
Towards Automated Property Discovery within

Hume

Gudmund Grov and Andrew Ireland

Heriot-Watt University (G.Grov@hw.ac.uk, A.Ireland@hw.ac.uk)

Abstract

Hume is a Turing-complete programming language, designed to guarantee space and
time bounds whilst still working on a high-level. Formal properties of Hume programs, such
as invariants and transformations, have previously been verified using the temporal logic
of actions (TLA). TLA properties are verified in an inductive way, which often requires
lemma discovery or generalisations. Rippling was developed for guiding inductive proofs,
and supports lemmas and generalisation discovery through proof critics. In this paper we
show how rippling and proof critics can be used in the verification of Hume invariants
represented in TLA. Our approach is based on existing work on the problem of verifying
and discovering loop invariants for an imperative program. We then extend this work to
Hume program transformations.

1 Introduction

In [32], Storey identifies complexity of definitions, expressive power, bounded space and time,
logical soundness, security and verifiability as the key features for a programming language
targeting safety-critical systems. No language supports all of them, and several of them are
conflicting: for example, many time and space properties are undecidable for Turing-complete
languages, and low-level languages, where this is decidable, often have a high complexity.

Hume [19] is a novel Turing-complete programming language designed to reduce the com-
plexity of definition, whilst guaranteeing bounds on space and time usage, both key features
in Storey’s list. This is achieved by a layered architecture: a low-level, concurrent, finite state
automata language, termed the coordination layer, is built on top of a high-level (Turing-
complete) strict functional language, termed the expression layer. Programming then involves
balancing between the two layers, and due to failed costing, this often requires transformations
from the expression layer into the coordination layer. Hence, resource costing and program
transformations are at the heart of the Hume development methodology.

The time and space analysis is well developed for Hume, as described in e.g. [17]. Correctness
verification, which is also found on Storey’s list, has previously been applied to Hume programs
in the temporal logic of actions (TLA)[28].This work appears in [13], and can handle both
invariants of the coordination layer, and verification of program transformations, which can be
reduced to an invariant proof [16]. The proof of an invariant often requires the discovery of
auxiliary invariants1. In [13], several Isabelle/HOL [31] tactics are given for reasoning about
Hume programs within TLA. While a high degree of proof automation was achieved, a key
missing ingredient is invariant discovery. Here, we build upon rippling [8], a search control
technique designed for reasoning about inductive conjectures. In particular, we focus on proof
critics [22] for rippling, which, can be used to guide the discovery of inductive invariants.
Previously, these ideas have been applied to the verification and discovery of loop invariants
for imperative programs [25, 24]. In this paper we will show how this work can be applied to

1This is also the case for a generic TLA invariant, as discussed in [12].

A. Voronkov, L. Kovacs, N. Bjorner (eds.), WING 2010 (EPiC Series, vol. 1), pp. 111–127 111

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

Hume/TLA, and then extend it to program transformation verification. We also believe that
this work is not limited to Hume, but applicable to generic Hume specification, which we will
elaborate upon in §7.

The paper is structured as follows: we will first introduce the preliminaries in §2; this is
followed by a discussion on the use of rippling to verify Hume invariants in §3; and proof critics
to discover loop invariants in §4; this work is then extended to Hume program transformations
in §5; before we discuss relevant work (§6); future work (§7); and conclude in §8.

2 Preliminaries

2.1 The temporal logic of actions (TLA)

The temporal logic of actions (TLA) [28] was developed to reason about concurrent systems,
and combines temporal logic with actions. It is a uniform logic that can capture both safety
and liveness requirements, however we will only discuss the safety aspect here. It is a three-tier
logic where:

- in the state level, a state function/predicate is a function/predicate on one particular state,
where a state is mapping from variables to values;

- in the action level, an action is a predicate on two states: a “before” and “result” state
of the action;

- in the temporal level, a formula is a predicate on an infinite sequence of states.

All levels include a full predicate calculus. Additionally, the action level has a priming (’)
operator to separate variables in the “result” state (primed) from those of the “before” state.
For example, x′ = x + 1 is the computation that increments x by 1. At this level, “before”
variable v and its “result” counterpart v′, are distinct. The temporal level has two additional
operators: 2P , which denotes P holds iff it holds for all following states of the sequence; and
the ∃∃∃∃∃∃∃∃ operator, for (temporal) existential quantification. ∃∃∃∃∃∃∃∃ is used to hide variables internal for
a specification. To show that a property holds for a program, we must show that the program
implements the property. In TLA, both programs and properties are specified in the same logic,
hence this is formalised as logical implication.

TLA allows specifications to be written at different levels of abstraction. The key to proving
such refinements between abstract and concrete representations, is to allow stuttering steps,
i.e. steps that leave the state unchanged. These steps are seen as internal steps within a
specification. To define a (monolithic2) program we must specify an initial state I, and an
action N , representing the transitions. N is a predicate which compares a “result” and a
“before state”. The action must hold throughout execution, i.e. 2N . However, this does not
support stuttering steps. Let 〈v, i〉 be the tuple of all visible variables v, and internal variables
i of the program. We refine 2N to 2(N ∨ 〈v, i〉′ = 〈v, i〉), which asserts that in all transitions
either N holds, or the state is left unchanged. This supports stuttering, and is abbreviated by
2[N]〈v,i〉. We will use monolithic specifications of our programs. Such specifications, with the
internal variables hidden, are written:

∃∃∃∃∃∃∃∃ i : I ∧2[N]〈v,i〉. (1)

2A detailed explanation of a monolithic TLA specification can be found in [29].

