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Abstract

L(h,k) Labeling in graph came into existence as a solution to frequency assignment problem.
To reduce interference a frequency in the form of non negative integers is assigned to each radio or
TV transmitters located at various places. After L(h,k) labeling, L(h,k, j) labeling is introduced to
reduce noise in the communication network. We investigated the graph obtained by Cartesian Product
between Complete Bipartite Graph with Path and Cycle, i. e., Km,n×Pr and Km,n×Cr by applying
L(3,2,1)Labeling. The L(3,2,1) Labeling of a graph G is the difference between the highest and
the lowest labels used in L(3,2,1) and is denoted by λ3,2,1(G) In this paper we have designed three
suitable algorithms to label the graphs Km,n ×Pr and Km,n ×Cr. We have also analyzed the time
complexity of each algorithm with illustration.

1 Introduction
In real world, graph labeling actually deals with the frequency assignment problem which can be solved
by vertex coloring problem. Requirement of noise free solution station demands efficient frequency
assignment techniques. Among various frequency assignment techniques L(h,k) labeling covers some
important and realistic domain where some work is done by many researchers. To avoid interference
any two ”close” transmitters must receive different channels and any two ”very close” transmitters must
receive channels that are at least two channels apart. In the language of Graph Theory, the transmitters
are represented by the vertexes of the graph; two vertexes are ”very close” if they are adjacent and
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”close” if they are at distance two in the graph. This problem is considered as L(2,1) labeling on a
simple graph. Graph G = (V,E) has various bound of λ2,1(G) is known in terms of4, ω(G) and χ(G).
Maximum degree denoted by 4, where ω(G) and χ(G) denote the size of the maximum clique and
chromatic number of the graph G respectively. Griggs and Yeh [2] gives the explanation that a graph
required42−4 span, in 1992 they also prove that λ2,1(G)≤42+24. In 2008 Gonclaves [4] improved
the bound to λ2,1(G) ≤ 42 + 24−2 and later the bound is improved to λ2,1(G) ≤ 42 + 24−3 for
3−connected graph. Then Chang and Kuo [5] improved the bound to λ2,1(G)≤42+4. The conjecture
of Griggs and Yeh[2] stable it for the graph of diameter 2. Later Chang and Kuo improved the bound to
λ2,1(G)≤42.

Conjecture 1.1. : For any graph G = (V,E) with maximum degree4≥ 2, λ2,1(G)≤42.

The above conjecture of Griggs and Yeh [2] worked for the set of graphs like path[2], wheel[2],
cycle[2], trees[2, 5], co-graphs [5], interval graphs [5], chordal graphs, permutation graph [6], circular
arc graph, Cartesian product of complete bipartite graph, path and cycle [14, 15, 16] etc. The bound
λ2,1(G) can be computed systematically for some graphs like cycle, path, tree[2, 5].
Distance between deployed stations are not fixed geographically. In some cases station 1 and 3 (at
distance two apart on the graph) can be at an intermediate distance on earth e.g. when they are at
right angles, therefore in such cases L(h,k) labeling fails to assign optimal frequency difference without
violating the span. Therefore, interference between two adjacent and two distance apart station arises
and may vary accordingly. Our main aim is to achieve a noise free network prior to reduced frequency.
To resolve this problem we switch to L(3,2,1) labeling. For any graph G = (V,E) Clipperton et al. [7]
studied that λ3,2,1 ≤43 +42 +34, later on Chai et al. [8] tune up the upper bound of Clipperton et al.
[7] and established that λ3,2,1 ≤43+24 for any graph G = (V,E). Chai et al. [8] have also studied that
λ3,2,1 = 2n+5 for complete n−array tree of height ≥ 3 and 24+1≤ λ3,2,1 ≤ 24+3 . λ3,2,1 also been
investigated on planar graph by Lui and Shao [9] and they established that λ3,2,1 ≤ 15(42−4+ 1).
Jean [10] investigate slightly different form of L(3,2,1), L(d,2,1) on complete graph and complete
bipartite graph and established that λd,2,1(Kn) = d(n−1)+1 and λd,2,1(Km,n) = d+2(m+n)−3. λ3,2,1
also has been implemented on Cartesian product between complete graph K3 and cycle Cn by Kim
et al. [11] and they established λ3,2,1(K3×Cn) = 15 for n ≥ 28 and n ≡ 0(mod 5). Clipperton [12]
apply L(4,3,2,1) on some simple graph and shown that λ4,3,2,1 ≤43 +242 +64. λ4,3,2,1 and λ3,2,1 of
circular-arc graph and permutation graph has investigated by Amanathulla and Pal [17, 18], they have
established λ4,3,2,1 = 164−12 and λ3,2,1 = 94−6 for any circular-arc graph and λ4,3,2,1 = 134−18
and λ3,2,1 = 114−8 for any permutation graph.
Here we consider the graph obtained by Cartesian product between complete bipartite graph with path
and cycle i.e G = Km,n×Pr and G = Km,n×Cr. We apply L(3,2,1) labeling on the above said graphs. In
real life scenarios we consider the Cartesian product of most of the networks are complex and hybrid.
We investigate λ3,2,1 for each graph and established a relation in term of m,n,r. To accomplish the
above said task we designed four suitable and efficient algorithms, that is less tedious (in comparison
to the traditional trial and error method) and can simplify the assignment of frequencies to the vertexes
and we also describe the time complexity of each algorithm.

