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Abstract

Satisfiability Modulo Theories, SMT, solvers are used in many applications. These
applications benefit from the power of tuned and scalable theorem proving technologies
for supported logics and specialized theory solvers. SMT solvers are primarily used to
determine whether formulas are satisfiable. Furthermore, when formulas are satisfiable,
many applications need models that assign values to free variables. Yet, in many cases
arbitrary assignments are insufficient, and what is really needed is an optimal assignment
with respect to objective functions. So far, users of Z3, an SMT solver from Microsoft
Research, build custom loops to achieve objective values. This is no longer necessary
with νZ (new-Z, or max-Z), an extension within Z3 that lets users formulate objective
functions directly with Z3. Under the hood there is a portfolio of approaches for solving
linear optimization problems over SMT formulas, MaxSMT, and their combinations. Ob-
jective functions are combined as either Pareto fronts, lexicographically, or each objective
is optimized independently.

1 SMT and Optimization

SMT solvers have enjoyed a decade of significant impact for many applications in program
analysis, verification, testing and to some extent synthesis. A common premise for the use of
SMT solvers in these applications have been that logic serves as a suitable calculus of com-
putation. In other words, at the core of most symbolic program analysis/testing/verification
engines, there is a natural reduction to a logical form, and it makes better sense to use a
common well-tuned engine than hand-roll a custom solver. Key enabling factors have been
technological advances with core search algorithms coupled with built-in support for theories
that are typical to programs, such as reasoning with bit-vectors, arithmetic, applicative stores
(arrays), algebraic data-types to mention a few. The ability to also handle quantified formulas,
and even, in many cases, extend to decision procedures for quantified formulas has furthered
the scope of areas where SMT solvers can be used.

Yet, knowing whether a logical formula is satisfiable or not is not always sufficient. In par-
ticular, being able to state and solve optimization objectives in the context of logical constraints
has been well recognized in the SMT community [13, 3, 15, 5, 4, 9] and it is a recurring feature
request for Z3 [7] as well. We therefore created νZ as a new toy for Z3 users and as a service
to users who do not wish to maintain their own optimization algorithms on top of Z3.

We here describe optimization features in Z3 in their current state. We briefly touch on the
tool usage, but our emphasis is on the algorithms we have implemented. A tool demonstration
presentation is the subject of another paper.

∗νZ was initiated with Anh-Dung Phan during an internship at Microsoft Research and Microsoft Dynamics.
Thanks to Lars Fleckenstein and his group for collaborating on applications of νZ.
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1.1 Stating objectives in SMT-LIB

The easiest way to get acquainted with optimization in Z3 is by trying it out online at the
tutorial http://rise4fun.com/z3opt/tutorial/. The examples used here use the SMT-LIB2
syntax and extend it with a few primitives:

• (maximize t ) - instruct the solver to maximize t .

• (minimize t ) - instruct the solver to minimize t .

• (assert-soft F :weight n ) - assert soft constraint F , optionally with weight n . If no
weight is given then the default weight is 1.

In νZ, the type of the term t can be either Integer, Real or Bit-vector. If t has type bit-vector
with, say width 4, then (maximize t ) is equivalent to the four soft assertions:

(assert-soft (= t [3:3] 1) :weight 8 ) (assert-soft (= t [2:2] 1) :weight 4 )

(assert-soft (= t [1:1] 1) :weight 2 ) (assert-soft (= t [0:0] 1) :weight 1 )

For example, we can ask to optimize the term x+y under the constraints x < 2 and y−x < 1.

(declare-const x Int)

(declare-const y Int)

(assert (< x 2))

(assert (< (- y x) 1))

(maximize (+ x y))

(check-sat)

The optimal answer is given as 2 and νZ returns a model where x = y = 1.

1.2 νZ Capabilities

Of course, the more exciting things happen under the hood. νZ comprises of two main compo-
nents: (1) a MaxSMT (in reality it is a collection of MaxSAT solvers) module that solves soft
constraints and (2) an OptSMT module that optimizes linear arithmetic objective functions.
The two modules are controlled by an upper layer that translates optimization objections into
either of these modules. The upper layer also invokes the MaxSMT and OptSMT components
in a suitable combination if there are multiple objectives.

