
EPiC Series in Computing

Volume 55, 2018, Pages 15–28

GCAI-2018. 4th Global Conference on Artificial Intelligence

Iterative Planning for Deterministic QDec-POMDPs
Sagi Bazinin and Guy Shani

Information and Software Systems Engineering, Ben Gurion University

Abstract

QDec-POMDPs are a qualitative alternative to stochastic Dec-POMDPs for goal-oriented plan-
ning in cooperative partially observable multi-agent environments. Although QDec-POMDPs share
the same worst case complexity as Dec-POMDPs, previous research has shown an ability to scale up
to larger domains while producing high quality plan trees. A key difficulty in distributed execution
is the need to construct a joint plan tree branching on the combinations of observations of all agents.
In this work, we suggest an iterative algorithm, IMAP, that plans for one agent at a time, taking into
considerations collaboration constraints about action execution of previous agents, and generating
new constraints for the next agents. We explain how these constraints are generated and handled, and
a backtracking mechanism for changing constraints that cannot be met. We provide experimental re-
sults on multi-agent planning domains, showing our methods to scale to much larger problems with
several collaborating agents and huge state spaces.

1 Introduction
In many real-world problems agents collaborate to achieve joint goals. For example, disaster response
teams typically consist of multiple agents that have multiple tasks to perform, some of which require
the cooperation of multiple agents. In such domains, agents typically have partial information, as they
can sense their immediate surroundings only. As agents are often located in different positions and
may possess different sensing abilities, their runtime information states differ. Sometimes, this can be
overcome using communication, but communication infrastructure can be damaged, or communication
may be costly and should be reasoned about explicitly.

In this setting it is common to plan for all agents jointly using a central engine. The resulting policy,
however, is executed by the agents in a decentralized manner, and agent communication is performed
only through explicit actions.

Decentralized POMDPs (Dec-POMDPs) offer a rich model for capturing such multi-agent prob-
lems [1], but Dec-POMDPs solvers have difficulty to scale up beyond small toy problems. Qualitative
Dec-POMDP (QDec-POMDP) were offered as an alternative model, replacing the quantitative proba-
bility distributions over possible states with qualitative sets of states [6].

Although QDec-POMDPs share the same worst case complexity class as Dec-POMDPs, Brafman
et al. have shown that a translation-based approach into contingent planning managed to scale to model
sizes that could not be solved by Dec-POMDP algorithms. The policy for a QDec-POMDP can be
represented as a joint policy tree (or graph), where nodes are labeled by joint actions of all agents, and
edges are labeled by the possible joint observations following those actions. In a solution tree all the
leaves correspond to goal states. The policy tree hence has a huge branching factor, limiting the ability

D. Lee, A. Steen and T. Walsh (eds.), GCAI-2018 (EPiC Series in Computing, vol. 55), pp. 15–28



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

to scale up to larger problems. One can extract single agent local policy trees from the joint policy
tree, where each local tree has an exponentially smaller branching factor. In this paper we focus on
deterministic QDec-POMDPs, where one can find solutions with a finite depth.

In many problems interactions between cooperating agents are limited to a number of key points.
Each agent may be able to achieve a set of tasks that require no cooperation, while assisting other agents
only in several collaborative tasks. This is illustrated in the box pushing domain (Figure 2), where light
boxes can be pushed into place by a single agent, but a heavy box can only be pushed by two agents
together.

In such cases, it may be useful to plan for each agent independently, creating a single agent plan
tree, branching only on the observations of the specific agent. We suggest an iterative approach, which
we call IMAP (iterative multi agent planning) where the central planning engine plans for one agent at
a time. IMAP creates a local policy tree for each agent, instead of a joint policy tree for all agents.

When planning for a single agent IMAP assumes that other agents will be available to assist in
required collaborations. These assumptions generate a set of conditional constraints on the behavior
of other agents, that must be considered when planning for these agents. When a constraint cannot be
satisfied, we backtrack to the agent that required the constraint.

In addition, agents attempt to perform tasks at the lowest cost, notifying all other agents of the cost
for completing subgoals. Agents that manage to complete some tasks more cheaply, inform backward to
previous agents, that replan again ignoring these tasks. Thus, our approach also contains a task allocation
component that assigns tasks to agents to reduce the overall cost for completing all tasks.

For solving single agent problems, we compile the multi-agent QDec-POMDP into a single agent
contingent planning problem. We use an off-the-shelf offline contingent planner [9] to generate a plan
graph, and then extract the conditional constraints from that plan graph. Our method is sound, but
incomplete, due to the greedy nature of our iterative process. Still, it scales up to very large QDec-
POMDPs. We provide an empirical study, focusing on scaling up analysis, showing how our approach
scales to very large domains, with multiple agents, many order of magnitudes beyond domains solvable
by previous approaches.

2 Model Definition
We start with the basic definition of a flat-space QDec-POMDP, followed by a factored definition moti-
vated by contingent planning model definitions [2, 5].