112

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

| |

(i) 2(a ∗ b = inp1 ∗ inp2)
(ii) 2(r + (x ∗ y) = inp1 ∗ inp2)

(iii) 2(o = inp1 ∗ inp2)
(iv) 2(out = inp1 ∗ inp2)

Figure 1: Hume multiplication as iteration.| |

| |
mult: inp1 := w1; inp2 := w2;

{ True }
a := inp1; b := inp2;
r := 0; x := a; y := b;
while (y 6= 0)
begin

r := r + x; y := y − 1;
end
o := r;
out := o;

{out = inp1 ∗ inp2 }

Figure 2: Imperative multiplication as iteration.| |

To ease reasoning, TLA requires that N must always specify the complete “result” state. Thus,
unchanged variables must be explicitly stated. In a monolithic specification the subscript, i.e.
〈v, i〉, should therefore hold all the variables. Although ∃∃∃∃∃∃∃∃ is semantically different from ∃,
the proof rules are similar. For the work presented here for Hume, we can ignore ∃∃∃∃∃∃∃∃ since our
Hume invariants are independent of the ∃∃∃∃∃∃∃∃ -bound variables. Moreover, in a transformation
proof the witness for i will always be the same. Thus, to ease the reading, we will a assume
TLA specifications of the form:

I ∧2[N]v. (2)

113

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

2.2 Hierarchical Hume

The Hume coordination layer describes a system as concurrent boxes linked by wires. Boxes are
scheduled in a cyclical way, where each runnable box is executed in each step, and this process
never terminates. In this paper we will use the Hierarchical Hume [14, 16] extension to Hume,
which allows nesting of boxes inside another box. Now, a box consists of a set of matches of
the form

pattern -> expression

where pattern is matched against the box’s input wires. In a non-nesting box, a match will
cause the expression, which belongs to the expression layer, to generate output to the output
wires. In a nesting box, a match will copy the inputs into external input wires, and schedule
the children boxes until the termination condition, defined by the expression is met. Then
the internal output wires are copied to the output wires. If a pattern fails, the next match is
attempted.

Hume boxes are scheduled in a two-phase lock step scheduling algorithm, where each step
works as follows3:

- each box is executed and output is produced in a result buffer (e.g. out of the mult box
of Figure 1) in the execute phase;

- this is followed by a uniform super-step where outputs are asserted to the wires.

For a nesting box, this scheduler is nested, i.e. the children of the nesting box are scheduled
similarly, until termination. To ease the reading, and enable focus on the key issues, we will
abstract over this scheduling for the boxes that are nested. Moreover, these boxes are assumed
to not be nesting, i.e. we assume a box hierarchy of two levels. Here, box execution and
output assertion in one uniform step. By way of illustration, we present in Figure 1 an iterative
implementation of a multiplier in Hume. Note that an equivalent imperative program is shown
in Figure 2. Figure 1 graphically illustrates the uniform scheduling step. Here, the nested
itermult box does not contain an output buffer, whilst out is the output buffer of the first
level (nesting) mult box. Note that for our proofs below, the nesting mult box requires a lower
abstraction level, containing both an input and an output buffer, as well as the two phase
scheduling.

The mult box of Figure 1 performs multiplication by iteration. This is accomplished by the
nested itermult box, which multiplies the inputs by iterative addition and is achieved by the
feedback loop wires r,x and y. Note that the result is produced in one first-level step, even
though many internal mult steps may be required.

Figure 2 describes the same program in an arbitrary imperative language, with the correct-
ness condition annotated by Hoare triples [20]: {P}c{Q} denotes that if P holds and statement
c terminates, then Q holds. The Hume program then works as follows. If the wires w1 and w2
contains a value, then these are copied to the input buffer inp1 and inp2, and to the internal
wires a and b; the internal itermult box is then scheduled until the o wire has got a value,
which on termination is copied to the output buffer out (and output wire w3). The first match
of the itermult box then succeeds, which copies the a and b wires to the x and y wires, while
r is set to 0. This is the “entry step” of the loop. In Hume, * means ‘ignore’ in a pattern, and
‘do not write’ in an expression. The third match is the “loop step” of the imperative program,
and will fire when the x, y and r wires contain values and y 6= 0. It increments r by y, leaves
x unchanged, and decrement y by 1. The second match is the ‘exit step’ of the loop where the

3See for example [15] for details.

114

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

result of the tail-iteration r of the “loop steps” is copied to the o wire, and the termination
condition of mult then holds, thus copying o to out.

2.3 Proof planning & rippling

| |
Input sequent:

H ` G[f1(c1(. . .)
↑
, f2(b. . .c), f3(c2(. . .)

