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Abstract

We provide an in-depth study of the knowledge-theoretic aspects of communication
in so-called gossip protocols. Pairs of agents communicate by means of calls in order to
spread information—so-called secrets—within the group. Depending on the nature of such
calls knowledge spreads in different ways within the group. Systematizing existing liter-
ature, we identify 18 different types of communication, and model their epistemic effects
through corresponding indistinguishability relations. We then provide a classification of
these relations and show its usefulness for an epistemic analysis in presence of different
communication types. Finally, we explain how to formalise the assumption that the agents
have common knowledge of a distributed epistemic gossip protocol.

1 Introduction

In the gossip problem [33, 7] a number of agents, each one knowing a piece of information (a
secret) unknown to the others, communicate by one-to-one interactions (e.g., telephone calls).
The result of each call is that the two agents involved in it learn all secrets the other agent knows
at the time of the call. The problem consists in finding a sequence of calls which disseminates
all the secrets among the agents in the group. It sparked a large literature in the 70s and 80s
[33, 7, 18, 9, 31], typically on establishing—in the above and other variants of the problem—the
minimum number of calls to achieve dissemination of all the secrets. This number has been
proven to be 2n− 4, where n, the number of agents, is at least 4.

The gossip problem constitutes an excellent toy problem to study information dissemina-
tion in distributed environments. A vast literature on distributed protocols has taken up the
problem and analyzed it together with a wealth of variations including different communication
primitives (e.g., broadcasting instead of one-to-one calls), as well as communication structures
(networks), faulty communication channels [10], and probabilistic information transmission,
where the spreading of gossips is used to model the spread of an epidemic [6, 30]. Surveys are
[15, 24, 21, 25].

Background The present paper investigates a knowledge-based approach to the gossip prob-
lem in a multi-agent system. Agents perform calls following individual epistemic protocols they
run in a distributed fashion. These protocols tell the agents which calls to execute depending
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on what they know, or do not know, about the information state of the agents in the group.
We call the resulting distributed programs epistemic gossip protocols, or gossip protocols, for
short. Such protocols were introduced and studied in [5, 1]. ‘Distributed’ means that each agent
acts autonomously, and ‘epistemic’ means that the gossip protocols refer to the agents’ knowl-
edge. The reliance of these protocols on epistemic properties makes them examples of so-called
knowledge-based protocols, as studied in the context of distributed systems [29, 27, 20, 13].

Besides the aforementioned [5, 1], a number of papers have recently focused on epistemic
gossip protocols. In [23] gossip protocols were studied that aim at achieving higher-order
shared knowledge, for example knowledge of level 2 which stipulates that everybody knows
that everybody knows all secrets. In particular, a protocol is presented and proved correct that
achieves in (k+1)(n−2) steps shared knowledge of level k. Further, in [11] gossip protocols were
studied as an instance of multi-agent epistemic planning that is subsequently translated into
the classical planning language PDDL. More recently, [34] presented a study of dynamic gossip
protocols in which the calls allow the agents not only to share the secrets but also to share the
communication channels (that is, who can call whom). In turn, [3] studied the computational
complexity of distributed epistemic gossip protocols, while [4] showed that implementability,
partial correctness, termination, and fair termination of these protocols is decidable.

More broadly, the paper positions itself within the long-standing tradition of analysis of
distributed systems from the perspective of epistemic logic [14, 28]. Such a perspective has led in
[29, 27, 13] to a useful level of abstraction allowing one to study a number of topics in distributed
computing from the knowledge theoretic perspective, in particular protocols for the sequence
transmission problem (for instance the alternating bit protocol) in [20], coordination [19], and
secure communication [8], to mention some. The characteristic feature of these programs is
that they use tests for knowledge.

Contributions The form of communication underpinning the epistemic gossip problem may
vary from work to work, and the above papers sometimes make different assumptions on the
nature of communication upon which the considered protocols are based. Little attention has
been devoted to a systematic analysis, with the notable exception of [17], which singled out
some of the key informational assumptions on calls—specifically observability, synchronicity
and asynchronicity assumptions—and systematically studied the effects of such assumptions on
the aforementioned 2n− 4 call-length bound.