Definition 2.1. A qualitative decentralized partially observable Markov decision process
(QDec-POMDP) is a tuple Q = 〈I, S, b0, {Ai}, δ, {Ωi}, O,G〉 where

• I is a finite set of agents indexed 1, ...,m.
• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.
• Ai is a finite set of actions available to agent i and ~A = ⊗i∈IAi is the set of joint actions, where
~a = a1, ..., am denotes a particular joint action.
• δ : S × ~A → 2S is a non-deterministic Markovian transition function. δ(s,~a) denotes the set of

possible outcome states after taking joint action ~a in state s.
• Ωi is a finite set of observations available to agent i and ~Ω = ⊗i∈IΩi is the set of joint observation,

where ~o = o1, ..., om denotes a particular joint observation.

• ω : ~A × S → 2
~Ω is a non-deterministic observation function. ω(~a, s) denotes the set of possible

joint observations ~o given that joint action ~a was taken and led to outcome state s. Here s ∈
S, ~a ∈ ~A, ~o ∈ ~Ω.

16



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

• G ⊂ S is a set of goal states.

We do not assume here a finite horizon T , limiting the maximal number of actions in each execution.
We focus, however, on deterministic outcomes and deterministic observations. In such cases a successful
solution is acyclic, and there is hence no need to bound the number of steps. Extension to domains with
non-deterministic outcomes with a bounded horizon is simple, but extensions to infinite horizon and
non-deterministic outcomes is beyond the scope of this paper. We assume a shared initial belief, like
most Dec-POMDP models.

Definition 2.2. A factored QDec-POMDP is a tuple 〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 where I is a set of
agents, P is a set of propositions, ~A is a vector of individual action sets, Pre is the precondition function,
and Obs is an observation function. Eff is the effects function. b0 is the set of initially possible states,
and G is a set (conjunction) of goal propositions. The state space S consists of all truth assignments to
P , and each state can be viewed as a set of literals.

The precondition function Pre maps each individual action ai ∈ Ai to its set of preconditions, i.e.,
a set of literals that must hold whenever agent i executes ai. Preconditions are local, i.e., defined over
ai rather than ~a, because each agent must ensure that the relevant preconditions hold prior to executing
its part of the joint action. We extend Pre to be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

Brafman et al. [6] define an effects function Eff mapping joint actions into a set of pairs (c, e) of
conditional effects, where c is a conjunction of literals and e is a single literal, such that if c holds before
the execution of the action e holds after its execution. Thus, effects are a function of the joint action
rather than of the local actions, as can be expected, due to possible interactions between local actions.

We slightly refine these definitions to explicitly support independent and collaborative actions. For
each local action ai of agent iwe define a set of local conditional effects eff l(ai) = {(c, e)}. In addition,
for each subset of local actions of agents, {ai1 , ..., aik} of agents i1, ..., ik we define another set of
collaborative conditional effects eff c({ai1 , ..., aik}) = {(c, e)}. When this set is empty, we say that
the local actions are independent, when the set is not empty, we say that the subset of local actions
are collaborative. We further require that collaborative subsets will be minimal, in that for two subsets
A1, A2 such that A1 ⊂ A2, eff c(A

1) 6= eff c(A
2). While the effects of collaborative actions are shared,

the preconditions are not. Specifically, when applying a collaborative action each agent must only ensure
that its own preconditions hold.

For every joint action ~a and agent i, Obs(~a, i) = {p1, . . . , pk}, where p1, ..., pk are the propositions
whose value agent i observes after the joint execution of ~a. The observation is private, i.e., each agent
may observe different aspects of the world. We assume that the observed value is correct and corresponds
to the post-action variable value.

While QDec-POMDPs allow for non-deterministic action effects as well as non-deterministic ob-
servations, we focus in this paper only on deterministic effects and observations, and leave discussion
of an extension of our methods to non-determinism to future research. Additionally, our model assumes
a shared initial belief state, as most Dec-POMDP models. The challenging case where the initial belief
states differs between agents is important, as it corresponds to the situation in on-line planning, but it is
left for future research.

2.1 Policy Trees
We can represent the local plan of an agent i using a policy tree τi, which is a tree with branching factor
|Ω|. Each node of the tree is labeled with an action and each branch is labeled with an observation. To
execute the plan, each agent performs the action at the root of the tree and then uses the subtree labeled

17



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Figure 1: Illustration of Example 1 showing the box pushing domain with 2 agents and a possible set
of local plan trees that produce a solution. Possible agent actions are sensing a box at the current agent
location (denoted SB), moving (denoted by arrows), pushing a light box up alone (denoted P ), jointly
pushing a heavy box (denoted JointPush), and no-op.

with the observation it obtains for future action selection. If τi is a policy tree for agent i and oi is a
possible observation for agent i, then τioi denotes the subtree that corresponds to the branch labeled by
oi.

An alternative to local trees is a global joint policy tree, where nodes are labeled by joint actions
and edges are labeled by joint observations. We argue that constructing global trees directly is difficult,
due to the need to consider all possible observation combinations together, and suggest an iterative
construction of local policy trees as a more scalable approach.

