorithm for the unification problem in the union of non-disjoint equational theories.

A full version of this paper [5] will appear in the proceedings of the 24th Interna-
tional Conference on Automated Deduction (CADE-24).

2 Preliminaries

We use the standard notation of equational unification [3] and term rewriting systems [1]. A
Σ-rooted term is a term whose top symbol is in Σ. Let Σ(1,2) = Σ1 ∩Σ2. An alien subterm of a
Σ1rΣ(1,2)-rooted term t (resp. Σ2-rooted term) is a Σ2-rooted subterm (resp. Σ1rΣ(1,2)-rooted
subterm) of t such that all its superterms are Σ1 r Σ(1,2)-rooted (resp. Σ2-rooted). A theory
E is subterm collapse-free if and only if for all terms t it is not the case that t =E u where u is
a strict subterm of t. Given a signature Σ′ ⊆ Σ, S|Σ′ denotes the set of Σ′-equations occurring
in S. A set of equations S is said to be in standard form over a signature Σ if and only if every
equation in S is of the form x =? t, where x is a variable and t is one of the following: (a) a
variable different from x, (b) a constant, or (c) a term of depth 1 that contains no constants,
i.e., function symbols applied to variables. It is not generally difficult to decompose equations
of a given problem into simpler standard forms. A set of equations is said to be in dag-solved
form (or d-solved form) if and only if they can be arranged as a list x1 =? t1, . . . , xn =? tn

∗Supported by the Department of Computer Science of the University at Albany and then INRIA Nancy-
Grand Est during a portion of this work.
†Partially supported by the NSF grant CNS-0905222
‡Supported by an ASEE postdoctoral fellowship under contract to the NRL.
§Partially supported by the NSF grant CNS-0905286

30 K. Korovin, B. Morawska (eds.), UNIF 2013 (EPiC Series, vol. 19), pp. 30–34



Hierarchical Combination Erbatur, Kapur, Marshall, Narendran, and Ringeissen

where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not
occur in tj . Each xi in this case is called a solved variable. A set of equations S is said to
be in Σ-solved form if and only if it is in standard form and S|Σ is in dag-solved form. For
a convergent rewrite system R we define a constructor of R to be a function symbol f which
does not appear at the root on the left-hand side of any rewrite rule of R. We define an inner
constructor to be a constructor f that satisfies the following additional restrictions: (i) f does
not appear on the left-hand side on any rule in R, (ii) f does not appear as the root symbol
on the right-hand side of any rule in R, and (iii) there are no function symbols below f on the
right-hand side of any rule in R.

3 Combination Procedure

We want to investigate conditions to build an E1 ∪ E2-unification algorithm by using two
algorithms A1 and A2 solving two different kinds of E1 ∪ E2-unification problems, described
below in Restriction 1 and Restriction 2 respectively. Consider an E1 ∪E2-unification problem
P in standard form. The steps of the combination procedure (see Figure 2) are as follows: (1)
run A1 on the Σ1 r Σ(1,2)-equations of P; (2) run A2 on the Σ2-equations of the unification
problem obtained at step (1); (3) collect the resulting problems that are in dag-solved form.
As in disjoint combination [2], we perform as step (0) a variable identification in order to guess
a priori all possible identifications of variables occurring in P. For this approach to work we
need to place some restrictions.

3.1 Restrictions

We present a less technical overview of the required restrictions (see [5] for more details).
Consider two subterm collapse-free equational theories such that Σ1 ∩ Σ2 = Σ(1,2) 6= ∅. Fresh
variables created by A1 that could cause the need for reapplication of the rules of A1 during the
application of A2 are called “Ping-Pong Variables” as it implies a back-and-forth mechanism
between the algorithms.

Restriction 1. (on Algorithm A1) Let P be a set of Σ1 r Σ(1,2)-equations. Algorithm A1

computes a set of problems {Qk}k∈K such that⋃
k∈K CSUE1∪E2 (Qk) is a CSUE1∪E2(P) and for each k ∈ K:

(i) Qk consists of (Σ1 r Σ(1,2))-equations and Σ(1,2)-equations.

(ii) Qk is in standard form and (Σ1 r Σ(1,2))-solved form.

(iii) No fresh variable occurring in a nonvariable Σ(1,2)-term in Qk appears as solved in Qk.

(CSU stands for “complete set of unifiers”.)
Note that A1 is a special type of algorithm that returns a “partial” solution to an E1 ∪E2-

unification problem. A1 is needed to solve some portion of the problem, namely the Σ1rΣ(1,2)-
pure, but a standard E1-unification algorithm is not sufficient, even for Σ1rΣ(1,2)-pure E1∪E2

problems.