To summarize, νZ allows to maximize or minimize terms over integers, reals and bit-vectors.
Weighted constraints over Booleans can be entered as weighted soft constraints, or as a summa-
tion. Multiple objectives can be combined using lexicographic, Pareto fronts or as independent
objectives. We call the last combination box priorities. The next sections describe the MaxSMT
and OptSMT components in more detail.

2 Weighted MaxSMT

Weighted MaxSMT is the following problem. Given a set of numeric weights w1, . . . , wn and
formulas F0, F1, . . . , Fn, find the subset I ⊆ {1, . . . , n} such that

1. F0 ∧
∧

i∈I Fi is satisfiable.

2. The award Σi∈Iwi is maximized. Dually, the cost Σi/∈Iwi is minimized.

In other words, the weight wi encodes the award for including Fi in the satisfying assignment,
or dually, the penalty for a formula Fi to be excluded from a satisfying assignment.
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2.1 WMax

We here recall from [1] an approach first proposed in [13]. In their solver, an important point is
that the theory evolves as search progresses: once a satisfiable state is reached with a given cost
c, then assignments that meet or exceed c are useless. Their encoding is as follows: Initially we
assert F0 and Fi ∨ pi for each i, where pi is a fresh propositional variable. We also maintain a
cost c that is initialized to 0, and a min cost that is set to nil. Then, repeat the following steps
until the asserted formulas are unsatisfiable:

1. When some pi is assigned to true, then update c← c+ wi.

2. If nil 6= min cost ≤ c, then block the current state by adding the clause

∨
{¬pi | pi is assigned to true}.

3. When all pi are assigned to true or false without exceeding the minimal cost, it must be
that c < min cost or min cost is nil. So it is safe to set min cost ← c. To block this
current cost, add the assertion

∨
{¬pi | pi is assigned to true}.

The approach is implemented as a satellite theory solver in Z3’s SMT core. It inter-operates
with the other theories in this core: linear arithmetic, bit-vectors, arrays, and algebraic data-
types. The stand-alone solver for non-linear polynomial arithmetic over the reals is not part
of this core. This basic approach to MaxSMT, using a satellite solver works remarkably well
in many cases. It even has the advantage of always producing better approximations of the
optimal values. However, it falls flat on its face in most large scale benchmark applications
circulating in the MaxSAT community. νZ therefore implements also an alternative based on
Maximal Resolution.

2.2 MaxRes

A very efficient weighted MaxSAT solving method based on Maximal Resolution (MaxRes) [2]
was recently developed by Nina Narodytska and Fahiem Bacchus [12]. Their solver won the
MaxSAT competition for 2014 by a noticeable margin. MaxRes is a core-based method. In
contrast, WMax narrows satisfying assignments. We will here rephrase the main result from [12],
but without appealing to maximal resolution. We show soundness of the main step of the
algorithm using a direct argument. To keep the treatment simple, we consider just unit weights.
The technique used in other core-based MaxSAT solvers applies to handle weighted constraints:
Given a core F1, . . . , Fk with weights w1, . . . , wk, let w0 = min(w1, . . . , wk). Create the new
soft constraints F1 : w0, . . . , Fk : w0, F1 : w1 − w0, . . . , Fk : wk − w0, and remove constraints
with weight 0 (there is at least one).

We are given a formula F and a set of soft constraints F1, . . . , Fn. Let F1, . . . , Fk be a subset
of soft constraints (with unit weights) that are inconsistent with F . For the next iteration we
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produce the new set F ′, F ′1, F
′
2, . . . , F

′
k−1, Fk+1, . . . , Fn, where1:

F ′ ← F ∧ (¬F1 ∨ ¬F2 ∨ . . . ∨ ¬Fk) (1)

F ′1 ← F2 ∨ F1

F ′2 ← F3 ∨ (F1 ∧ F2)

. . .