Let ~τ = 〈τ1, τ2, · · · , τm〉 be a vector of policy trees. We denote the joint action at the root of ~τ by~a~τ ,
and for an observation vector ~o = o1, . . . , om, we define ~τ~o = 〈τ1o1

, . . . τmom
〉. When executing a policy

tree each agent i maintains its own local belief bi — the set of possible states given the observations
that i has observed during the execution. Initially, all agents set bi = b0, but following the different
observations it is often the case that bi 6= bj for two agents i and j. tr(~b, ~o,~a) denotes the set of local
beliefs after executing the joint action ~a and observing ~o starting from the local beliefs ~b. To execute
~τ we first consider the action ~a~τ in the context of the local beliefs. That is, each agent i must validate
that bi |= pre(aτi). If for some agent j, bj 6|= pre(aτj ) then the execution is not valid. Each agent i
then executes aτi , observes oi, transitioning to one of the subtrees τ ′i of τi with a new local belief b′i. We
say that ~τ is a valid set of policy trees if every possible execution for ~τ starting from b0 is valid. If the
precondition of ~a~τ are met at the initial local beliefs 〈b0, ..., b0〉, and for every possible joint observation
~o, executing ~τ~o in the new local belief tr(~b,~a~τ , ~o) is valid.

A local policy tree τi is valid if there exists a valid vector ~τ of local policy trees containing τi. For
example, a local policy tree τi is not valid if for some t, for two different branches of τi of length t, a
collaborative action with some agent j appears in one branch but not in the other, and agent j cannot
distinguish between the two branches. That is, some differentiating observations cannot be observed by
j.

A set of policy trees ~τ is called a joint policy if executing the policy trees starting from the initial
belief b0 results in a valid execution. A joint policy is called a solution if for all leaves in the tree⋂
i bi |= G, i.e., the set of possible states given the joint local beliefs of the agents satisfy the goal.

18



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Example 1. We now illustrate the factored QDec-POMDP model using a simple box pushing domain
(Figure 1). In this example there is a one dimensional grid of size 3, with cells marked 1-3, and two
agents, starting in cells 1 and 3. In each cell there may be a box, which needs to be pushed upwards.
The left and right boxes are light, and a single agent may push them alone. The middle box is heavy,
and requires that the two agents push it together.

We can hence define I = {1, 2} and P = {AgentAt i,pos,BoxAtj,pos,Heavyj} where pos ∈
{1, 2, 3} is a possible position in the grid, i ∈ {1, 2} is the agent index, and j ∈ {1, 2, 3} is a box
index. In the initial state each box may or may not be in its corresponding cell — b0 = AgentAt1,1 ∧
AgentAt2,3 ∧ (BoxAtj,j ∨ ¬BoxAtj,j) for j = 1, 2, 3. There are therefore 8 possible initial states.

The allowed actions for the agents are to move left and right, to push a light box up, or jointly push a
heavy box up with the assistance of the other agent. There are no preconditions for moving left and right,
i.e. Pre(Left) = Pre(Right) = φ. For agent i to push up a light box j, agent i must be in the same
place as the box. That is, Pre(PushUpi,j ) = {AgentAt ′i,j¬Heavyj ,BoxAtj}. For the collaborative
joint push action the precondition is Pre(JointPushj ) = {AgentAt1,j ,AgentAt2,j ,Heavyj ,BoxAtj}.

The moving actions transition the agent from one position to the other, and are independent of the
effects of other agent actions, e.g.,
Right i = {(AgentAt i,1,¬AgentAt i,1 ∧AgentAt i,2), (AgentAt i,2,¬AgentAt i,2 ∧AgentAt i,3)}.
The only joint effect is for the JointPush action — Eff (PushUp1,2, a2) where a2 is some other action,
are identical to the independent effects of action a2,
while Eff (PushUp1,2,PushUp2,2) = {(φ,¬BoxAt2,2)}, that is, if and only if the two agents push the
heavy box jointly, it (unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxi,j , with precondition
Pre(SenseBoxi,j ) = AgentAti,j , no effects, and Obs(SenseBoxi,j ) = BoxAtj,j . The goal is to move
all boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

3 Iterative Construction of Policy Trees

We now describe our main contribution — a method to construct satisfying policy trees iteratively,
which we call IMAP, for iterative multi agent planning. The first agent constructs an independent policy
tree using only its own independent actions, and collaborative actions that it participates in, assuming
that the other agents required to execute the collaborative actions will be available to assist. This single
agent problem is solved by a contingent planner [9], returning a policy tree.

After the single agent policy tree is computed, the agent manipulates the tree to be a valid local
policy tree in a QDec-POMDP. Then, the agent extracts constraints for other agents, encapsulating the
assistance requirement of the computed policy.

We now create a new single agent problem for the next agent, containing the computed constraints.
The next agent attempts to solve this constrained problem. If the agent succeeds, it again extracts con-
straints and passes them on. If the single agent contingent planning problem cannot be solved, however,
the agent reports the failure back, with additional information, and the first agent must replan.

The process terminates when all agents agree on a set of local policy trees that achieve the goal.
Then, we run a soundness check. The following subsections describe the various parts of this algorithm.
For ease of exposition, we describe our methods below assuming time, or unit costs. Our methods are
directly applicable to the case of varying costs.

A high level description of IMAP is presented in Algorithm 1.