Example 3.1. Let E1 := {h(a, x, y) = g(x ∗ y), h(b, x, y) = g(y ∗ x)} and let E2 be the
commutative theory for ∗. Then, h(a, a, z) =? h(b, a, b) is not solvable in E1 but is in E1 ∪E2.

31



Hierarchical Combination Erbatur, Kapur, Marshall, Narendran, and Ringeissen

Restriction 1 ensures that completeness is not lost by ensuring that a CSU for all the partial
solutions is a CSU for the original problem.

To explain Restriction 1(iii), let us note that A1 may generate fresh Σ(1,2)-equations, e.g.

z =? f(x, y) where f ∈ Σ(1,2), together with some Σ1 r Σ(1,2)-equations, e.g. x =? s, y =? t. If

A2 later generates x =? y, then this may lead to the reapplication of A1, to solve x =? s, x =? t.
If x and y are from the initial set of variables, this problem can be discarded without loss
of generality, since the variable identification performed initially generates another unification
problem where x and y are already identified. The problem remains if x or y are fresh variables,
“ping-pong variables”. In order to avoid it, we introduce Restriction 1(iii), where only the
occurrences of fresh variables are restricted.

Restriction 2. (on Algorithm A2)
Algorithm A2 computes a finite complete set of 2-pure unifiers of 2-pure E1 ∪ E2-unification
problems.

We restrict A2 to compute only 2-pure substitutions. This is used to avoid possible reappli-
cations of A1 after A2.

Restriction 3. (Errors)

(i) A Σ1 rΣ(1,2)-rooted term cannot be E1 ∪ E2-equal to a Σ2-rooted term.

(ii) E1 ∪ E2 is subterm collapse-free.

Note that in the next section we give a modularity result for subterm collapse-freeness. That
is, we give a non-empty family of theories for which subterm collapse-freeness is a modular
property.

The failure rules associated with Restriction 3 are given in Figure 1.

Conflict: If s(ε) ∈ Σ1 r Σ(1,2) and t(ε) ∈ Σ2: {v =? s, v =? t} ∪ P −→ Fail
Cycle: If P contains a cycle: P −→ Fail

Figure 1: Failure rules

It can be shown based on these restrictions that Algorithm C is a complete unification
algorithm for the combined theory. More precisely, if A1 and A2 are algorithms satisfying
Restrictions 1 through 3, then Algorithm C is sound and complete, which also means that
E1 ∪ E2-unification is finitary.

4 A Class of Hierarchically Combinable Theories

In this section we define a non-empty class of theories for which Restrictions 1 through 3 can
be satisfied. We assume that E1 and E2 are subterm collapse-free. The class is then defined by
the following additional properties.

1. Properties of E1:
R1 is a left-linear, convergent term rewrite system corresponding to E1.

2. Properties of E2:
E2 is a linear, finite equational theory.

32



Hierarchical Combination Erbatur, Kapur, Marshall, Narendran, and Ringeissen

Some of the steps below are non-deterministic, hence lead to computation paths. Throughout each

path, the failure rules of Figure 1 are applied eagerly after each step. Let V = V ar(P).

Step 0: Variable Identification

Guess a partition on V and set variables in each subset equal to each other. This requires adding fresh

equations of type u =? w, where u,w ∈ V and u and w belong to the same subset in the partition. Let

us denote the enumeration of the partitions of V as π1, π2, . . . , πm. Once a partition is selected, the

unification problem P is modified by adding the fresh equations between variables to the unification

problem. We denote the modified problems by Pπi , 1 ≤ i ≤ m.

Step 1: Run A1

We apply A1 to the Σ1 r Σ(1,2)-equations of Pπi . If A1 fails for all πi, report failure and stop.

Otherwise, we now have a modified, by A1, set of unification problems from Pπi , Pπi
1 , . . .Pπi

n for

n ≥ 1, such that all the Σ1 rΣ(1,2)-equations in each Pπi
j , are in (Σ1 rΣ(1,2))-solved form.

Step 2: Run A2

Run Algorithm A2 on the 2-pure equations of each Pπi
j . If A2 equates variables in V not equated by

πij discard that particular Pπi
j . If none of the remaining Pπi

1 , . . .Pπi
n exit with success, return failure.

Otherwise, return success.

Figure 2: C: Unification Algorithm for the combined theory E1 ∪ E2.