↑
))]

Method preconditions:

1. there exists a subterm T of G which contains wave-front(s), e.g.

f1(c1(. . .)
↑
, f2(b. . .c), f3(c2(. . .)

↑
))

2. there exists a wave-rule which matches T , e.g.

C → f1(c1(X)
↑
, Y, Z)⇒ c5(f1(X, c3(Y)

↓
, c4(Z)

↓
))

↑

3. the wave-rule condition follows from the context, e.g.

H ` C

4. resulting inward directed wave-fronts are potentially removable, e.g. sinkable or can-
cellable, i.e.

. . . c3(f2(b. . .c))
↓
. . .

or

. . . c4(f3(c2(. . .)
↑

))

↓

. . .

Output sequent:

H ` G[c5(f1(. . . , c3(f2(b. . .c))
↓
, c4(f3(c2(. . .)

↑
))

↓

))

↑

]

Figure 3: The rippling method.| |

Proof planning is a technique for automating proof search. Central to the technique is
the notion of a proof plan [6], a high-level proof outline which encodes a common pattern of
reasoning. We will focus here on a proof plan called rippling. Rippling is a rewriting technique
based upon a difference reduction strategy. To illustrate, consider a conjecture where you are

115

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

given a hypothesis of the form (∀b′. f(a, b′)) while the goal takes the form f(c1(a), b). Note
that the c1(. . .) embedded within the goal prevents a match with the given hypothesis. In
rippling, such embedded structures are called wave-fronts. The goal of rippling is to identify
and reduce the number of wave-fronts such that a hypothesis can be applied. Wave-fronts
can be represented using explicit annotations that are added to the goal. For example, using
shading to denote wave-fronts, the goal given above becomes:

f(c1(a)
↑
, bbc)

In addition to the shading, note that a wave-front is annotated with an arrow. The arrow
indicates which direction the wave-front can be moved, i.e. upward or downward through the
goal structure. There are two reasons for moving a wave-front downward. Firstly, if a wave-
front can be moved to a position corresponding to a universally quantified variable within the
given hypothesis, then the wave-front can be eliminated via the specialisation of the universal
hypothesis. This is known as sinking a wave-front, and the b. . .c annotation within the goal
is used to indicate sink positions. Secondly, multiple wave-fronts can sometimes cancel each
other out, a kind of destructive interference. So moving wave-fronts closer together can also
make sense. The manipulation of wave-fronts is achieved via so called wave-rules. A wave-rule
is a rewrite rule that has been annotated by wave-fronts. A key property of wave-rules is that
they preserve the unannotated structure of the goal, the so called skeleton. Preserving skeleton
maximises the chances of eventually applying the given hypothesis. In the schematic example
given above, the following represents an applicable wave-rule:

f(c1(X)
↑
, Y)⇒ c2(f(X, c3(Y)

↓
))

↑

Note that ⇒ represents a rewrite, while → is used for logical implication. In general a proof
plan contains methods and critics [21]. Rippling is represented by a single method as given in
Figure 3. While methods represent common patterns of reasoning, critics are used to define
patchable exceptions. When a method fails, its associated critics analyse the proof-failure and
initiate a proof patch [21, 22, 23]. Typically the proof patching process makes use of meta-
variables as place-holders for missing structure with the expectation that the constraints of the
proof will provide instantiations during the planning of the remainder of the proof. This style
of patching a proof is known as middle-out reasoning [7]. An example of a proof patch which
exploits rippling and middle-out reasoning will be given in §4. For a complete description of
rippling see [8].

3 Invariant verification

In [24], rippling was used to verify Hoare-triple properties as illustrated in Figure 2. To verify a
Hoare-triple, it is converted into a verification condition (VC), a purely logical statement, by a
verification condition generator (VCG). The VC is then verified by a theorem prover. However,
before this can be done each statement must be turned into a Hoare-triple. This is mostly
an automatic process, however finding and verifying an invariant which holds for the while
loop, known as the loop invariant, is the hardest part. Thus, we will only focus on the loop
invariant here. In the case of Figure 2, we use an invariant of the form r+ (x ∗ y) = inp1 ∗ inp2.
In the proof, the invariant is assumed beforehand, and this assumption is called the invariant
hypothesis (IH)

IH : r + (x ∗ y) = inp1 ∗ inp2. (3)

116

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

Using the assumption, it is shown to hold after the loop has executed. By using wave-annotation,

this goal is expressed as (r + x)
↑

+ (x ∗ (y − 1)
↑

) = inp1 ∗ inp2. The proof requires the

following wave-rules:

(X + Y)
↑

+ Z ⇒ X + (Y + Z)
↓

(4)

X ∗ (Y − 1)
↑
⇒ (X ∗ Y)−X

↑
(5)

(X + Y −X
↑

)

↓

⇒ Y, (6)

and is derived as follows:

(r + x)
↑

+ (x ∗ (y − 1)
↑

) = inp1 ∗ inp2 [apply (4)]

r + (x+ (x ∗ (y − 1)
↑

))

↓

= inp1 ∗ inp2 [apply (5)]

r + (x+ ((x ∗ y) − x
↑

))

↓

= inp1 ∗ inp2 [apply (6)]

r + (x ∗ y) = inp1 ∗ inp2 [apply IH]

Hoare logic was developed for sequential programs, and cannot be be applied directly to
Hume programs due to issues of concurrency. Moreover, note that although Hume has a finite
state machine architecture, model checking [10] is not in general suitable for program verifica-
tion, due to a strong dependency with the data-centric expression layer, as described in [14].
However, it is applicable for small subsets of Hume, as described in [18], using the TLC model
checker for the TLA+ [29].