It is our claim that research on epistemic gossip protocols can at this point benefit from
a systematisation of the key possible assumptions that a modeler can make on the type of
communication (call) underpinning such protocols. From an epistemic logic point of view, each
call type induces a specific notion of knowledge. The comparison of the resulting definitions of
knowledge is of obvious importance for the study of epistemic aspects of communication.

By ‘type of communication’ we mean the way in which communication takes place and may
be observed, and to focus on it we disregard the type of information exchanged (in particular,
whether higher order knowledge, or communication links may be exchanged—matters we do
not address), or the type of information the agents have initially at their disposal (e.g., whether
it is common knowledge what the number of agents is).

More specifically, here are the features we focus on. First of all, a call between two agents
takes place in the presence of other agents. What these other agents become aware of after
the call is one natural parameter. We call it privacy. The second parameter, that we call
direction, clarifies in which direction the information flows. Here we focus on three possibilities:
they exchange all information, one agent passes all information to the other one, or one agent
acquires all information available to the other one. The final parameter of a call is what we call

37



When Are Two Gossips the Same? Apt, Grossi and van der Hoek

observance. It determines whether the agent(s) affected by the call learn what information was
held by the other agent prior to the call.

By a call type we mean a combination of these three parameters. What the agents know
after a call, or more generally a sequence of calls, depends on the assumed call type. This yields
in total 18 possibilities. The paper provides a framework in which we model these possibilities
in a unified way. This allows us to provide in Theorem 5.1 a complete classification of the
resulting indistinguishability relations. This in turn makes it possible to clarify in Propositions
6.1 and 6.2 the effect of a call type on the truth of the considered formulas. Additionally, we
provide in Proposition 6.7 a natural proposal on how to incorporate into this framework an
assumption that the agents have common knowledge of the underlying protocol.

Paper outline Section 2 introduces gossip protocols by example, and identifies the features
of calls we will focus on. Section 3 introduces the syntax and semantics of a simple epistemic
language to study communication and its effects in gossip protocols, together with some moti-
vating examples. Crucially the semantics introduced is parametrised by the indistinguishability
relations which, for each call type, identify the call sequences that the agents cannot distinguish.
These equivalence relations are systematically introduced and defined in Section 4, and then
compared in terms of their relative informativeness in Section 5. The proposed systematisation
is then applied in Section 6: first, to deliver general results on the analysis of how knowledge
depends on the assumed call types (Section 6.1); second, to offer a natural approach to the
problem of modelling common knowledge of protocols in the epistemic gossip setting (Section
6.2). Finally, Section 7 summarises our results and charts several directions for future research.

2 A Typology of Calls

We start by recalling the notion of a gossip protocol, moving then to introduce the formal set-up
of the paper.

2.1 Gossip protocols

Gossip protocols aim at sharing knowledge between agents in a pre-described way. In a dis-
tributed protocol several agents may decide to initiate a call at the same time. Let us now
consider such an epistemic protocol, so one in which the agents refer to their knowledge.

Protocol 1 (Hear my secret). Any agent a calls agent b if a does not know that b is familiar
with a’s secret.

This protocol has been proven in [1] to terminate and be correct, under specific assump-
tions on the type of communication taking place during each call. In this paper we aim at
providing a systematic presentation of such assumptions and at an analysis of their logical
interdependencies.

Throughout the paper we assume a fixed finite set Ag of at least three agents. We further
assume that each agent holds exactly one secret and that the secrets are pairwise different.
We denote by S the set of all secrets, the secret of agent a by A, the secret of agent b by B,
and so on. A secret can be any piece of data, for instance birthday, salary or social security
number. Furthermore, we assume that each secret carries information identifying the agent to
whom this secret belongs. So once agent b learns secret A she knows that this is the secret of
agent a.
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2.2 Calls

In the context of gossip protocols calls constitute the sole form of knowledge acquisition the
agents have at their disposal. Each call concerns two agents, the caller (a, below) and the
callee (b, below). We call a the partner of b in the call, and vice versa. Any agent c different
from a and b is called an outsider. We study the following properties of calls:

• privacy , which is concerned with what the outsiders note about the call,

• direction , which clarifies the direction of the information flow in the call,

• observance , which clarifies, when an agent a is informed by b, whether a sees b’s secrets
before adding them to her own set, or only sees the result of the fusion of the two sets of
secrets.