19



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Figure 2: Policy tree (left) and an adjusted tree (right) for the compiled contingent problem of agent 1
in the simple box pushing domains. A no-op action (grayed) was inserted to level the JointPush action
to be executed at time t4

3.1 Compilation to a Single Agent Problem

We now describe the creation of a single agent problem for the first agent 1. The planning problems
for the next agents will be based on this compilation, adding constraints which we later describe. Given
a factored QDec-POMDP 〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 we create for agent i a single agent problem
〈Pi, A+

i ,Prei,Eff i,Obsi, b0, G〉. The observations Obsi, the initial belief b0 and the set of goals G
remain as in the multi agent problem.

A+
i is the set of single agent i, containing all the independent actions in Ai, as well as all collabora-

tive actions that i participates in.
That is, for each minimal subset {aj1 , ..., ajk} such that Eff c({aj1 , ..., ajk}) 6= ∅ and there exists l such
that ajl ∈ Ai, we add a single agent action a{j1,...,jk}. The created action has the same preconditions
as ajl — the component of agent i in the joint action. This represents an assumption of agent i that
the other agents that participate in the collaborative action will fulfill the needed precondition for the
collaborative action to apply.

In addition, we identify a set P−i of non-constant propositions that none of the independent or
collaborative actions of agent i can achieve, yet appear in a precondition of an action a ∈ A+

i or in the
goalG. These are propositions which may be required for achieving the goal, yet cannot be produced by
agent i. We remove all these propositions from the problem description. This represents an assumption
of agent i that other agents will produce these propositions when needed.

We can now run a contingent planner on the compiled problem and obtain a single agent policy tree
τ .

20



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Algorithm 1: Iterative Planning for QDEC-POMDP
1 Input: QDec-POMDP 〈I, P, ~A, Pre,Eff,Obs, b0, G〉
2 Ac ← ∅ (collaborative action constraints)
3 i← 1 (current agent)
4 for each goal literal g, GT (g)←∞
5 while i < n do
6 τi ← solve 〈Pi, A

+
i , P rei, Effi, Obsi, b0, G〉

7 if τi is valid then
8 Align and order collaborative actions in τi
9 GT

i ← goal achievement times in τi
10 if ∃g ∈ G s.t. GT

i (g) < GT (g) then
11 j ← the earliest agent that achieved g s.t. GT

i (g) < GT (g)

12 GT (g)← GT
i (g)

13 Undo all constraints by agents j .. i
14 i← j

15 for Collaborative action ac in τi at time t do
16 Add constraint on ac at time t to Ac

17 i← i+ 1

18 else
19 for constraint c in Ac by increasing time do
20 τ ← Solve 〈Pi, A

+
i , P rei, Effi, Obsi, b0, c〉

21 if τ is not valid then
22 cf ← c
23 t← earliest time that cf could be achieved

24 j ← the agent that introduced cf
25 notify j that cf can be achieved by time t
26 Undo all constraints by agents j .. i
27 i← j

3.2 Adjustments to the Policy Tree

It may not be possible to construct a joint policy using τ , as we must ensure that all collaborating agents
execute a collaborative action together. For example, consider the single agent policy tree for agent 1 in
Figure 2. This tree is a solution for the compiled problem, assuming that agent 2 would assist in joint-
push actions when needed. However, we can observe that in the left branch, the collaborative joint push
action is at time t4, while in the right branch the joint push is at time t3. To be able to assist at different
times, agent 2 must know whether agent 1 is at the right or left branch.

To handle this, we force all the instances of a collaborative action to occur at the same time in all
branches, by adding no-op actions (Figure 2 right), creating a leveled policy tree.

Leveling the collaborative actions may be difficult when we have multiple collaborative actions in a
branch. Given two collaborative actions a1, a2, if a1 precedes a2 in all branches, then we can level the
execution time as before, by first leveling the tree for a1, then leveling the tree for a2. However, when
a1 precedes a2 in one branch, and a2 precedes a1 in another branch, we cannot level both together.

There can be several ways to create a valid leveled policy tree. First, we can replan forcing the
planner to decide on one ordering of all collaborative actions. There can be cases where this will make
the problem unsolvable. We can also condition the difference on an observed variable that all collabo-
rating agents can observe. We currently take the first approach, and fail if the planner cannot order all
collaborative actions in a consistent order of execution in all branches.

21



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

3.3 Extracting Constraints for Other Agents
Following the adjustments to the tree τ , resulting in tree τi for agent i, we now extract a set of con-
straints on the policy tree of other agents. We can extract two types of constraints — collaborative
action constraints and missing preconditions constraints.

Collaborative Action Constraints

For each collaborative action ac executed at time t in policy tree τi, we add a constraint for all other
agents that participate in ac to also execute the action at time t. However, even though ac is executed
always at time t, in some branches it might be that ac is not executed at all. Consider the tree in Figure 2.
In two branches the agents do not jointly push the heavy box, because it is already at the target position.
Hence, the constraint to jointly push the heavy box applies only in branches where the box is not initially
at its target position.

The collaborative action constraints are hence conditional constraints, conditioned on the value of
some observed variables. The collaborative action ac must be executed only in branches where the value
of the observed variables conforms to the conditioned values. To identify these variables we look at the
set of branches Bac where ac was used, and the set of branches B¬ac where ac was not used.