F ′k−1 ← Fk ∨ ((F1 ∧ F2) ∧ . . . ∧ Fk−1)

The process eventually terminates. It either ends up with a set where all the soft constraints
can be satisfied, or it ends up with the empty set of soft constraints, e.g., none of the soft
constraints could be satisfied. We can reproduce the optimal assignment from either of these
cases thanks to the following property:

Claim 1. F, F1, . . . , Fn has a maximal satisfying assignment of weight w if and only if F ′, F ′1,
. . . , F ′k−1, Fk+1, . . . , Fn has a maximal satisfying assignment of weight w − 1.

Proof. Let M be an arbitrary truth assignment to F1, . . . , Fk, assuming F1, . . . , Fk are mutually
inconsistent (is a core). Consider two cases:

1. M(F1) = false. Then we claim M(F ′i ) = M(Fi+1) for i = 1, . . . , k − 1.

2. M(F1) = true, and let j be the first index where M(Fj+1) = false. Then we claim that
M(F ′i ) = M(Fi+1) for i = 1, . . . , j − 1, j + 1, . . . , k − 1, M(F ′j) = true,

In both cases the weight of the new set of clauses is one less than the previous weight. If
F1, . . . , Fk is a core, then at least one truth assignment has to be false.

An important observation in [12] is to control the number of new formulas that are created
in each round. In our setting it amounts to the following observation: There are a linear number
of different sub-formulas in the definition of F ′1, . . . , F

′
k−1. When performing clausification, it

helps to exploit this and introduce auxiliary names for linear number of sub-formulas. For
example F1 ∧ F2 is represented using a name d1:

F ′ ← F ∧ (¬F1 ∨ ¬F2 ∨ . . . ∨ ¬Fk) ∧
(d1 → F1) ∧ (d1 → F2) ∧
(d2 → d1) ∧ (d2 → F3) ∧ . . .

F ′1 ← F2 ∨ F1

F ′2 ← F3 ∨ d1
. . .

F ′k−1 ← Fk ∨ dk−1
MaxRes shows significantly better performance than WMax on many larger instances. In

νZ, we furthermore have the option to use a dedicated SAT solver for SMT formulas that use
only propositional logic, bit-vectors and 0-1 linear variables. There is a very cute duality to
MaxRes based on correction sets (instead of cores). Given a correction set F1, . . . , Fk, we can
obtain a smaller problem by dualizing the definitions for F ′1, . . . , F

′
k−1 (interchange ∨ with ∧).

We are currently investigating ways to leverage this duality with Nina Narodytska.
νZ also implements a number of other algorithms for MaxSAT, including BCD2 [11] which

is based on a binary search over upper and lower bounds, and a basic version of MaxHS [6]
which is based on finding hitting sets.

1Since the conjunction F1 ∧ F2 ∧ . . . ∧ Fk is inconsistent with F , it follows that F implies the clause
(¬F1 ∨¬F2 ∨ . . .∨¬Fk). Nevertheless, we add this (redundant) clause to F as it can participate in propagation.
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Input: Objective t to maximize
Input: Formula F
Output: Maximal value v, such that v = t ∧ F is satisfiable
v ← −∞
while F is satisfiable do

Let L be a set of literals (from F ) that imply F .
if t is unbounded in L then

return ∞
end
Let M be an interpretation that satisfies L and maximizes t
v ← max(v,M(t))
F ← F ∧ t > v ∧ ¬

∧
L

end
return v

Algorithm 1: Sequential Bound Increase. During each iteration we have the choice to add
either t > v or ¬

∧
L, or both to force convergence. For the case of linear difference logic,

νZ allows general linear objective functions. It uses primal Simplex (and not yet Network
Simplex) to maximize t under L. The inequality t > v may however not be expressible in
difference logic. Instead νZ uses the assertion ¬

∧
L to ensure convergence.

3 νZ for Linear Arithmetic

We have augmented the theory solvers for (integer) linear arithmetic and (integer) difference
logic with a primal Simplex phase. Z3 contained for some time an internal implementation
for primal Simplex. It is used for guiding search while solving integer linear and non-linear
problems. This hidden feature was “discovered” and exploited in [10]. We here mainly discuss
the variant we use in νZ.