The remaining part of the paper is organized as follows. Section 2 presents some preliminaries, def-
inition and lemmas, Section 3 describes algorithms, analysis of each algorithm and illustration followed
by conclusion.

2 Preliminaries
Definition 2.1. A cycle of a graph G = (V,E) is denoted by Cr, where V = {v0,v1, ...,vr} be the set of
vertexes and E = {e0,e1, ...,er} be the set of edges will form a cycle if every vertex say vi is adjacent to
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exactly two vertexes.

Definition 2.2. Cartesian product of two graphs G and H, denoted by G×H, where G = (V,E) and
H = (V ′,E ′) be the two graphs, and is defined by taking Cartesian product between two set of vertexes
V (G)×V ′(H), where (u,u′) and (v,v′) are the order pair of the Cartesian product will be directly
connected in G×H if and only if either

1. u = v and u′ is directly connected with v′ in H, or

2. u′ = v′ and u is directly connected with v in G.

Lemma 2.1. Let4 be the degree of the graph Km,n×Pr, then

4=


m+1 for m>n and r = 2
m+2 for m>n and r > 2
m+1 for m = n and r = 2
m+2 for m = n and r > 2

(1)

Lemma 2.2. Let4 be the degree of the graph Km,n×Cr, then

4=

{
m+2 for m>n
n+2 for n>m

(2)

Lemma 2.3. If H is a sub graph of G, then λ3,2,1(H)≤ λ3,2,1(G).

Theorem 2.1. For any complete bipartite graph λ3,2,1(Km,n) = 2(m+n).

Theorem 2.2. [7] For any cycle, Cn with n > 3,

λ3,2,1(Cn) =


7, if n = 3;
8, if n is even;
9, if n is odd and n 6= 3,7;
10, if n = 7.

(3)

Lemma 2.4. [7] For cycle with length 4, λ3,2,1(C4) = 8.

Lemma 2.5. [7] For cycle with length 5, λ3,2,1(C5) = 9.

Lemma 2.6. [7] For cycle with length 6, λ3,2,1(C6) = 8.

Lemma 2.7. [7] For cycle with length 7, λ3,2,1(C7) = 10.

Theorem 2.3. [8] If G is a graph with maximum degree4, λ3,2,1(G) =43 +24.

3 L(3,2,1)−Labeling
In introduction section we discussed about various types of labeling of trivial graphs, intersection graphs
and Cartesian product of some graphs with their bounds λ3,2,1(G) in the form of4 and number of ver-
texes. In this section we discussed about the L(3,2,1) labeling of Cartesian product between complete
bipartite graph with path and Cartesian product between complete bipartite graph with cycle. We have
developed two suitable algorithms for L(3,2,1) labeling of the above said graphs. For each algorithm,
we analyzed the algorithm along with correctness of proof followed by illustration.
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3.1 Algorithm L321P

To label the path Pr of length r with the vertexes v1,v2, ...,vr by L(3,2,1) labeling we consider one array
V [r] to store the labeling value. For r = 1, f (v1) = 1 and r = 2, f (v1) = 1 and f (v2) = 4. The technique
of L(3,2,1) labeling of path Pr for r > 2 are given below.

Algorithm 1 L(3,2,1)-Labeling of Path (L321P)

1: Input: G = Pr.
2: Output: Labelled graph G = Pr.
3: Initialization: Array V[r].
4: loop i = 1 to r
5: if i−1 is divisible by 8 then
6: V [i] = 3.
7: end if
8: if i−2 is divisible by 8 then
9: V [i] = 6.