We identify the set of literals Pac that occur in all branches inBac prior to the execution of ac in that
branch, and the set of literals P¬ac that occur in all branches in B¬ac throughout the branch execution.
Then, Pac \ P¬ac defines the difference between these branches. All agents that collaborate on ac must
be able to observe the value of these propositions. Otherwise, the collaborative action cannot be soundly
executed.

To employ the constraint in the single agent compiled problem, we implement time into the con-
tingent problems. Although it is inconvenient to implement time into the propositional, PDDL based,
description that we use, in our case we implement time only for a limited horizon, equivalent to the
depth d of the already computed tree. We set the successor of time td to be t∞, and the successor of
time t∞ to be also t∞, allowing other agents to plan beyond time d if need be. We add a time parameter
to all actions.

We now set the preconditions of all actions except ac at time t to contain the conditioned variables
values. That is, all actions except ac can be executed at time t only in branches that conform to the
conditioned variable values, where ac was not executed in the original tree τi. In the example above, we
add to the precondition of all actions at time t4 the literal ¬BoxAt2,2. In order to execute any action
other than JointPushUp2,2 at time t4 the agent must first observe the value of BoxAt2,2. Although
it is not always the case, in this example, the collaborative action JointPushUp2,2 has a precondition
BoxAt2,2, forcing the agent to observe the value of BoxAt2,2 before time t4 in all branches.

3.4 Forward Progression and Backtracking
Given the constraints extracted from the adjusted policy tree for agent i, we now create a new single
agent planning problem for the next agent i+1. The planning problem augments the definition in Section
3.1 with the collaborative action and missing precondition constraints above. Constraints irrelevant to
agent i+ 1, such as missing preconditions that i+ 1 cannot achieve, or collaborative actions that do not
apply to i+ 1 are not added onto the single agent problem.

Agent i + 1 now runs the contingent solver over the constructed single agent planning problem. If
a solution is found, then we again level the policy tree, extract additional constraints, and create a new
planning problem for the next agent based on all constraints gathered thus far.

Although the original, multi-agent problem may have a solution, the single agent problem of i + 1
may not be solvable. For example, it may be that agent i added a constraint for agent i + 1 to be at

22



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Time t1 t2 t3 t4
Agent a1 a2 a1 a2

g1 = ¬BoxAt1 1 - 1 -
g2 = ¬BoxAt2 4 4 4 4
g3 = ¬BoxAt3 6 1 - 1

Table 1: Iterated improvements of goal completion time for the simple box-pushing problem. Agent a1

plans alone, achieving goals g1, g2, g3 at t1, t4, t6, respectively, and assuming that a2 will help pushing
Box 2 at t4. Agent a2 manages helping pushing Box 2 and achieves g3 faster at t1, therefore improving
the overall plan and forcing a1 to replan. Agent a1 plans without g3, and a2 replans ignoring g1.

position p at time t, but agent i+ 1 is unable to reach p at the appropriate time. To understand why the
solver fails, we now plan again for each constraint for agent i + 1, attempting to achieve the specified
constraints by reversed order of appearance. That is, we start removing constraints that occur later in
the plan, until a solution is found. This allows us to identify the first constraint c that agent i+ 1 cannot
achieve at the required time tc.

We now replan for agent i + 1 given all constraints prior to c, where the goal is to achieve c at any
time after tc. If c cannot be achieved at any possible time after tc, then we fail. Otherwise, the planner
computes a plan that achieves all constraints prior to c, and achieves c at time t′ at the latest.

We now identify the agent j < i + 1 that required the constraint c, which agent i + 1 cannot fulfill
in the given time tc, and report back that the constraint c can be achieved only at time t′ > tc. We now
backtrack and replan for agent j, with a constraint that c can only be achieved at t′ at the earliest. All
plans between j and i + 1 are removed. That is, if j manages to solve the problem, we move to agent
j + 1 and continue.

3.5 Sub-Goal Assignment
While the above process can be used to solve the multi-agent problem, it may produce inefficient plans.
Consider, for example, the policy tree generated in Figure 2. The agent produced a solution for pushing
all 3 boxes. Obviously, however, it is more efficient to leave the rightmost box at position 3 for agent 2
to handle, as done in the local policy trees in Figure 1. We now describe a mechanism that allows agent
1 to entrust the task of pushing the rightmost box to agent 2.

In addition to the constraints described in Section 3.3, we extract from the policy tree of agent i for
each goal literal g ∈ G, the minimal time tg when g is achieved. We allow other agents to acknowledge
that g can be achieved by agent i at time tg , by adding a conditional effect (timetg , g) to all actions.
That is, every action executed at time tg achieves g.

An agent j may, however, achieve g at a time t′ < tg . In our running example, as shown in Table 1,
agent 1 achieves the goal ¬BoxAt3 at time 6. Agent 2 can help agent 1 in pushing the heavy box, and
then wait for time 6, but a shorter plan for agent 2 achieves ¬BoxAt3 at time 1, and only then assist
agent 1 with the heavy box, at which point all goals have been achieved.