3. Properties of the shared symbols:
If f ∈ Σ(1,2), then f is an inner constructor of R1.
If f and g are inner constructors of R1, then f -rooted terms cannot be equated to g-rooted
terms in E2.

Example 4.1. The equational theory EAC considered in [6] satisfies all the above properties.
The axioms of EAC are as follows:

exp(exp(x, y), z) = exp(x, y ~ z) (1) (x~ y) ~ z = x~ (y ~ z) (3)

exp(x ∗ y, z) = exp(x, z) ∗ exp(y, z) (2) x~ y = y ~ x (4)

Here, EAC = E1 ∪ E2 where E1 = {(1), (2)} and E2 = {(3), (4)}.

4.1 Satisfying Restriction 1

The first and critical step to satisfying Restriction 1 is the construction of an inference system
G such that the standard forms of leaves in the search tree generated by G are the Σ1 r Σ(1,2)-
solved forms corresponding to a complete set of E1 ∪ E2-unifiers of the input problem, thus
satisfying the majority of Restriction 1. In [5], we modify the general syntactic E-unification
procedure G [3], but we still have to identify interesting cases for which G can be turned into a
terminating algorithm. For the particular case of EAC , an algorithm A1 satisfying Restriction 1
can be constructed from scratch as in [6].

4.2 Satisfying Restriction 2

Let tφ denote the standard 2-abstraction of t, which corresponds to the 2-pure term obtained
from t by replacing alien subterms of t with fresh variables (E1 ∪ E2-equal alien subterms
are replaced by the same fresh variable). It can be shown if s ←→E1∪E2

t, then sφ =E2
tφ.

Reasoning inductively it can further be shown for any 2-pure equation s =? t where sσ =E1∪E2

33



Hierarchical Combination Erbatur, Kapur, Marshall, Narendran, and Ringeissen

tσ, that sσφ =E2 tσ
φ. This implies that E2-unification is sound and complete for solving 2-

pure E1 ∪ E2-unification problems. Hence, an E2-unification algorithm provides an algorithm
A2 satisfying Restriction 2 since it computes a complete set of 2-pure unifiers.

4.3 Satisfying Restriction 3

Using the fact that E2 is subterm collapse-free and the fact that if s←→E1∪E2 t then sφ =E2 t
φ,

it can be shown that a Σ1 rΣ(1,2)-rooted term cannot be E1 ∪ E2-equal to a Σ2-rooted term.

Lastly, it can be shown that for any term t and any strict subterm u of t, if t →+
R1

t′, then
t′ 6=E2 u. This fact leads directly to the result that E1 ∪ E2 is subterm collapse-free.

As a final remark, it is important to note that our algorithm C does not work in a symmetric
way with respect to E1 and E2, contrary to combination algorithms where we assume that any
(Σ1 ∩Σ2)-equality is valid in E1 if and only if it is valid in E2 [2, 4, 7]. Indeed, the algorithm
A1 partially solves the problem modulo E1 ∪ E2 (and not only modulo E1). Then, A2 is in
charge of solving modulo E2 the remaining part that was kept unsolved by A1. Our restrictions
allow us to get all the solved forms without any further pingponging between A2 and A1.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, New
York, NY, USA, 1998.

[2] Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational theories: Com-
bining decision procedures. Journal of Symbolic Computation, 21(2):211 – 243, 1996.

[3] Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.

[4] Eric Domenjoud, Francis Klay, and Christophe Ringeissen. Combination techniques for non-disjoint
equational theories. In International Conference on Automated Deduction, (CADE-12), volume 814
of LNCS, pages 267–281. 1994.

[5] Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Paliath Narendran, and Christophe Ringeis-
sen. Hierarchical combination. In Proceedings of CADE-24, volume 7898 of LNAI, pages 249–266.
Springer, 2013.

[6] Serdar Erbatur, Andrew M. Marshall, Deepak Kapur, and Paliath Narendran. Unification over
distributive exponentiation (sub)theories. Journal of Automata, Languages and Combinatorics
(JALC), 16(2–4):109–140, 2011.

[7] Christophe Ringeissen. Unification in a combination of equational theories with shared constants
and its application to primal algebras. In The 1st International Conference on Logic Programming
and Automated Reasoning, volume 624 of LNAI, pages 261–272. Springer, 1992.

34


	Introduction
	Preliminaries
	Combination Procedure
	Restrictions

	A Class of Hierarchically Combinable Theories
	Satisfying Restriction 1
	Satisfying Restriction 2
	Satisfying Restriction 3