10: end if
11: if i−3 is divisible by 8 then
12: V [i] = 1.
13: end if
14: if i−4 is divisible by 8 then
15: V [i] = 4.
16: end if
17: if i−5 is divisible by 8 then
18: V [i] = 7.
19: end if
20: if i−6 is divisible by 8 then
21: V [i] = 2.
22: end if
23: if i−7 is divisible by 8 then
24: V [i] = 5.
25: end if
26: if i−8 is divisible by 8 then
27: V [i] = 8.
28: end if
29: end loop

3.2 L(3,2,1)−Labeling of G = Km,n×Pr

To develop the algorithm 2 of L(3,2,1) labeling of G = Km,n×Pr we consider an array Parr[k] to store
the L(3,2,1) labeling of path Pr formed by the first vertex of set X for each copy of Km,n. We introduced
arrays Xk[i] and Yk[ j] for each copy of Km,n for i = 1,2,3, ...,m, j = 1,2,3, ...,n and k = 1,2,3, ...,r.
According to the figure ?? we consider the path formed by the array elements Xk[0], k = 1,2,3, ...,r,
which is the first vertex of set X for each copy of Km,n. We also introduced the variables maxX and
maxY initializes with the value (2m− 1) and 2(m + n) respectively and initializes Xk−1[1] = 0 and
Yk−1[1] = (maxX +2). We call the algorithm L321P before start labeling the graph G = Km,n×Pr.

Correctness of L321CP is given below
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Algorithm 2 L(3,2,1) labeling of the graph G = Km,n×Pr (L321CP)

1: Input: Graph G = Km,n×Pr.
2: Output: L(3,2,1)−Labelled graph G = Km,n×Pr.
3: Initialization: maxX← (2m−1), maxY← 2(m+n), Xk−1[1]← 0, Yk−1[1]← (maxX +2).
4: Parr[k]= Call algorithm L321P.
5: loop k = 1 to r
6: p = Parr[k].
7: loop i = 1 to m
8: if p≥ maxX then
9: if p is divisible by 2 then

10: p = 0.
11: else p = 1.
12: end if
13: end if
14: Xk[i] = p.
15: p = p+2.
16: end loop
17: if p is divisible by 2 then
18: maxX = 2(m−1).
19: elsemaxX = 2m−1.
20: end if
21: q = Yk−1[1]+ (Xk[1]−X(k−1)[1]).
22: loop j = 1 to n
23: Yk[ j] = q.
24: q = q+2.
25: if q > maxY then
26: q = maxX +3.
27: end if
28: end loop
29: end loop

Theorem 3.1. Algorithm L321CP exactly label the graph G = (Km,n×Pr).

Proof. From theorem 2.1 it is clear that λ3,2,1(Km,n) = 2(m+n). We have considered the graph obtained
by the Cartesian product between complete bipartite graph and path and we get the graph G = (Km,n×
Pr), it is obvious that the graph G = Km,n×Pr have r copies of Km,n. We have taken two arrays X and
Y for each copy of Km,n to store the label. We have considered the array Parray to label the path formed
by the each first vertex of set X in the graph G = (Km,n×Pr). We have also taken variables maxX and
maxY to store the maximum label for the vertex set X and vertex set Y respectively and p to store the
value from the array Parray. In the array Parray[r], first element is the label for the first vertex of vertex
set X for first copy of Km,n i.e X1[1] = Parray[1], second element is the label for the first vertex of vertex
set X for second copy of Km,n i.e X2[1] = Parray[2], similarly rth element is the label for the first vertex
of vertex set X for rth copy of Km,n i.e Xr[1] = Parray[r]. Now we fetch the first element of the array
Parray[r] and start labeling the first copy of Km,n according to algorithm 2 by increasing the label by 2 as
all the vertexes in the set X are at distance two. Then fetch the second element from the array Parray and
start labeling the second copy of Km,n. When label of vertex set Xk[i] reaches maxX and p is even then
we assign the label p = 0 and for odd value of p we assign the label p = 1. Similarly when vertex set
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Y reaches maxY then we assign the label q = maxX + 3. Similarly we can repeat the remaining steps.
We can get the labeling for the graph G = (Km,n×Pr) = 2(m+ n) which is equal to L(3,2,1) labeling
of Km,n i.e λ3,2,1(Km,n) = λ3,2,1(Km,n×Pr) = 2(m+n).

3.2.1 Time Complexity Analysis of Algorithm L321CP:

According to the algorithm L321CP, first loop will work for the path length r then for each encounter
next two serial inner loop will run for m times and n times to label each complete bipartite graph Km,n.
So, to exact label the whole graph that obtained by doing Cartesian product between complete bipartite
graph and path is either O(mr) or O(nr) depending on the value of m and n.