3.1 Basic Arithmetic Optimization

The main idea used in [15, 10] is, for a quantifier free formulas F , extract a set of literals L that
implies F (an implicant, preferably prime), and for this set of literals compute a local optimum.
One can now search for the next implicant of F that improves the current local optimum. If the
set of literals L is taken from linear arithmetic inequalities, then the local optimum can be found
using primal Simplex. Algorithm 1 illustrates this approach. νZ implements Algorithm 1 for
both linear real and linear integer, and mixed integer/real arithmetic. It furthermore, as the
caption to Algorithm 1 advertises, implements this loop for the specialized difference logic
solvers. We note, however, that the performance of the difference logic solvers is not always
better than the Simplex solver even on problems that are in the difference logic domain.

3.2 Unbounded Objectives

One of the main techniques introduced in [10] is to discover (multiple) unbounded objectives in
one call without iterating over potentially many solutions L. It uses a clever geometric argument
to discover unbounded objectives by considering how hyper-planes can bound objectives. In
νZ we provide an alternative option for finding unbounded objectives using a single SMT call.
The technique extends the existing use of non-standard rational numbers in Z3 [8] (and most
other SMT solvers). The usual technique is to allow variables to take values of the form b+ εa,
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Input: Objective t to maximize
Input: Formula F
Output: Maximal value v, such that v = t ∧ F is satisfiable
if F ∧ t ≥ ∞ is satisfiable then

return ∞
end
v ← −∞
while F is satisfiable do

Let L be a set of literals (from F ) that imply F .
Let M be an interpretation that satisfies L and maximizes t
v ← max(v,M(t))
F ← F ∧ t > v ∧ ¬

∧
L

end
return v

Algorithm 2: Finding unbounded objectives using non-standard arithmetic

where ε is treated as an infinitesimal and a, b are rational numbers. This allows treating strict
inequalities as non-strict inequalities. The extension used to discover unbounded objectives is
to allow variables to take values of the form c∞+ b+ εa, where ∞ is treated as a constant that
is always larger than any finite constant. All standard Simplex operations can be performed
directly for this number representation. Algorithm 2 illustrates our variant that uses a separate
pass to detect unbounded objectives.

3.3 An Experiment with Core-based Optimization

In the case of MaxSMT, we were able to exploit core-based methods to find maximal assign-
ments. One may wonder, is there any reasonable core-based method for linear arithmetic? At
least we wondered and experimented with an approach sketched in Algorithm 3. The idea is to
assert a lower bound mid < t and use the outcome of the solver to either find a new improved
value for t (a new lower bound for the maximal value for t), or refine the upper bound for
t. When F ∧ mid < t is satisfiable, we can obtain a new improved lower bound as we did
in the previous algorithms. If F ∧ mid < t is unsatisfiable, we can improve the upper bound
from inspecting the justifications for mid < t being inconsistent with respect to F . The idea is
that a proof of unsatisfiability produces a justification that separates F from mid < t. When
the justification is a set of clauses it produces a separating plane as a certificate. We can
find the separating plane by appealing to Farkas lemma. Farkas lemma says that if a clause
(Ax ≤ b→ t ≤ mid) is a tautology, then dually Ax ≤ b ∧−t < −mid is inconsistent, so there is
a set of non-negative coefficients, r1, r2, such that

r1Ax− r2t ≤ r1b− r2(mid + ε) ≡ 1 ≤ 0 .

Said in a different way: r1Ax − r1b > r2t − r2mid. Thus, since r1Ax
r2

= t, we get the tighter

bound r1b
r2

< mid. Without loss of generality we can normalize r2 to 1, so we just have to worry
about r1. There is in general more than one lemma used for separating t from the bound mid.
One has to take the maximal separator and Algorithm 3 illustrates the resulting approach for
finding tighter bounds than mid.