In TLA, programs and properties are represented in the same uniform logic: a property P
holds for a program S, if S implements P , and implementation is represented as logic implica-
tion:

` S → P.

TLA always attempts to reduce temporal properties to the action level. This is illustrated by
the derived induction rule for proving invariants of specification as shown in (2):

` I → P ` P ∧ V ′ = V → P ′ ` P ∧N → P ′

` I ∧2[N]V → 2P
. (7)

The first sub-goal (assumption) is the base case, which states that P holds in the initial state
I. The second case captures that the sub-script of the action V , at least contains the free
variables of P , which is required for stuttering invariance. The last case, ` P ∧N → P ′ states
that P is preserved by action N . Here, P ′ means that P is a predicate over the result state of
N . We will only discuss the action level here since the temporal level proofs are trivial for our
examples. Moreover, the first two sub-goals are normally trivial, thus we will only discuss the
main sub-goal, i.e. ` P ∧N → P ′.

The partial correctness property of the mult box, is given by (iv) in Figure 1, which corre-
sponds to the Hoare triples for the imperative program of Figure 2. As in the imperative case
of Figure 2, the main part of the overall proof is the loop invariant. This corresponds to (ii) of
Figure 1. The proof of the loop invariant depends on (i), the “loop entry” step. The invariant

117

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

follows directly from the Hume semantics, while the partial correctness property (iv) follows
directly from (iii), where (iii) is the “loop exist” step. (iii) can also be proven directly, using
the loop invariant (ii). As in the imperative case, we will only discuss the loop invariant (ii)
henceforth.

The last match of itermult corresponds to the while loop in the imperative program. Since
the match expression is the result of executing a Hume box, it refers to the primed result state
of an action. Let JCK be the semantics of a Hume construct C represented in TLA4. Due to the
wiring, graphically illustrated in Figure 1, the annotated result of J(*,r-x,x,y-1)K is represented
as:

r′ = (r + x)
↑

x′ = x y′ = (y − 1)
↑

inp′
1 = inp1 inp′

2 = inp2.
(8)

The “loop invariant” in TLA is the same as in the imperative program, and the IH for the
invariant proof is also the same (IH: r+ (x ∗ y) = inp1 ∗ inp2). The ripple proof derivation starts
of as

r′ + (x′ ∗ y′) = inp′
1 ∗ inp′

2 [apply (8)]

(r + x)
↑

+ (x ∗ (y − 1)
↑

) = inp1 ∗ inp2 [· · ·]

and the remaining proof is identical to the imperative program. Note, that the annotation step
shown here, is handled by the verification condition generator (VCG) in the imperative version.

4 Loop invariant discovery

The hardest part of Hoare-triple proofs, is the undecdable tasks of finding a strong enough loop
invariant, like (3). [24] contains novel work, where proof critics [22] are used to explore partial
ripple successes to discover a strong enough loop invariant. Firstly, both a while loop and a
Hume feedback loop, as in Figure 1, require a tail-invariant, and the proof critic thus provides
a tail-invariant patch. We will now apply the work described in [24] to discover the Hume
“feedback loop invariant”, required for the proof in the previous section. The post-condition
for the property is out = inp1 ∗ inp2, which is updated as follows: out′ = o and o′ = r. Thus,
an obvious first approximation of the loop invariant becomes:

IH : r = inp1 ∗ inp2.

By the TLA “induction rule” (7), and (8), the proof of the “loop action” blocks when attempting
to ripple

r + x
↑︸ ︷︷ ︸

blocked

= inp1 ∗ inp2.

A proof is blocked when there are no applicable wave rules, hence rippling is not possible.
However, the precondition of the tail-invariant proof critic succeeds, as illustrated in Figure 4.
That is, a partial match between the blocked wave front and the available wave rules suggests
a schematic invariant of the form

F1(r, x, y) = inp1 ∗ inp2, (9)

4The Hume to TLA translation is not the topic here, and has thus been omitted. However, note that his is
an operational representation of the Hume semantics, and in the translated TLA, we will use italic font instead
of sans serif. Please see [13, 15, 18] for details of the TLA representation of Hume programs.

118

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

| |
Blockage:

r + x
↑

= inp1 ∗ inp2

Critic precondition:

• Precondition 1 of rippling succeeds, i.e.
1. there is a subterm T of G which contains a wave-front(s), e.g.

r + x
↑

• Precondition 2 of rippling partially succeeds, i.e.
2. there exists a wave-rule which partially matches, e.g.

r + x
↑

with (X + Y)
↑

+ Z ⇒ . . .