More specifically, we distinguish three privacy degrees of a call where agent a calls b:

• : every agent c 6= a, b notes that a calls b,

• : every agent c 6= a, b notes that some call takes place, though not between whom,

• : no agent c 6= a, b notes that a call is taking place.

Intuitively, these degrees can be ordered as <p <p , with meaning no privacy at all,
ensuring anonymity of the caller and callee, and denoting full privacy.

We distinguish three direction types, in short directions, of a call:

• push , written as .. As a result of the call the callee learns all the secrets held by the
caller.

• pull , written as /. As a result of the call the caller learns all the secrets held by the
callee.

• push-pull , written as 3. As a result of the call the caller and the callee learn each other’s
secrets.

Depending on the direction of a call between a and b, one or both agents can learn directly
new information thanks to it. We say that these are the agents affected in the call. More
formally, an agent a is affected by a call c if c is one of the following forms:

a3b, b3a, b . a, or a / b.

Intuitively, a is affected by the call if it can affect the set of secrets a is familiar with. This
brings us to two possible levels of observance of a call:

• α: During the call the affected agent(s) add the secrets of their partner to their own
secrets, and only after that, inspect the result.

• β: During the call the affected agent(s) inspect the secrets of their partner before adding
them to their own secrets.

Intuitively, the observance level α is less informative for an affected agent than β, because
in the latter case she also learns which secrets were known to the other agent before adding
them to the secrets she is familiar with. Let
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• P = { , , },

• D = {3, /, .},

• O = {α, β}.

Each call between agents a and b is of the shape ab τ , where τ = (p, d, o) ∈ P× D×O is called
its type . So we defined in total 18 call types. To clarify their effect on communication we will
elaborate on some representative call types in Examples 3.3 and 3.4.

The types ( ,3, β) and ( ,3, β) were studied in [5] while the types ( ,3, α), ( , ., α), and
( , /, α), were analyzed in [1]. For a type τ like ( ,3, β), we define τ(p) = , τ(d) = 3 and
τ(o) = β.

Often, the call type (or parts of it) is (are) clear from the context, and we omit it (them).
In our examples, at the level of calls, we often only explicitly mention the direction type. Given
a call between a and b we shall sometimes write it simply as ab for the direction type 3, a . b
for the direction type . and a / b for the direction type /.

3 Language and Semantics

In this section we introduce a modal language for epistemic gossip and its formal semantics.

3.1 Modal language

We are interested in determining agents’ knowledge after a sequence of calls took place. To this
end we use the following modal language L for epistemic logic:

φ ::= FaS | ¬φ | φ ∧ φ | φ ∨ φ | Kaφ,

where a ∈ Ag and S ∈ S.

In what follows we refer to the elements φ of L as epistemic formulas, or in short, just
formulas. We read FaS as ‘agent a is familiar with the secret S’ (or ‘S belongs to the set of
secrets a has learned’) and Kaφ as ‘agent a knows that formula φ is true’. So L is an epistemic
language with the atomic formulas of the form FaS. The above language was introduced in [1].
It is a modification of the language introduced in [5].

Example 3.1. Consider the statement that agent a is familiar with all the secrets. This can
be expressed as the formula ∧

b∈Ag

FaB

that we subsequently abbreviate to Expa (“a is an expert”).

Here and elsewhere for simplicity we refer in the conjunction limits only to agents and not
to their secrets. This convention allows us to write more complex statements, for instance that
each agent is familiar only with her own secret. This can be expressed as the formula∧

a∈Ag
(FaA ∧

∧
b∈Ag,b6=a

¬FaB). (1)

2
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Next, we clarify the use of the knowledge operators. In the presented reasoning we assume
that the agents have the knowledge of the underlying call type. In all cases we assume that the
initial situation is the one in which every agent is only familiar with her own secret, that is,
we assume (1) to be true for each agent before any communication takes place. The examples
provide intuitions about how agents’ knowledge is influenced by the types of calls underpinning
their communications. Such intuitions will then be formalised in Section 3.2.