Regrettably, our experience with an implementation of this idea has so far not been as
good as the more straightforward approach from Algorithm 1. Z3 spends a lot of time refuting
infeasible bounds on the instances we tried this algorithm on.
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Input: Objective t to maximize
Input: Formula F
Output: Maximal value v, such that v = t ∧ F is satisfiable
lo← −∞, hi←∞
while lo < hi do

Pick mid such that lo < mid < hi
if mid < t ∧ F is satisfiable then

Let M be an evaluation that satisfies F and maximizes t
lo←M(t)

end
else

Let (Aix ≤ bi → t ≤ mid) be T-lemmas for i ∈ I
That is F →

∨
iAix ≤ bi

Let ri be Farkas coefficients for the T-lemmas, such that riAi > ribi, riAi = t
hi← max{ribi | i ∈ I}

end

end
return hi

Algorithm 3: Bisection Search with Farkas Lemmas

4 Combining Objectives

Multiple objectives can be combined using lexicographic, Pareto fronts or as independent box
objectives. We briefly summarize these combination methods here.

Lexicographic combinations Suppose we are given two objectives t1, t2 to maximize subject
to the constraint F . The lexicographic combination is to find model M , such that M
satisfies F and the pair 〈M(t1),M(t2)〉 is lexicographically maximal. In other words, there
is no model M ′ of F , such that either M ′(t1) > M(t1) or M ′(t1) = M(t1), M ′(t2) > M(t2).

Pareto fronts Again, given two objectives t1, t2, the set of Pareto fronts under F are the set
of models M1, . . . ,Mi, . . . ,Mk, . . ., such that either Mi(t1) > Mj(t1) or Mi(t2) > Mj(t2),
and at the same time either Mi(t1) < Mj(t1) or Mi(t2) < Mj(t2); and for each Mi, there
is no M ′ that dominates Mi. νZ uses the Guided Improvement Algorithm [14] to produce
multiple objectives. We recall it in Algorithm 4.

Box objectives Finally, given two objectives t1, t2 finding maximal independent assignments
to t1 and t2 can be accomplished simultaneously by slightly modifying algorithms from
Section 3. The resulting algorithm is shown in Algorithm 5.

5 Conclusion

We have provided some of the main algorithms used in νZ. The νZ capabilities in Z3 are at the
time of writing still in active development and improvements. Many new ideas have appeared in
MaxSAT in recent years and the integration and extension of these ideas in the context of SMT
is an exciting opportunity. On the other hand, νZ allows users with somewhat richer theories
than propositional logic to take advantage of some of the advances in MaxSAT and similarly
OptSMT. We hope to enable new applications of Z3 using the optimization capabilities.
Acknowledgment We would like to express our gratitude to Lars Fleckenstein and his group
for co-hosting Phan during his internship and working on driving scenarios and applications of
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Input: Objectives t1, t2 to maximize
Input: Formula F
Output: Pareto maximal front
while F is satisfiable do

G← F
while G is satisfiable do

Let L be a set of literals (from G) that imply G.
if either t1 or t2 is unbounded in L then

return
end
Let M be an interpretation that satisfies L and maximizes t1 or t2
v1 ←M(t1), v2 ←M(t2)
G← G ∧ t1 ≥ v1 ∧ t2 ≥ v2 ∧ (t1 > v1 ∨ t2 > v2)

end
F ← F ∧ (t1 > v1 ∨ t2 > v2)
yield 〈v1, v2〉

end
Algorithm 4: Guided Improvement Algorithm for finding Pareto fronts.

Input: Objectives t1, t2 to maximize
Input: Formula F
Output: Box-maximal front
v1 ← −∞, v2 ← −∞
while F is satisfiable do

Let L be a set of literals (from F ) that imply F .
Let M be an interpretation that satisfies L and maximizes t1, t2
v1 ← max(v1,M(t1))
v2 ← max(v2,M(t2))
F ← F ∧ (t1 > v1 ∨ t2 > v2) ∧ ¬

∧
L

end
return 〈v1, v2〉

Algorithm 5: Finding a independent upper bounds for t1, t2. We here work models that can
return non-standard numbers, such that a possible evaluation M(t1) is ∞. In this case the
inequality t1 >∞ is equivalent to false.

νZ in the context of warehouse logistics. We also thank Jessica Davies for fruitful discussions
around MaxHS and Nina Narodytska for inspiring input around MaxRes and extensions.
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