Proof patch:
Speculate additional term structure within the conjecture such that preconditions 2, 3 and 4
will also potentially succeed, i.e.

F1(r + x
↑
, x, y − 1

↑
) = inp1 ∗ inp2,

where F1 is a higher-order meta-variable.

Figure 4: A tail-invariant proof critic instantiation.| |

where F1 is a second-order meta-variable. The expectation is that F1 will be instantiated
during the course of a rippling proof. The primed variables in F1(r′, x′, y′) = inp′

1 ∗ inp′
2 are

first rewritten using (8)

F1(r + x
↑
, x, y − 1

↑
) = inp1 ∗ inp2.

By wave-rule (4), a new meta-variable F2 is introduced by instantiating F1 to λX.λY.λZ.X +
F2(X,Y, Z). Application of (4) then derives

r + x+ F2(r + x
↑
, x, y − 1

↑
)

↓

= inp1 ∗ inp2.

Here, wave rule (5) suggests an instantiation for F2, i.e. λX.λY.λZ.F3(X,Y, Z)∗ (Z−1), which
gives

r + x + F3(r + x
↑
, x, y − 1

↑
) ∗ y − F3(r + x

↑
, x, y − 1

↑
)

↑
↓

.

Finally, wave rule (6) suggest that F3 is instantiated to λX.λY.λZ.Y , resulting in the following
invariant:

r + (x ∗ y) = inp1 ∗ inp2.

119

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

| |

Figure 5: Box multiplication as recursion to iteration transformation| |

Note, the invariant is identical to the invariant in §3, and the proof structure is the same.

5 Hume program transformations

To formalise the relationship between expressiveness/high-levelness and resource bounds, Hume
introduces a set of levels, where each downward-level restricts expressiveness and thus increases
the set of decidable resource properties. Now, the Hume methodology is based around decid-
ability analysis, which explores the different Hume levels: a high-level and expressive program
is first created and resource costing is attempted; if it succeeds we are done; if it fails, the prob-
lem is identified and resource bounds are either altered, or the violating program constructs
are transformed to a lower level and costing is reapplied. This process is iterative until costing
succeeds. In the previous two sections, we showed how rippling and proof critics, used to verify
imperative programs, can be applied to verify and discover Hume invariants using TLA. We
will now show how this work can be extended to verify Hume transformations, a key concept
of the Hume methodology.

Figure 5 shows the translation from a high-level Hume box, emult, which performs multi-
plication by primitive recursive addition, into the mult box previously discussed. In emult the
addition is achieved by the fmult function:

fmult r _ 0 = r;

fmult r x y = fmult (r+x) x (y-1);

This emult box is in the PR-Hume level, where resource properties are undecidable. The mult

box from Figure 1 on the other hand, is in the FSM-Hume level, which guarantees strong re-
source bounds. A typical Hume transformation, transforms a “recursive box”, such as emult,
into a more costable “iterative box”, such as mult. Such a transformation is graphically illus-
trated in Figure 6, for an arbitrary program prog1 containing emult. Note that

fmult 0 x y = x ∗ y

120

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

| |

Figure 6: Program transformation example.| |

This is verified by first generalising it to ∀r, x. fmult r x y = r + (x ∗ y), which is then verified
by induction on y. This proof has been mechanised in Isabelle/HOL, and is given in [13].

5.1 Transformation verification

In TLA, a transformation is represented as a refinement : a Hume program P1 transforms into
a Hume program P2, which we write P1 ; P2, iff P2 implements P1. Programs and properties
are represented in the same logic, hence this is represented as a logical implication:

P1 ; P2 ≡ JP2K→ JP1K (10)

Both JP2K and JP1K are assumed to be of form shown in (2). P1 ; P2 is then verified by the
following derived TLA proof rule:

` J → I `W ′ = W → V ′ = V `M → [N]V
` J ∧2[M]W → I ∧2[N]V

. (11)

If the two first givens are indeed theorems, then they are normally trivial to verify. The main
part is the proof of `M → [N]V which asserts that a step in the transformed program is either
a step of the original source program, or all variables are left unchanged. Note, that as in (7),
the rule (11) reduces the temporal level to the action level.

Let correct nesting of a box-to-box transformation denote that the inputs and outputs are
the same, and any computation on wires is nested inside a box, hence both boxes compute
results in one scheduling step. For example, the emult (prog1) to mult (prog2) transformation
depicted in Figure 6 has correct nesting. Although informally, [16] shows that correctly nested
box-to-box transformations, reduces to a proof of function correctness, meaning the following
derivation holds:

prog1 ; prog2 [apply (10)]
Jprog2K→ Jprog1K [apply definition of prog2]

Jprog1[mult/emult]K→ Jprog1K [apply result from [16]]
JmultK→ JemultK (Π)

121

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

Moreover, [16] also shows that the proof of (Π) reduces to a pre-post condition proof, similar to
the ones in the previous sections5. Here, the output buffer in the transformed box (e.g. mult)
must produce the same output as the source box expression (e.g. fmult 0 a b of emult where
a equals inp1 and b equals inp2). Hence, (Π) reduces the transformation proof to the following
invariant:

out = fmult 0 inp1 inp2 (12)

Note that since the mult box is the assumption in the implication in (Π), out, inp1 and inp2

are “assumed updated” by the mult box. Moreover, with respect to the overall ` M → [N]V
conjecture, all but the termination step implies ` V ′ = V , while in the termination step
` M → N . Since, N implies the application of fmult, this conjecture follows from this pre-
post condition.