When progressing forward in the agent sequence we maintain for each such goal g ∈ G only the
earliest time of achievement tg , and add the resulting conditional effects when planning for all agents
j > i. Once we successfully finish planning for the last agent, we start again from the first agent,
this time allowing agents to use all the goal achievement conditional effect. Each agent uses only goal
achievement effects created by other agents, to avoid a case where agent i assigns goal g to agent j,
while j assigns g to i, and thus no agent actually achieves g.

This process may be repeated several times, because an agent that earlier achieved g at time tg , may
now be able to achieve g at time t′ < tg , for example because it now ignores other goals achieved more

23



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Table 2: Comparing IMAP to Dec-POMDP solvers over small, 1D, box pushing problems. |Ai| = 4,
|Ωi| = 2. W is the grid width, L and H denote the number of light and heavy boxes. E[C] is computed
given a uniform initial belief and unit costs. P is the number of single agent planning episodes.

Domain Compilation GMAA-ICE DICEPS JESP IMAP
W L H |S| |b0| Time E[C] Time E[C] Time E[C] Time E[C] Time E[C] P
2 2 0 16 4 12.8 1.5 0.22 1.5 16.18 1.5 0.78 1.5 7.23 4.6 2
3 2 0 36 4 25.5 1.5 0.58 1.5 18.19 1.5 1.67 1.5 6.28 4.87 2
3 2 1 70 8 50.3 4.5 × × 40.88 3.85 × × 37.07 4.06 2
5 2 1 200 8 164.6 6.5 × × 83.4 4.38 × × 41.84 12.24 4
5 4 1 800 32 × × × × × × × × 123.17 14.17 4

rapidly by other agents. However, each time we start over it is because at least one goal was achieved
at an earlier time than in the previous iteration. Hence, this process must terminate eventually, and we
repeat this goal allocation replanning process until we converge.

3.6 Ensuring Soundness
There can be several reasons why the above procedure may not produce a sound, executable, plan.
For example, it may be that one agent consumes a precondition that another agent relies on. One can
simulate the joint policy for every possible initial state, effectively traversing the implicit joint policy
tree, but this process is exponential.

We take instead an approximate approach. Each agent collects from all other agents the effects of
their actions at each time step. Then, the agent checks whether the preconditions of its local policy tree
are not invalidated by the actions of other agents.

Our soundness test is approximate because when an agent produces an effect p in two different
branches, at different time steps t, t′, where t < t′, we assume that p is achieved at time t in all branches.
Thus, our soundness test is stronger than needed, and it may be that a valid solution would be discarded,
but not vice versa.

4 Experimental Results
We now provide experimental results focusing on scalability to larger QDec-POMDP problems. We ex-
periment with two domains — a variant of the well-known box pushing problem [14], and an adaptation
of the rovers domain [17]. All transitions and observations in both domains are deterministic. We use
CPOR [10] as the underlying planner, and Metric-FF as the classical planner of CPOR. The experiments
were run on a Windows 10 64-bit machine, i5, 2.2GHz CPU, and 8GB RAM. IMAP is implemented in
C#, while Dec-POMDP solvers were run on an Ubuntu virtual box on the same machine 1.

4.1 Domains
In the box pushing domain a set of boxes are spread in a grid, and the agents must push each box to a
designated location at the edge of the grid (the end of the column it appears in). Each box may be either
in a pre-specified location, or at its goal location to begin with. The agent must be in the same location
as the box in order to observe where it is. Agents may move in the 4 primary directions, and can push

1The implementation of IMAP can be found at https://github.com/Sharpen6/IMAP, and the benchmark domains
at https://github.com/Sharpen6/PlanningProblems

24

https://github.com/Sharpen6/IMAP
https://github.com/Sharpen6/PlanningProblems


Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

boxes in these 4 primary directions, if they occupy the same location as the box. Some boxes are heavy
and must be pushed by two agents jointly. There are 9 actions, and 2 possible observations.

We also experiment with an adaptation of the multi-agent rovers domain, where multiple rovers must
collect together measurements of soil, and rock. The agents navigate a map of waypoints, and successful
measurements can only be taken at some waypoints, unknown initially to the agents. When an agent is at
a waypoint it can attempt a measurement, which may be successful or not based on whether the waypoint
is appropriate for that measurement. Images of rocks, and samples of soils can be collected by a single
rover, while rock samples require two rovers working jointly. After collecting the measurements, the
rovers must broadcast them back to the ground station.

4.2 Comparison to Dec-POMDP Solvers

We begin with comparing IMAP to exact (GMAA-ICE [16]) and approximate (JESP [11], DICEPS
[12]) Dec-POMDP solvers on small box pushing domains. While IMAP finds satisfying plans, without
any optimality criterion, the Dec-POMDP solvers optimize for minimizing expected cost for achieving
the goal, denoted E[C]. All solvers were executed on various horizons until convergence, and we report
the result over the horizon with best E[C] (computed assuming a uniform initial belief and unit costs).
In all domains we used a 1D grid, and hence only 4 actions per agent (observe-box, push, move-right,
move-left). We also compare to the compilation-based approach [6]. All solvers managed to solve only
very small problems, with a short horizon.