Example 3.2. Initially, each agent is familiar with her secret and each agent knows this fact.
Additionally, she does not know that any other agent is familiar with a secret different from
her own. This can be expressed by means of the formula∧

a∈Ag
(
∧
b∈Ag

KaFbB ∧
∧

b,c∈Ag,a6=b,b6=c

¬KaFbC)

that holds initially, for all call types. 2

Example 3.3. Suppose there are three agents, a, b and c. Consider the two call types ( ,3, o),
where o ∈ O, and assume the call sequence ac, bc, ab. After it the agents a and b (and c too)
are familiar with all the secrets, which can be expressed as the formula

φ = Expa ∧ Expb,

and both know this fact, which can be expressed as Kaφ ∧Kbφ.
If the observance of the calls is β, agent a also learns that prior to the call ab agent b was

familiar with a’s secret, i.e., with A. This allows a to conclude that agent b was involved in a
call with c and hence agent c is familiar with B. We can express this as

KaFcB.

Contrast the above with the situation when the observance is α. Although again after the
considered call sequence both agents a and b are familiar with all the secrets, now agent a
cannot conclude that agents b and c communicated. Hence agent a does not know whether
agent c is familiar with B, i.e., the formula KaFcB is not true. 2

Example 3.4. Assume the same call sequence as in the previous example but suppose that
the call parameters are now ( , /, o), where o ∈ O. So we consider now the call sequence
c = a / c, b / c, a / b.

Because of the assumed privacy level, after this call sequence agent a knows that agent b
learned the secret C and agent c knows that agent a learned the secret B, i.e., the following
holds after c

KaFbC ∧KcFaB.

Suppose now the privacy degree is and the observance is β. Then we only have KaFbC
as agent a cannot distinguish c from a / c, c / b, a / b. Clearly, KcFaB does not hold after c as
agent c cannot distinguish c from a / c, c / b, b / a.

Finally, if the privacy degree is then for the same reason KcFaB does not hold after c
either. 2

We conclude that what the agents know after a call sequence crucially depends on the
parameters of the calls. Further, the precise effect of a single call on the agents’ knowledge is
very subtle, both for the agents involved in it and for the outsiders.
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3.2 Semantics

We provide now a formal semantics for the modal language L. It is parameterized by a call
type τ .

Gossip situations and calls First we recall the following crucial notions introduced in [1].
A gossip situation is a sequence s = (Qa)a∈Ag, where Qa ⊆ S for each agent a. Intuitively,
Qa is the set of secrets agent a is familiar with in the situation s. Given a gossip situation
s = (Qa)a∈Ag, we denote Qa by sa. The initial gossip situation is the one in which each Qa
equals {A} and is denoted by i (for “initial”). The initial gossip situation reflects the fact that
initially each agent is familiar only with her own secret.

Each call transforms the current gossip situation by possibly modifying the set of secrets
the agents involved in the call are familiar with. The definition depends solely on the direction
of the call.

Definition 3.5. The application of a call c to a gossip situation s is defined as follows, where
s := (Qa)a∈Ag:

c = ab c(s) = (Q′a)a∈Ag, where Q′a = Q′b = Qa ∪ Qb, Q
′
c = Qc, for c 6= a, b.

c = a . b c(s) = (Q′a)a∈Ag, where Q′b = Qa ∪ Qb, Q
′
a = Qa, Q′c = Qc, for c 6= a, b.

c = a / b c(s) = (Q′a)a∈Ag, where Q′a = Qa ∪ Qb, Q
′
b = Qb, Q

′
c = Qc, for c 6= a, b.

This definition captures the meaning of the direction type: for ab the secrets are shared
between the caller and callee , for a . b they are pushed from the caller to the callee, and
for a / b they are retrieved by the caller from the callee. Note that (a3b)(s) = (b3a)(s) and
(a . b)(s) = (b / a)(s), as expected.

In turn, the privacy degree of a call captures what outsiders of the call learn from it and
the observance level determines informally what caller and callee can learn about each other’s
calling history. The meaning of these two parameters will be determined by means of the
appropriate equivalence relations between call sequences.

A call sequence is a finite sequence of calls, all of the same call type. The empty sequence
is denoted by ε. We use c to denote a call sequence and Cτ to denote the set of all call sequences
of call type τ . Given the call sequence c and a call c, c.c denotes the sequence obtained by
appending c with c.

