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Abstract

In this paper we present a summary of our work on probability reachability in stochastic hybrid

systems (SHS). In particular, we give an overview of ProbReach, a tool for computing probabilistic

reachability in SHS which we introduced in [18]. We also present and an overview of our recent

theoretical extensions and modification of the tool.

1 Introduction

• What problem we address. We study bounded reachability in stochastic hybrid systems
(SHS). Our tool ProbReach assesses quantitative properties of SHS with random initial
parameters, such as the probability of reaching a predefined unsafe region in a finite number
of discrete transitions.

• What kind of SHS we can analyse. ProbReach performs reachability analysis in hybrid
systems with random continuous initial parameters. These can be system parameters or
initial conditions which are chosen in the initial state and remain unchanged throughout
the system evolution. For continuous dynamics, we can analyse any Lipschitz-continuous
ODEs.

• What has been added. Recently, we have extended the range of the systems that can
be handled by ProbReach. The tool now supports hybrid systems with discrete initial
parameters and continuous nondeterministic initial parameters.

• What guarantees ProbReach provides. Given a SHS with random continuous parameters
and an arbitrarily small ε > 0, ProbReach returns an interval of size not larger than
ε containing the exact bounded reachability probability. This result is guaranteed to
be numerically correct, i.e., free from floating-point inaccuracies. Introducing discrete
random parameters to the system will not affect the guarantees provided by ProbReach.
However, if the system features only discrete random parameters then this guarantee does
not hold. This happens because probability distributions over discrete random parameters
are not continuous. Therefore, an arbitrary precision cannot be provided. Introducing
nondeterministic continuous parameters affects the guarantees the tool provides, as well.
This happens because nondeterministic parameters do not have any probability measure
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at all. In this case, ProbReach computes an enclosure which is guaranteed to contain all
the possible reachability probabilities. In general, such an enclosure may have size larger
than ε.

• The intuition behind our technique. ProbReach employs a validated integration procedure
to obtain a partition over the random parameters in such a way that the guarantees
described above hold. This partition is then used to enclose the probability value by
computing under- and over-approximations. For this we use the dReach[12, 8] tool to do
(standard) qualitative bounded reachability analysis in hybrid systems.

Related Work. There are several tools for computing probabilistic reachability in stochastic
hybrid systems. The SiSAT tool [5] solves probabilistic bounded reachability in a numerically
guaranteed manner, but it does not currently support continuous random parameters. Its
extension [2] handles continuous parameters through sampling from the continuous state space
providing statistical guarantees, while ProbReach gives formal guarantees. The tool FAUST2 [19]
uses abstraction to verify nondeterministic continuous-state Markov models, although currently
for discrete-time models only. ProHVer computes an upper bound for the maximal reachability
probability [21], and handles continuous random parameters via discrete overapproximation [4],
while ProbReach calculates both bounds of the entire probability interval.

Tools such as UPPAAL [14] and PRISM [13] are powerful model checkers for probabilistic timed
automata. UPPAAL employs a statistical model checking approach for computing probability
values in nonlinear hybrid systems while PRISM utilises symbolic model checking for probabilistic
timed automata.

Also, several approaches for solving probabilistic reachability have been recently presented.
In [3] the authors present a technique using validated ODE solver for computing p-boxes in
dynamic nonlinear systems (not hybrid) with finite-support random parameters. A wide class
of hybrid systems with continuous nondeterministic parameters are considered in [1, 20, 16].
However, they handle continuous state through finite discretisation providing approximated
numerical solutions. ProbReach instead works with continuous time and space giving full math-
ematical/numeric guarantees.

2 Methodology

In this section we give an overview of the technical details of the main algorithm and of the
tool implementation.

2.1 Verified integration

We consider continuous random parameters defined by their probability density function (pdf).
In order to calculate a bounded reachability probability value for systems involving random
variables, we need to integrate their pdf over the Borel set B containing all the parameter
values for which the system reaches the unsafe region. We will tackle the problem of computing
set B later in this Section. Here, we describe the procedure used to compute the probability
value. The integration problem we need to solve is calculating the value of a definite integral:

I([a, b]) =

∫ b

a

f(x)dx

up to a desired precision ε. In other words, we need to obtain an interval [I]([a, b]) around
the integral value such that |[I]([a, b])| ≤ ε. Any known technique for calculating exactly a
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definite integral can be utilised, and in ProbReach we use the 1/3 Simpson rule. We use an
interval extension of the integrand function to obtain an interval version of the Simpson rule [6].
Considering the integration error presented by the fourth derivative, we can obtain an enclosure
containing the exact value of the integral. The interval formula is given below:

I([a, b]) ∈ [I]([a, b]) =
b− a

6
([f ](a) + 4[f ](

a+ b

2
))+

[f ](b))− (b− a)5

2880
[f ](4)([a, b])

where [I] and [f ] are interval extensions of functions I and f which is assumed to satisfy the
required integrability and differentiability conditions. This formula by itself does not imply
that |[I]([a, b])| ≤ ε. In order to deal with this problem we finitely partition the [a, b] interval.
Then by the definition of integral:

I([a, b]) ∈ Σn
i=1[I]([x]i)

where n is a number of intervals [x]i’s that partition [a, b]. The partition should be obtained in
such a way that for each [x]i the following holds:

|[I]([x]i)| ≤
|[x]i|
b− a

ε.

This is sufficient to guarantee that the original integral I([a, b]) is computed with precision ε.

2.2 Decision procedure

A decision procedure is used to determine the set B needed to compute validated integration.
A key part is encoding bounded reachability in hybrid systems as a first-order logic formula,
which can then solved by the δ-complete decision procedure dReach [7, 8] using the notion of
δ-weakening of a logical formula.

The intuition behind our approach is to perform an evaluation of a weaker (decidable)
formula and on that basis make a conclusion about the initial formula. Given an arbitrary first
order bounded formula, a δ-complete procedure returns unsat if the formula is false and δ-sat
if its weakening is true. Hence, unlike unsat, δ-sat is a weak answer as it does not imply the
satisfiability of the original formula. We use this fact to define our decision procedure. Let us
consider two formulas φ and φC , defined as follows:

• φ([x]) is true iff ∃x′ ∈ [x] : x′ ∈ B
• φC([x]) is true iff ∃x′ ∈ [x] : x′ /∈ B.

Note that φC([x]) is not a logical negation of the formula φ([x]) as φC([x]) 6→ ¬φ([x]) and
φ([x]) 6→ ¬φC([x])

Verifying now both formulas using dReach on each interval [x] in the partition obtained by
verified integration, we obtain four outcomes which can be interpreted as follows:

• φ([x]) is unsat — all points of [x] are outside the Borel set B for sure, and [x] is used for
calculating Pupper (probability overapproximation). The integral of the probability density
over the interval [x] is subtracted from Pupper, which is initially set to 1.

• φ([x]) is δ-sat — there is a value in the interval [x] such that the system reaches the unsafe
region or its δ-weakening.
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• φC([x]) is unsat — the entire [x] lies in set B for sure, and [x] is used for calculating
Plower (probability underapproximation). The integral of the probability density over the
interval [x] is added to Punder which is initially set to 0.

• φC([x]) is δ-sat – there is a value in the interval [x] such that the system stays outside the
unsafe region or its weakening within the k-th step.

As it was mentioned above, only unsat returned for either of the formulas guarantees the
correctness of the interval validation, and therefore can be used to refine the probability interval.
Hence, if both formulas are δ-sat then either a false alarm is obtained (when a formula which
should be unsatisfiable is verified as δ-sat because of a relatively large value of δ used) or the
analysed interval is mixed (i.e., some points in [r] belong to set B and some others do not)
which means that the interval should be partitioned and verified again. Extra partitioning
can be performed arbitrarily many times as it does not alter the correctness of the result and,
in fact, it is necessary to provide the described guarantees. Moreover, this is unavoidable in
general due to undecidability of bounded reachability in hybrid systems. The refinement of the
probability interval continues until its length is smaller than or equal to ε.

2.3 Random variables with unbounded support

Several useful random variables (RVs) are defined over unbounded intervals (e.g., normal dis-
tribution, exponential distribution). It was shown above how to deal with bounded RVs. In
case of unbounded RVs we are making a trade-off. The main idea behind this is that given a
desired length ε of the enclosure we choose a value k ∈ (0, 1) to obtain an interval [a, b] such
that: ∫ b

a

f(x) dx > 1− kε.

The following is immediately true by the fact that the integral of a probability density function
on interval (−∞,∞) is equal to 1.∫ a

−∞
f(x) dx+

∫ ∞
b

f(x) dx ≤ kε.