3.2.2 L(3,2,1) labeling of Cartesian Product Between Complete Bipartite Graph and Path Sat-
isfies Theorem 2.3

Theorem 3.2. Algorithm L321CP satisfies the theorem 2.3.
Case:1 For m>n and r = 2

Proof. For the graph G = (Km,n×Pr) it is shown in the lemma 2.1 that maximum degree is4= m+1.
From the theorem 3.1 we got that λ3,2,1(Km,n×Pr) = 2(m+n). As we know

43 +24= (m+1)3 +2(m+1) > (m+1)2

> m2 +2m as m,n > 0
≥ 2n+2m as m>n so m2 ≥ 2n

≥ 2(m+n).

Hence the proof.

Case:2 For m>n and r > 2

Proof. For the graph G = (Km,n×Pr) it is shown in the lemma 2.1 that maximum degree is4= m+2.
From the theorem 3.1 we got that λ3,2,1(Km,n×Pr) = 2(m+n). As we know

43 +24= (m+2)3 +2(m+2) > (m+2)2

> m2 +2m as m,n > 0
≥ 2n+2m as m>n so m2 ≥ 2n

≥ 2(m+n).

Hence the proof.

Case:3 For m = n and r = 2

Proof. For the graph G = (Km,n×Pr) it is shown in the lemma 2.1 that maximum degree is4= m+1.
From the theorem 3.1 we got that λ3,2,1(Km,n×Pr) = 2(m+n). As we know

43 +24= (m+1)3 +2(m+1) > (m+1)2

> m2 +2m as m,n > 0
≥ 2n+2m as m = n so m2 ≥ 2n

≥ 2(m+n).

Hence the proof.

116



Efficient Algorithm For L(3,2,1) and . . . Between Some Graphs Ghosh, Podge, Debnath and Pal

Case:4 For m = n and r > 2

Proof. For the graph G = (Km,n×Pr) it is shown in the lemma 2.1 that maximum degree is4= m+2.
From the theorem 3.1 we got that λ3,2,1(Km,n×Pr) = 2(m+n). As we know

43 +24= (m+2)3 +2(m+2) > (m+2)2

> m2 +2m as m,n > 0
≥ 2n+2m as m = n so m2 ≥ 2n

≥ 2(m+n).

Hence the proof.

Theorem 3.3. For any sub-graph S of the graph G = (Km,n×Pr), λ3,2,1(S)≤ 2(m+n).

Proof. We got the span of the graph G = (Km,n×Pr) is λ3,2,1(Km,n×Pr) = 2(m+n). As S be the sub-
graph of G, so according to lemma2.3 we can conclude that λ3,2,1(S)≤ 2(m+n). Hence the proof.

3.3 L(3,2,1)−Labeling of G = Km,n×Cr

To develop the algorithm 2 of L(3,2,1) labeling of G=Km,n×Cr we consider an array Carr[k] to store the
L(3,2,1) labeling of cycle Cr form by the first vertex set X for each copy of Km,n. We introduced arrays
Xk[i] and Yk[ j] for each copy of Km,n for i = 1,2,3, ...,m, j = 1,2,3, ...,n and k = 1,2,3, ...,r. According
to the figure ?? we consider the cycle formed by the array elements Xk[0], k = 1,2,3, ...,r, which is the
first vertex set X for each copy of Km,n. We also introduced the variables maxX and maxY initializes
with the value (2m−1) and 2(m+n) respectively and initializes Xk−1[1] = 0 and Yk−1[1] = (maxX +2).
From the theorem 2.2 we insert label in the array Carray[k] before start labeling the graph G = Km,n×Cr.

Correctness of L321CC is given below

Theorem 3.4. Algorithm L321CC exactly label the graph G = (Km,n×Cr).

Proof. From theorem 2.1 it is clear that λ3,2,1(Km,n) = 2(m+n). We have considered the graph obtained
by the Cartesian product between complete bipartite graph and cycle and we get the graph G = (Km,n×
Cr), it is obvious that the graph G = Km,n×Cr have r copies of Km,n. We have taken two arrays X and
Y for each copy of Km,n to store the label. We have considered the array Carray to label the path formed
by the first vertex of set X in the graph G = (Km,n×Cr). We also have taken variables maxX and maxY
to store the maximum label for the vertex set X and vertex set Y respectively and p to store the value
from the array Carray. In the array Carray[r], first element is the label for the first vertex of vertex set
X for first copy of Km,n i.e X1[1] = Carray[1], second element is the label for the first vertex of vertex
set X for second copy of Km,n i.e X2[1] =Carray[2], similarly rth element is the label for the first vertex
of vertex set X for rth copy of Km,n i.e Xr[1] = Carray[r]. Now we fetch the first element of the array
Carray[r] and start labeling the first copy of Km,n according to algorithm 3 by increasing the label by 2
as all the vertexes in the set X are at distance two. Then fetch the second element from the array Carray
and start labeling the second copy of Km,n similarly. When label for vertex set X reached maxX and p is
even, then we assign the label p = 0 and for odd value of p we assign the label p = 1. Similarly when
vertex set Y reached maxY then we assign the label q = maxX +3. Similarly we can follow remaining
steps. We can obtain the labeling for the graph G = (Km,n×Cr) = 2(m+n) which is equal to L(3,2,1)
labeling of Km,n i.e λ3,2,1(Km,n) = λ3,2,1(Km,n×Cr) = 2(m+n).
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Algorithm 3 L(3,2,1) labeling of the graph G = Km,n×Cr (L321CC)