The result of applying a call sequence c to a situation s is defined by induction using
Definition 3.5, as follows

[Base] ε(s) := s,

[Step] c.c(s) := c(c(s)).

Note that this definition does not depend on the privacy degree and observance of the calls.

Truth of formulas We illustrated in Examples 3.3 and 3.4 that each call has an effect on
the knowledge of the agents. After a sequence of calls took place the agents may be uncertain
about the current gossip situation because they do not know which call sequence actually took
place. This leads to appropriate indistinguishability relations that allow us to reason about the
knowledge of the agents. This is in a nutshell the basis of the approach to epistemic gossip
protocols put forth in [1], and upon which we build here.
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In general, to determine what agents know after a call sequence we need to consider an
appropriate equivalence relation between the call sequences. Let c and d be two call sequences
of call type τ and a an agent. The statement c ∼τa d informally says that agent a cannot
distinguish between c and d. The definition of ∼τa crucially depends on the call type τ and
is provided in the next subsection. Here we assume that it is given and proceed to define the
truth of the formulas of the language L with respect to a gossip model (for a given set of
agents Ag) Mτ = (Cτ , {∼τa}a∈Ag) and a call sequence c as follows:

Definition 3.6. Let Mτ be a gossip model for a call type τ and a set of agents Ag, and let
c ∈ Cτ . The truth relation for language L is inductively defined as follows (with Boolean
connectives omitted):

(Mτ , c) |= FaS iff S ∈ c(i)a,

(Mτ , c) |= Kaφ iff ∀d ∈ Cτ such that c ∼τa d, (Mτ ,d) |= φ.

Since the gossip model is clear from the context, we will from now on write c |=τ φ for (Mτ , c) |=
φ. We also write Mτ |= φ (φ is valid in Mτ ) if for all c ∈ Cτ we have Mτ , c |= φ.

So the formula FaS is true after a sequence of calls c whenever agent a is familiar with the
secret S in the gossip situation generated by c applied to the initial gossip situation i. The
knowledge operator Ka is interpreted as is customary in the multimodal S5n logic (see, e.g.,
[12]), so using the equivalence relation ∼τa.

It is important to notice that to determine the truth of a propositional formula (so in
particular to determine which secrets an agent is familiar with) only the direction parameter
of the type of the calls is used. In contrast, to determine the truth of formulas involving the
knowledge operator all three parameters of the call type are needed, through the definition of
the ∼τa relations, to which we turn next.

4 Indistinguishability of Call Sequences

Below we say that an agent a is involved in a call c, and write a ∈ c, if a is one of the two
agents involved in it, i.e., if it is either a caller or a callee in c. So agent a is involved but not
affected (a notion introduced in Section 2) by a call c if c = a . b or c = b / a for some agent b.

4.1 The ∼τa relations

For every call type τ and agent a we define the indistinguishability relation ∼τa⊆ Cτ ×Cτ in
two steps. First we define the auxiliary relation ≈τa (Definition 4.1). Intuitively, the expression
c ≈τa d can be interpreted as “from the point of view of a, if c is an (epistemically) possible call
sequence, so is d, and vice versa”. Then, we define ∼τa as the least equivalence relation that
contains ≈τa.

Definition 4.1. Let a ∈ Ag and fix a type τ . The relation ≈τa is the smallest subset of Cτ×Cτ

satisfying the following conditions:

[Base] ε ≈τa ε.

[Step] Suppose that c ≈τa d and let c and d be calls.

[Step-out
τ
] if Outτa(c, d) then Conclτa(c,d, c, d),

[Step-in
τ
] if Inτa(c,d, c) then Conclτa(c,d, c),
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where the used relations are defined in Table 1. (b is there the partner of a in the call c.)