As in the previous sections, the key to the proof of (12), is the loop invariant of the nested
feedback loop of mult. From the definition of fmult the following conditional wave-rule is
derived:

Y 6= 0→ fmult (R + X)
↑

X (Y − 1)
↑
⇒ fmult R X Y (13)

This is the only rule required in the proof. The loop invariant here is fmult r x y = fmult 0 inp1 inp2,
and the invariant hypothesis is obviously the same:

IH: fmult r x y = fmult 0 inp1 inp2

The “loop step” of the mult box then induces the following derivation:

fmult r′ x′ y′ = fmult 0 inp′
1 inp′

2 [apply (8)]

fmult (r + x)
↑
x (y − 1)

↑
= fmult 0 inp1 inp2 [apply (13)]

fmult r x y = fmult 0 inp1 inp2 [apply IH]

Note that in the application of (13), the pre-condition of the rule holds, by the definition of the
corresponding pattern. If y = 0, the second match would have succeeded.

5.2 Invariant discovery

The tail-invariant critic, where one particular instantiation is illustrated in Figure 4, can be
reused to discover the loop invariant in this example, although the particular rules will deviate.
Similar to §4, our first approximation of the invariant is r = fmult 0 inp1 inp2, gives rise to a
blocked ripple, i.e:

r + x
↑︸ ︷︷ ︸

blocked

= fmult 0 inp1 inp2

However, the precondition of the tail-invariant patch succeeds, which results in the introduction
of a meta-variable F1:

F1(r, x, y) = fmult 0 inp1 inp2

The definition of the priming operators (8) results in:

F1(r + 1
↑
, x, y − 1

↑
) = fmult 0 inp1 inp2

5Mechanised case-studies in Isabelle/HOL, which appear in [13], have provided empirical evidence for this
approach as well.

122

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

Wave-rule (13) then suggests that F1 is instantiated in terms of fmult, and the same loop invariant
as in the previous section is obtained:

fmult r x y = fmult 0 inp1 inp2

6 Relevant work

Our Hume/TLA work build directly on [25, 24], which uses rippling [8] and proof critics [22]
to verify imperative programs. Further, we have extended these ideas to transformation proofs
[16]. In [16], it is shown how a Hume transformation proof can be reduced to an invariant
proof. The work with rippling and critics is novel for Hume/ TLA and transformations, and
the generic work with Hume and TLA is novel with respect to using TLA at the programming
language level. We believe TLA is more suitable for Hume verification compared to process
algebras [4], like CCS, CSP or the Π-calculus.

The work presented here comes out from the first authors PhD thesis [13]. Parts of this work
involves a mechanisation of TLA in Isabelle/HOL [31], and a representation of the semantics of
Hume programs on top of this. Several proof tactics were developed to automate these proofs.
The invariant discovery ideas presented in this paper would obviously increased the degree of
automation of these tactics.

Previously, transformation verification has been described [16]. [14] outlines a box calculus
for Hume. There, a set of behaviour preserving rules and strategies were defined to transform
a Hume program into another. TLA has also been used to model check programs at the lowest,
least expressive, HW-Hume level [18], and to reason about different Hume scheduling strategies
[15].

Finally, the work presented here is at the action level of TLA, which is similar to Action
Systems [3] and Event-B [2]. Thus, we believe this work is also applicable in these formalisations.

7 Future work

This paper has applied rippling and critics to one small example. Extending this to programs
of multiple concurrent boxes will not have any impact on the approach, since the invariant
will remain invariant due to the strict wire communication. We have not implemented the
ideas presented in this paper, and this will be our next step. For imperative programs, the
loop invariant generation techniques have already been implemented and tested [25, 24], In the
Hume case, Hume/TLA proofs have been mechanised in the Isabelle/HOL theorem prover [13],
so via IsaPlanner [11], invariant discovery should not be hard to implement.

A longer term goal is to be able to synthesise transformations. Building directly upon [26],
we will now outline how we believe the work described here can be extended to the synthesis
of transformations.

In [26], the problem is stated as: given a Hoare triple {P}C{Q}, find an instantiation of C
in a small generic imperative program (containing assignment, conditionals and while loops)
such that the triple is valid. The approach combines proof planning with conventional partial
order planning. Here, proof planning is used for the local perspective, i.e. finding correct
statements, while partial order planning is used to achieve a correct order of statements. This
is implemented in a tool called Bertha, which is automatic with the exception that the user has
to provide loop invariants.