We acknowledge that this comparison is not entirely fair, because Dec-POMDP solvers try to opti-
mize solution quality, whereas we only seek a satisfying solution. Thus, Dec-POMDP solvers may need
to explore many more branches of the search graph, at a much greater computational cost. Furthermore,
many Dec-POMDP solvers are naturally anytime, and can possibly produce a good policy even when
stopped before termination. It may well be that solvers may reach a satisfying policy, which is the goal
in a QDec-POMDP, well before they terminate their execution.

4.3 IMAP on Larger Problems

Table 3 shows results over large domains. We experimented with varying grid sizes, number of agents,
and different compositions of light and heavy boxes . We report runtime (T, secs.), the expected cost
under a uniform distribution (E[C]), and the plan makespan (M, maximal time to completion), as a
measure of plan quality, and the total number of single agent planning episodes (P). The difficulties in
this domain are mainly due to the number of collaborations, and the alternative goal assignments.

In the Rovers domain, the problem difficulty is defined, as before, by the number of agents and the
size (number of waypoints), but also by the uncertainty — the number of potential waypoints where a
measurement can be taken. While the number of states is smaller, the number of actions, and the initial
belief uncertainty, are larger in this domain compared to the box pushing problems. The difficulty mostly
stems from the size of the initial belief, requiring more complex single agent plan trees.

As can be seen, IMAP scales well to problem sizes well beyond the ability of current planners. The
complexity of the problem grows with both the state space size, as well as the number of agents, the
number of required collaborative actions, and the initial uncertainty. The number of planning episodes
encapsulates both constraints that could not be met, or plan improvements by later agents. Where the
number of planning episodes is identical to the number of agents, there was no need to backtrack. The
largest number of planning episodes is 12, where 5 agents had to push 3 boxes, and several agents
suggested improvements to the initial plan, requiring us to go back and forth. Still, this did not cause
the planner to take an exceptionally long time. The main bottleneck of IMAP is the time required to
compute a single agent plan in the larger domains, not the number of replanning episodes.

25



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Table 3: IMAP on large domains. C is the number of required collaborations, Time is the runtime (secs),
M is the final makespan, E[C] is the expected cost under a uniform distribution, and Planning is the
number of agent planning episodes.

|S| |I| |Ai| |Ω| |b0| C Time M E[C] Planning
Box pushing

196 2 8 2 4 1 13.2 16 8 5
400 2 8 2 4 1 30 18 10.2 3

25000 5 8 3 8 1 56.2 13 6.82 12
1000 3 8 3 8 1 59 12 6.68 11
4000 3 8 5 32 2 247.1 19 11.6 9

Rovers
308 2 15 2 4 1 13.1 18 7.81 2
462 2 16 3 8 1 14.4 16 8.7 2
300 2 16 7 128 1 33.7 35 19.3 2

20250 3 15 5 32 1 37.1 12 5.5 3
1500 3 15 7 128 1 156.3 26 11.2 6
600 2 16 9 512 1 205.01 39 17.6 4

Table 4: IMAP execution example. P denotes the planning episode, BT denotes the reason for back-
tracking (F - constraint failure, I - goal improvement).

P 1 2 3 4 5 6 6 7 8 9 10 11 12
Agent 1 2 1 2 1 2 3 1 2 3 1 2 3
box0 4 × 4 4 4 4 × 7 7 7 7 7 7
box1 14 14 14 5 5 5 5 5 17 4 4 4 4
BT F I F I

Figure 3 shows an example a box pushing domain with 3 agents and 2 boxes, box0 which is heavy,
and box1 which is light. Table 4 shows the execution of IMAP on this domain. Agent 1 wants to push
box0 with agent 2 at time 4, and then push box1 at time 14. Agent 2 reports that it can only push box0 at
time 7. Agent 1 now selects agent 3 for collaboration. Agent 2, relieved of pushing box0 can push box1

at time 5. Agent 1 confirms this plan improvement. When reaching agent 3 it reports that it can help
with box0 only at time 8. Agent 1 replans, and chooses collaboration with agent 2, who cannot push
box1 at time 5. Agent 3 now reports that it can push box1 at time 4. All agents confirm the new plan.

5 Discussion and Related Work
Our approach is well rooted in the multi-agent literature. Iterating over the agents, focusing on one
agent at a time is used for reducing the complexity of considering a joint policy. For example, JESP [11]
modifies the policy of one agent, while keeping the policies of all other agents fixed. The exponential
complexity of considering all possible joint observations is not reduced, though, making scaling up
difficult, as can be seen in our experiments as well.

Similar approaches have been used in other multi agent problems such as DCOP [7], privacy pre-
serving planning [3], and many more. Focusing on interaction points between the agents is also a well
known idea. In Dec-POMDPs, [15] reduce the problem complexity by considering states in which agents
must interact, and states where they can act independently. Similar intuitions were pursued by [18] and
[13], for decoupling the state space considering how agents influence one another. To resolve the depen-
dencies, the AI community has suggested that agents should enforce commitments [8]: constraints on
policies that must be adhered. In multi agent planning, these commitments take a very similar role and
structure to what we do [4].

26



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

Figure 3: Box pushing example for Table 4

As such, the main contribution in this paper is in an efficient adaptation of these well known ideas
into the new QDec-POMDP framework, scaling well beyond the ability of current exact and approximate
Dec-POMDP solvers.