Hence, even if all the values from (−∞, a] ∪ [b,∞) are in the set B, the size of the proba-
bility interval will at most increase by kε without affecting the desired precision. Then, if the
evaluation routine described above terminates when the length of the interval [Plower, Pupper] is
shorter than (1− k)ε, the probability is guaranteed to be contained inside an interval of length
kε+ (1− k)ε = ε. The pseudo-code of the algorithm implemented in ProbReach is presented in
Algorithm 1.

It is also worth mentioning that at any point in time during the computation, the exact
value of the reachability probability belongs to the interval [Plower, Pupper], which is output
by ProbReach when the interval bounds change. This might be advantageous for time-critical
verification scenarios, as the user can specify a computation timeout. Thus, despite the fact
that the desired precision might not be achievable within the specified timeframe, the obtained
result is still complete in the sense that the exact probability value is guaranteed to be inside
the computed interval.

2.4 Multiple continuous random variables

It is clear how to handle SHS with one initial random parameter. Introducing multiple random
continuous parameters does not affect the decision procedure. The only changes are needed for
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Algorithm 1: ProbReach (one continuous random parameter)

Input : probability density f , k ∈ (0, 1) ∩Q, ε ∈ (0, 1] ∩Q, formula φ, φC

Output: interval [I]:
∫
B
f ∈ [I] and width([I]) ≤ ε

εinf = kε
εprob = (1− k)ε
[a, b] = bounds(f, εinf ) {obtain truncation for unbounded RVs }
B.push(integral(f, [a, b], εprob)) {get domain partition by validated integration}
[Plower] = [0.0, 0.0] {interval for under-approximation}
[Pupper] = [1.0, 1.0] {interval for over-approximation}
while [Pupper]− [Plower] > εprob do

D = ∅ {a stack to store further interval partitions}
while size(B) > 0 do
{[x], [S]([x])} = B.pop() {get an interval}
if φ([x]) == δ-sat then {call dReach to evaluate φ}

if φC([x]) == δ-sat then {call dReach to evaluate φC}
// it might be a mixed interval - we need to split it

D.push({[x,mid([x])], [S([x,mid([x])])]})
D.push({[mid([x]), x], [S([mid([x]), x)]})

else [Plower] = [Plower] + [S]([x]) {increase under-approximation}
else [Pupper] = [Pupper]− [S]([x]) {descrease over-approximation}

B = D

[Pupper] = [Pupper] + 1−
∫ b

a
f(x) dx {add leftovers from the unbounded domain}

return [[Plower], [Pupper]]

obtaining a finer partition of each RV’s domain. In particular, it is sufficient to compute the
Cartesian product of the partitions of each random variable. Those are obtained by applying
the validated integration procedure to each random parameter. The formula below shows which
precision value ε should be used for integrating each random variable in order to guarantee an
overall precision εprod.

Given a stochastic hybrid system with n independent continuous random initial parameters
and a desired size of the probability interval εprod ∈ (0, 1] ∩ Q it is sufficient to integrate each
random variable with precision ε satisfying the formula below:

εprod ≥
(
n

1

)
ε+

(
n

2

)
ε2 + ...+

(
n

i

)
εi + ...+

(
n

n− 1

)
εn−1 +

(
n

n

)
εn (1)

where
(
n
i

)
is the binomial coefficient. The decision procedure remains unchanged and it is

applied to each box from the Cartesian product. In case a box is evaluated as mixed, then
all its dimensions are bisected forming 2n boxes, which are verified in the same manner. The
algorithm stops upon reaching length εprod for the probability interval.

2.5 Implementation

ProbReach is implemented in C++. It employs the CAPD1 library to compute interval exten-
sions of the probability density function and its derivative in the verified integration procedure,

1http://capd.ii.uj.edu.pl/
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and to perform computation of the probability interval. Also, ProbReach uses the IBEX2 li-
brary to solve formula (1). ProbReach is parallelised using OpenMP to increase its performance.
ProbReach utilises dReal [8] and dReach [12] as standalone applications in plug-and-play man-
ner to solve standard (i.e., non-probabilistic) bounded reachability. ProbReach source code
and static binaries are publicly available at https://github.com/dreal/probreach/. More
details on the ProbReach implementation are available in [18].