In Hume, this work would be adapted to automate the synthesis of transformations which are
a result of a failed costing. However, an additional requirement here is that the transformations

123

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

are level-reducing (i.e. it becomes more decidable with respect to time and space properties).
To illustrate, consider again the recursion to iteration transformations shown in Figures 5 and
6. The program starts with prog1, and the coster fails on the emult box. Next, failure analysis
is applied and the problem is that the recursive fmult function cannot be costed, which causes
a “recursion to iteration proof method (plan)” to be applied. Now, this uses the expression
of the emult box to create the specification, i.e.

out = fmult 0 inp1 inp2

Moreover, the program knows that a nested box with feedback loop must be created, since this
is the only way to represent iteration in Hume. Moreover, we know the program must contain
one or more entry matches, loop matches and exit matches, while the loop invariant can be
directly found using the techniques described in Section 5.

Partial order planning could then be used to find the correct order of the matches, for
example when pattern matching is used, the loop exit (*,*,r,x,0) -> (r,*,*,*) match must precede
the loop body (*,*,r,x,y) -> (*,r+x,x,y-1) match. If not, the box will never terminate. Moreover,
the loop entry step has different input wires (a,b,*,*,*) than the body and exit steps, while the
exit step has different output wires (r,*,*,*). Note that with respect to the box calculus [14]
described in the previous section, this approach is more flexible since it is not constrained by
an existing set of rules.

TLA, and the full TLA+ specification language [29], which combines TLA with a variant
of ZF set theory, has been used both in industry and academia [5, 12, 27]. In [12], Gafni
and Lamport illustrate the building of a sufficiently strong invariant by verifying the Disc
Paxos algorithm. The algorithm is verified in a bottom-up fashion, where smaller invariants
are gradually built up until they are strong enough to verify the main theorem. In a top-
down approach the main theorem is first attempted to be verified, and from a partial success,
a required invariant is found and verified. This process is iterated until a sufficiently small
invariant is found which can be proved directly. Gafni and Lamport argues that both a top-
down and bottom-up approach can be used. The top-down approach is a similar approach to the
one discussed here. The work described in this paper is exploring Hume programs represented as
TLA formulas. Hence, we are only manipulating the TLA terms, and not the Hume code. Thus,
we believe that an approach based on rippling and proof planning is applicable to automate
the verification of generic TLA invariants, also outside the Hume/TLA context, like in [12].

Another possible role of proof planning is properties involving the ∃∃∃∃∃∃∃∃ operator, which is used
to hide internal details of a specification. In this paper, we have ignored the ∃∃∃∃∃∃∃∃ operator, since
it was not that relevant for the Hume context. This follows from the fact that ∃∃∃∃∃∃∃∃ is handled
in the same way for all programs6. In general, to prove a refinement with bound variables in
TLA, that is, of the form:

(∃∃∃∃∃∃∃∃ B. J ∧2[M]W)→ (∃∃∃∃∃∃∃∃ A. I ∧2[N]V)

one must first remove/instantiate the ∃∃∃∃∃∃∃∃ bound variables A and B. Then, (11) can be applied.
This is achieved with proof rules similar to those for standard predicate existential quantification
∃. A key step in such a proof, is to find the correct witness for A, known as the refinement
mapping [1]. Proof planning has previously been used to find complex witnesses for ∃ bound
variables [9, 30]. We believe that due to the similarity between the rules for ∃ and ∃∃∃∃∃∃∃∃ , a proof
planning approach can also be used to find refinement mappings.

6The details will appear in [13]

124

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

8 Conclusion

Hume is a Turing-complete programming language, designed to guarantee space and time
bounds, whilst working on a high-level. Correctness properties, such as invariants and trans-
formations, have previously been verified using the temporal logic of actions (TLA). Such ver-
ification efforts require mathematical induction. Rippling was developed for guiding inductive
proofs, and rippling based proof critics have been developed to discovery and generalisations of
invariants.

Here, we have shown the use of rippling to both verify and discover invariants, based on
existing work on verifying and discovering loop invariants for imperative programs. This work
has then been extended to transformations. We believe that the work is also applicable in a
generic TLA setting, which we have elaborated upon.

Acknowledgements

This work has been supported by EU FP6 EmBounded.

References

[1] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Mappings. Theoretical Computer
Science, 82(2):253–284, 31 May 1991.

[2] Jean-Raymond Abrial. Modelling in Event-B: System and Software Engineering. Cambridge
University Press, 2009. To be published.

[3] Ralph-Johan Back. Refinement calculus, part ii: Parallel and reactive programs. In Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, pages 67–
93, London, UK, 1990. Springer-Verlag.

[4] J. C. M. Baeten. A Brief History of Process Algebra. Theoretical Computer Scisence, 335(2-
3):131–146, 2005.

[5] Brannon Batson and Leslie Lamport. High-Level Specifications: Lessons from Industry. In Formal
Methods for Components and Objects, number 2852 in Lecture Notes in Computer Science, pages
242–261. Springer, March 17 2003.

[6] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and R. Overbeek,
editors, Proc of CADE’88, pages 111–120. Springer-Verlag.

[7] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations in automatic program
synthesis. In S. L. H. Clarke, editor, Proc. of UK IT 90, pages 221–6. IEE, 1990.

[8] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling – Meta-level Guidance
for Mathematical Reasoning. Cambridge University Press, 2005.