6 Conclusion

We presented IMAP — an iterative algorithm for multi-agent planning for QDec-POMDPs, which iter-
atively plans for a single agent. IMAP assumes that other agents will be available to help the agent with
collaborative actions, and produces constraints to the other agents for the required collaborations. Later
agents that cannot meet these constraints results in backtracking. IMAP also allows for later agents to
improve the previous plans, by taking responsibility for some tasks, causing again backtracking.

We experiment with two types of domains, the well-known box pushing domains and a new Dec-
POMDP domain adapted from the multi-agent planning community. On both domains, we have shown
a scaling up ability well beyond the limitation of current Dec-POMDP planners.

In the future, we will experiment with more domains, focusing on other types of collaborations.
E.g., we would explore cases where each agent completes a part of a task, but there are no collaborative
actions. We will also explore cases where agents execute actions that interfere with other agents, such
as actions that consume a precondition required by another agent. We believe that simple extensions of
our approach will be able to handle such cases.

An important extension of our algorithm is for non-deterministic actions, incurring loops. Our con-
straints must be significantly modified to cope with loops.

Acknowledgements

This work was partially supported by the CBG Cyber Security Center at Ben Gurion University of the
Negev, and by ISF grant 933/11.

References
[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized

control of Markov decision processes. Mathematics of Operations Research, 27:819–840, 2002.
[2] Blai Bonet and Hector Geffner. Belief tracking for planning with sensing: Width, complexity and approxima-

tions. J. Artif. Intell. Res., 50:923–970, 2014.
[3] Daniel Borrajo. Multi-agent planning by plan reuse. In Proceedings of the 2013 international conference

on Autonomous agents and multi-agent systems, pages 1141–1142. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[4] Ronen I Brafman and Carmel Domshlak. From one to many: Planning for loosely coupled multi-agent sys-
tems. In ICAPS, pages 28–35, 2008.

[5] Ronen I. Brafman and Guy Shani. Online belief tracking using regression for contingent planning. Artif.
Intell., 241:131–152, 2016.

27



Iterative Planning for Deterministic QDec-POMDPs Sagi Bazinin and Guy Shani

[6] Ronen I. Brafman, Guy Shani, and Shlomo Zilberstein. Qualitative planning under partial observability in
multi-agent domains. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA., 2013.

[7] Archie C Chapman, Alex Rogers, Nicholas R Jennings, and David S Leslie. A unifying framework for iterative
approximate best-response algorithms for distributed constraint optimization problems1. The Knowledge
Engineering Review, 26(4):411–444, 2011.

[8] Nick R Jennings. Commitments and conventions: The foundation of coordination in multi-agent systems. The
knowledge engineering review, 8(3):223–250, 1993.

[9] Radimir Komarnitsky and Guy Shani. Computing contingent plans using online replanning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.,
pages 3159–3165, 2016.

[10] Radimir Komarnitsky and Guy Shani. Computing contingent plans using online replanning. In AAAI, pages
3159–3165, 2016.

[11] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming decentralized
pomdps: Towards efficient policy computation for multiagent settings. In IJCAI, volume 3, pages 705–711,
2003.

[12] Frans A Oliehoek, Julian FP Kooij, and Nikos Vlassis. The cross-entropy method for policy search in decen-
tralized pomdps. Informatica, 32(4), 2008.

[13] Frans Adriaan Oliehoek, Stefan J Witwicki, and Leslie Pack Kaelbling. Influence-based abstraction for mul-
tiagent systems. In AAAI, 2012.

[14] Sven Seuken and Shlomo Zilberstein. Improved memory-bounded dynamic programming for decentralized
POMDPs. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages
344–351, Vancouver, British Columbia, 2007.

[15] Matthijs TJ Spaan and Francisco S Melo. Interaction-driven markov games for decentralized multiagent plan-
ning under uncertainty. In Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 1, pages 525–532. International Foundation for Autonomous Agents and Multia-
gent Systems, 2008.

[16] Matthijs TJ Spaan, Frans A Oliehoek, and Christopher Amato. Scaling up optimal heuristic search in dec-
pomdps via incremental expansion. In IJCAI Proceedings-International Joint Conference on Artificial Intel-
ligence, volume 22, page 2027, 2011.

[17] Michal Stolba, Antonı́n Komenda, and Daniel L. Kovacs. Competition of distributed and multiagent planners
(codmap). In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA., pages 4343–4345, 2016.

[18] Stefan J Witwicki and Edmund H Durfee. Influence-based policy abstraction for weakly-coupled dec-pomdps.
In ICAPS, pages 185–192, 2010.

28


	Introduction
	Model Definition
	Policy Trees

	Iterative Construction of Policy Trees
	Compilation to a Single Agent Problem
	Adjustments to the Policy Tree
	Extracting Constraints for Other Agents
	Collaborative Action Constraints

	Forward Progression and Backtracking
	Sub-Goal Assignment
	Ensuring Soundness

	Experimental Results
	Domains
	Comparison to Dec-POMDP Solvers
	IMAP on Larger Problems

	Discussion and Related Work
	Conclusion