1: Input: Graph G = Km,n×Cr.
2: Output: L(3,2,1)−Labelled graph G = Km,n×Cr.
3: Initialization: maxX← (2m−1), maxY← 2(m+n), Xk−1[1]← 0, Yk−1[1]← (maxX +2).
4: Carr[k]= L(3,2,1) labeling of cycle by using the theorem 2.2.
5: loop k = 1 to r
6: p =Carr[k].
7: loop i = 1 to m
8: if p≥ maxX then
9: if p is divisible by 2 then

10: p = 0.
11: else p = 1.
12: end if
13: end if
14: Xk[i] = p.
15: p = p+2.
16: end loop
17: if p is divisible by 2 then
18: maxX = 2(m−1).
19: elsemaxX = 2m−1.
20: end if
21: q = Yk−1[1]+ (Xk[1]−X(k−1)[1]).
22: loop j = 1 to n
23: Yk[ j] = q.
24: q = q+2.
25: if q > maxY then
26: q = maxX +3.
27: end if
28: end loop
29: end loop

3.3.1 Time Complexity of Algorithm L321CC:

According to the algorithm L321CC, first loop will work for the path length r then for each encounter
next two serial inner loop will run for m times and n times to label each complete bipartite graph Km,n.
So, to exact label the whole graph that obtained by doing Cartesian product between complete bipartite
graph and path is either O(mr) or O(nr) depending on the value of m and n.

3.3.2 L(3,2,1) labeling of Cartesian Product Between Complete Bipartite Graph and Cycle Sat-
isfies Theorem 2.3

Theorem 3.5. Algorithm L321CC satisfy the theorem 2.3.
Case:1 For m>n and for any length of cycle

Proof. For the graph G = (Km,n×Cr) it is shown in the lemma 2.2 that maximum degree is4= m+2.
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From the theorem 3.1 we got that λ3,2,1(Km,n×Cr) = 2(m+n). As we know

43 +24= (m+2)3 +2(m+2) > (m+2)2

> m2 +2m as m,n > 0
≥ 2n+2m as m>n so m2 ≥ 2n

≥ 2(m+n).

Hence the proof.

Case:2 For n>m and for any length of cycle

Proof. For the graph G = (Km,n×Cr) it is shown in the lemma 2.2 that maximum degree is4= n+2.
From the theorem 3.1 we got that λ3,2,1(Km,n×Cr) = 2(m+n). As we know

43 +24= (n+2)3 +2(n+2) > (n+2)2

> n2 +2n as m,n > 0
≥ 2m+2n as n>m so n2 ≥ 2m

≥ 2(m+n).

Hence the proof.

Theorem 3.6. For any sub-graph H of the graph G = (Km,n×Cr), λ3,2,1(H)≤ 2(m+n).

Proof. As we have the span of the graph G = (Km,n×Cr) is λ3,2,1(Km,n×Cr) = 2(m+n). We consider
the graph H, where H ∈ subgraph(G) that means H is one of the sub-graph from the sub-graph set of
G, so according to lemma2.3 we can conclude that λ3,2,1(H)≤ 2(m+n).
Hence the proof.

4 Conclusion
To reduce noise in the form of interference we use L(3,2,1) labeling and apply it to the graph Cartesian
product between complete bipartite graph with path and cycle. We developed two efficient algorithms
with quadratic time complexity to achieved the labeling which is equal to the L(3,2,1) labeling of the
graph G = Km,n i.e λ3,2,1(Km,n×Cr) = λ3,2,1(Km,n×Pr) = λ3,2,1(Km,n) = 2(m+ n). We also analyzed
both the algorithms with suitable examples. In future we are thinking to explore L(4,3,2,1) labeling on
some complex structure of graph.
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