[9] Alan Bundy, Alan Smaill, and Jane Hesketh. Turning eureka steps into calculations in automatic
program synthesis. In S. L. H. Clarke, editor, Proc. of UK IT 90, pages 221–6. IEE, 1990.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[11] Lucas Dixon and Jaques Fleuriot. IsaPlanner: A Prototype Proof Planner in Isabelle. In Proceed-
ings of CADE’03, volume 2741 of LNCS, pages 279–283, 2003.

[12] Eli Gafni and Leslie Lamport. Disk Paxos. Distributed Computing, 16(1):1–20, 2003.

[13] Gudmund Grov. Reasoning about Correctness Properties of a Coordination Programming Lan-
guage. PhD thesis, Heriot-Watt University, 2009. January 2009 submission. Subject to oral
examination.

125

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

[14] Gudmund Grov and Greg Michaelson. Towards a Box Calculus for Hierarchical Hume. In Marco T.
Morazan, editor, Trends in Functional Programming, volume 8, chapter 5, pages 71 – 88. Intellect,
2007.

[15] Gudmund Grov, Greg Michaelson, and Andrew Ireland. Formal Verification of Concurrent Schedul-
ing Strategies using TLA. In 3rd IEEE International Workshop on Scheduling and Resource Man-
agement for Parallel and Distributed Systems, number CFP07036-USB in IEEE Catalog Number.
IEEE, 2007.

[16] Gudmund Grov, Robert Pointon, Greg Michaelson, and Andrew Ireland. Preserving Coordina-
tion Properties when Transforming Concurrent System Components. In Coordination Models,
Languages and Applications Track of the 23rd Annual ACM Symposium on Applied Computing,
volume 1 of 3, pages 126 – 127, 1515 Broadway, New York, March 2008. The Association for
Computing Machinery, Inc.

[17] Kevin Hammond, Christian Ferdinand, Reinhold Heckmann, Roy Dyckhoff, Martin Hofman, Stef-
fen Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert Pointon, Norman Scaife, Jocelyn Sérot,
and Andy Wallace. Towards Formally Verifiable WCET Analysis for a Functional Programming
Language. In Proceedings of 6th Intl Workshop on Worst-Case Execution Time (WCET) Analysis,
2006.

[18] Kevin Hammond, Gudmund Grov, Greg Michaelson, and Andrew Ireland. Low-level programming
in Hume: an exploration of the HW-Hume level. In Zoltán Horváth, Viktória Zsók, and Andrew
Butterfield, editors, In Proceedings of Implementation of Functional Languages (IFL 2006), volume
4449 of Lecture Notes in Computer Science, pages 91 – 107. Springer, 2006.

[19] Kevin Hammond and Greg Michaelson. Hume: A domain-specific language for real-time em-
bedded systems. In Frank Pfenning and Yannis Smaragdakis, editors, Generative Programming
and Component Engineering, Second International Conference, GPCE 2003, Erfurt, Germany,
September 22-25, 2003, Proceedings, volume 2830 of Lecture Notes in Computer Science, pages
37–56. Springer, 2003.

[20] C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications of the ACM,
12:576–580, 1969.

[21] A. Ireland. The use of planning critics in mechanizing inductive proofs. In A. Voronkov, editor,
In Proc of LPAR’92, LNCS 624, pages 178–189. Springer-Verlag, 1992.

[22] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Automated
Reasoning, 16(1–2):79–111, 1996.

[23] A. Ireland, B. J. Ellis, A. Cook, R. Chapman, and J. Barnes. An integrated approach to high
integrity software verification. Journal of Automated Reasoning: Special Issue on Empirically
Successful Automated Reasoning, 36(4):379–410, 2006.

[24] Andrew Ireland and Jamie Stark. On the Automatic Discovery of Loop Invariants. In The
Fourth NASA Langley Formal Methods Workshop, number 3356. NASA Conference Publication,
1997. Also available from Dept. of Computing and Electrical Engineering, Heriot-Watt University,
Research Memo RM/97/1.

[25] Andrew Ireland and Jamie Stark. Proof Planning for Strategy Development. Annals of Mathe-
matics and Artificial Intelligence, 29(1-4):65–97, February 2001.

[26] Andrew Ireland and Jamie Stark. Combining Proof Plans with Partial Order Planning for Imper-
ative Program Synthesis. Automated Software Engineering Journal, 13(1):65–105, 2006.

[27] Peter B. Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy Caching in TLA. Dis-
tributed Computing, 12(2-3):151–174, 1999.

[28] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

[29] Leslie Lamport. Specifying Systems — The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, Reading, Massachusetts, 2002.

[30] Erica Melis and Jörg Siekmann. Knowledge-based proof planning. 115(1):65–105, 1999.

126

Towards Automated Property Discovery within Hume Gudmund Grov and Andrew Ireland

[31] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[32] N. Storey. Safety Critical Computer Systems. Addison-Wesley, 1996.

127

	Introduction
	Preliminaries
	The temporal logic of actions (TLA)
	Hierarchical Hume
	Proof planning & rippling

	Invariant verification
	Loop invariant discovery
	Hume program transformations
	Transformation verification
	Invariant discovery

	Relevant work
	Future work
	Conclusion