3 Experiments

We have applied ProbReach to a number of nonlinear hybrid system models. Below we introduce
the two most complex of them: an insulin-glucose regulatory system model and personalized
prostate cancer therapy model. The results of all experiments were validated by Monte Carlo
simulation and confidence intervals with the Chernoff-Hoeffding bound [9].

Insulin-glucose regulatory model. This model represents an insulin-glucose regulatory
system for patients with type-1 diabetes. ProbReach was applied to the model introduced in [17]
based on Hovorka’s glucoregulatory model [10]. The described system is rather sophisticated.
It considers parameters such as the amount of carbohydrates consumed with food and their
glycemic index. The glucose level is constantly monitored and upon reaching a defined upper
threshold the insulin pump starts working. The pump stops when the glucose level goes below
the lower threshold. In order to give an idea about the model complexity, we present the system
of ODEs governing the system dynamics:

dQ1

dt
= −F c

01 − x1Q1 + k12Q2 − FR + EGP0(1− x3) + 0.18UG

dQ2

dt
= x1Q1 − (k12 + x2)Q2

dS1

dt
= u− S1

tmaxI

dS2

dt
=
S1 − S2

tmaxI

dI

dt
=

S2

tmaxIVI
− keI

dx1
dt

= −ka1x1 + kb1I

dx2
dt

= −ka2x2 + kb2I

dx3
dt

= −ka3x3 + kb3I

F c
01 =

F01G

0.85(G+ 1)

G =
Q1

VG

Randomising some parameters we can calculate the probability that glucose level (G) will get
back to normal (G ≤ 10) within some time from the start of insulin infusion. We conducted the
experiment with one continuous random initial parameter (x3(0), normally distributed) which
took about 100 hours to compute (ε = 0.0001) and returned the numerically guaranteed interval

2http://www.ibex-lib.org/
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Figure 1: Personalized prostate cancer therapy model

[0.999657, 0.999712]. The confidence interval obtained by Monte Carlo simulation was [0.99706,
1], with coverage probability 0.99 and width 0.005.

Personalized prostate cancer therapy. We consider a model of personalised prostate cancer
therapy introduced by Ideta et al. [11] and improved by Liu et al. [15]. The patient’s prostate-
specific antigen (PSA) level is monitored throughout the therapy. When the PSA level reaches
an upper threshold, the patient starts receiving treatment (on-therapy stage) until the PSA
level decreases to a lower threshold (off-therapy). The main aim of the therapy is to delay
cancer relapse for as long as possible. The model of the therapy is given in Figure 1 (a full
explanation of the model and its parameters can be found in [15]). Mode 1 is the on-therapy
stage, and it continues until the PSA level (measured by x + y in Fig.(1)) is above threshold
r0. Then the system makes a transition to the off-therapy mode which continues until the PSA
level is below r1. We explored the scenario where one of the model continuous parameters was
normally distributed. We computed the probability of cancer relapse (i.e., y ≥ 1) within 100
days from the start of the therapy. The computation took about 15 minutes (ε = 0.001) and
returned the guaranteed interval [0.47380981, 0.47441201]. The confidence interval obtained by
Monte Carlo simulation was [0.4648111, 0.4848111], with coverage probability 0.99 and interval
width 0.02.

4 Recent Work

We have recently added to ProbReach support for discrete random parameters and nondeter-
ministic continuous parameters. The user can specify any combinations of random/nondeter-
ministic parameters. When nondeterministic parameters are present in the model, the precision
ε controls the size of the minimum parameter box examined by ProbReach. Also, for models
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with discrete random parameters only, ε is not considered at all.
We are currently re-running all our experiments with the latest dReal3. From the first

results we are observing a speed-up of at least 50% with respect to the CPU times reported
in [18]. This is due to the fact that validated ODE solving is a major source of computational
complexity in our approach. Also, the complexity depends on the number of parameters in the
model, since in the worst case the number of boxes to examine increases exponentially with the
number of parameters. We remark that both sources of complexity are in general unavoidable,
as it happens similarly with the state explosion problem experienced by model checking.

5 Conclusions

We have presented a summary of our recent work on probabilistic bounded reachability for
stochastic hybrid systems with random and nondeterministic parameters. We have implemented
our technique in the open source tool ProbReach. Two key features of our approach are: we
compute numerically guaranteed enclosures, and we can handle hybrid systems with continuous
dynamics described by any Lipschitz-continuous ODEs.
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