Agent a is not involved in the last call:

τ(p) Outτa(c, d) Conclτa(c,d, c, d)

a 6∈ c c.c ≈τa d.c

a 6∈ c, a 6∈ d c.c ≈τa d.d

a 6∈ c c.c ≈τa d, c ≈τa d.c

Agent a is involved in but not affected by the last call:

Inτa(c,d, c) Conclτa(c,d, c)

c ∈ {a . b, b / a} c.c ≈τa d.c

Agent a is involved in and affected by the last call:

τ(o) Inτa(c,d, c) Conclτa(c,d, c)

α c ∈ {a3b, b3a, b . a, a / b}, c.c ≈τa d.c
c.c(i)a = d.c(i)a

β c ∈ {a3b, b3a, b . a, a / b}, c.c ≈τa d.c
c(i)b = d(i)b

Table 1: Defining indistinguishability of call sequences

The definition of ≈τa captures the complex effect of each of the three parameters of a call
type on the knowledge of an agent. Let us discuss it now in detail.

The Base condition is clear. Consider now the Step-outτ clause which refers to Table 1, top.
Suppose that c ≈τa d. Consider first the privacy type . According to its informal description
the condition a 6∈ c means that agent a is not involved in the call c but knows who calls whom.
The conclusion c.c ≈τa d.c then coincides with this intuition.

Consider now the privacy type . The conditions a 6∈ c and a 6∈ d mean that agent a is
not involved in the calls c and d, thus according to the informal description of she cannot
distinguish between these two calls. This explains the conclusion c.c ≈τa d.d. Note that this
conclusion is not justified for the privacy type because if c 6= d then agent a can distinguish
between these two calls, so a fortiori between the call sequences c.c and d.d.

Finally, consider the privacy type . According to its informal description, the condition
a 6∈ c means that agent a is not aware of the call c. This justifies the conclusions c.c ≈τa d and
c ≈τa d.c.

Next, consider the Step-inτ clause. It spells the conditions that allow one to extend the ≈τa
relation in case agent a is involved in the last call, c. Table 1, middle, formalises the intuition
that when agent a is not affected by the call c, then we can conclude that c.c ≈τa d.c.

Table 1, bottom, focuses on the remaining case. Consider first the observance α. According
to its informal description, affected agents incorporate the secrets of their partner with their
own secrets and then inspect the result. So we check what secrets agent a is familiar with after
the call sequences c and d are both extended by c. If these sets are equal, then we can conclude
that c.c ≈τa d.c.

In the case the observance is β, the informal description stipulates that the agent inspects
the set of secrets of the call partner before incorporating them with their own secrets. So we
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compare these sets of secrets after, respectively, the call sequences c and d took place. If these
sets are equal, then we conclude that c.c ≈τa d.c. This explains why in this case a reference to
agent b is made in Inτa(c,d, c).

4.2 Some observations

The following observations clarify some properties of the indistinguishability relations ∼τa.

Note 4.2. For all agents a and call types τ

∼τa= (≈τa)∗,

where ∗ is the transitive, reflexive closure operation on binary relations.

Proof. A straightforward proof by induction show that each ≈τa relation is symmetric. This
implies the claim.

Proposition 4.3. For all call types τ if c ∼τa d, then c(i)a = d(i)a.

Proof. By Note 4.2 it is sufficient to prove the conclusion under the assumption that c ≈τa d.
We proceed by induction on the sum k of the lengths |c|+ |d| of both sequences. If k = 0,

then c = d = ε, so the claim holds. Suppose the claim holds for all pairs of sequences such that
the sum of their lengths is < k and that k > 0, |c| + |d| = k and c ≈τa d. By definition ≈τa is
the smallest relation satisfying the Base and Step conditions of Definition 4.1. Let c be the last
call of c or of d if c is empty.

If agent a is not involved in c, then four cases arise, depending on the form of c and d.
We consider one representative case, when c is of the form c′.c, where c′ ≈τa d. Then by the
assumption about c and the induction hypothesis

c(i)a = c′.c(i)a = c′(i)a = d(i)a.

If agent a is involved in but not affected by the last call, then c is of the form c′.c, d is of the
form d′.c, c ∈ {a . b, b / a} and c′ ≈τa d′. Then by the form of c and the induction hypothesis

c(i)a = c′.c(i)a = c′(i)a = d′(i)a = d′.c(i)a = d(i)a.

Finally, if agent a is involved in and affected by the last call, then c is of the form c′.c, d is
of the form d′.c, c ∈ {a3b, b3a, b . a, a / b} and c′ ≈τa d′.

If τ(o) = α, then by assumption c′.c(i)a = d′.c(i)a, i.e., c(i)a = d(i)a. If τ(o) = β, then by
assumption c′(i)b = d′(i)b. Also, by the induction hypothesis c′(i)a = d′(i)a, so by the form of
c

c(i)a = c′.c(i)a = c′(i)a ∪ c′(i)b = d′(i)a ∪ d′(i)b = d′.c(i)a = d(i)a.

Corollary 4.4. For all call types τ , agents a, b and call sequences c

c |=τ KaFaB iff c |=τ FaB.

Proof. By Proposition 4.3 and the definition of truth of KaFaB and FaB.
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5 Classification of the ∼τa Relations

We introduced in the previous section 18 equivalence relations ∼τa, each parametrised by an
agent a. The uniform presentation makes it possible to compare these relations by means of a
classification, which we now provide.

Given two call types τ1 and τ2 we abbreviate the statement ∀a ∈ Ag,∼τ1a ⊂∼τ2a to τ1 ⊂ τ2 and
similarly for τ1 ⊆ τ2 and τ1 = τ2. Such statements presuppose that we systematically change
the types of all calls in the considered call sequences.

The following theorem provides the announced classification. It clarifies in total 153 (=
18·17

2 ) relationships between the equivalence relations.

Theorem 5.1. The ∼τa equivalence relations form preorders presented in Figures 1 and 2. An
arrow → from τ1 to τ2 stands here for τ1 ⊂ τ2, ( , d, o) for the set of six call types with the
privacy degree that are all equal, and ( ,3, o) for the set {( ,3, α), ( ,3, β)}.

( , d, o)

( ,3, o)

( ,3, β)

( ,3, α)

( , ., β)

( , ., β) ( , ., α)

( , ., α)

( , /, β)

( , /, β) ( , /, α)

( , /, α)

Figure 1: Classification of the ∼τa relations when |Ag| = 3.

( , d, o)

( ,3, β)

( ,3, β) ( ,3, α)

( ,3, α)

( , ., β)

( , ., β) ( , ., α)

( , ., α)

( , /, β)

( , /, β) ( , /, α)

( , /, α)

Figure 2: Classification of the ∼τa relations when |Ag| > 3.

The proof of Theorem 5.1 relies on the three lemmas stated below, the proofs of which can
be found in the full version of the paper, [2]. We say here that the call types τ1 and τ2 are
incomparable when neither τ1 ⊆ τ2 nor τ2 ⊆ τ1 holds. The proofs concerning the incompara-
bility that are established below also hold for a stronger definition, namely that τ1 and τ2 are
incomparable when for all agents a neither ∼τ1a ⊆ ∼τ2a nor ∼τ2a ⊆ ∼τ1a holds. This way Figures
1 and 2 can be alternatively interpreted as preorders on the ∼τa equivalence relations, for any
agent a, where an arrow → from τ1 to τ2 stands then for ∼τ1a ⊂∼τ2a .
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Lemma 5.2.

(i) Suppose that τ(p) = . Then each ∼τa is the identity relation.

(ii) Suppose that τ1(p) = τ2(p) = . Then τ1 = τ2.

(iii) If |Ag| = 3 then ( ,3, β) = ( ,3, α).

Below the unspecified parameters are implicitly universally qualified. For example, ( , d, o) ⊂
( , d, o) is an abbreviation for the statement

∀a ∈ Ag ∀d ∈ D ∀o ∈ O ∼( ,d,o)
a ⊂ ∼( ,d,o)

a .

Lemma 5.3.

(i) ( , d, o) ⊂ ( , d, o).

(ii) ( , d, o) ⊂ ( , d, o).

(iii) If |Ag| > 3 or d 6= 3 then ( , d, β) ⊂ ( , d, α).

(iv) If |Ag| = 3, d 6= 3 and o1, o2 ∈ O, then ( , d, o1) ⊂ ( ,3, o2).

(v) ( , d, β) ⊂ ( , d, α).

Lemma 5.4. Let d, d1, d2 ∈ D and o1, o2 ∈ O.

(i) Suppose that |Ag| > 3 or 3 6∈ {d1, d2}, and d1 6= d2. Then ( , d1, o1) and ( , d2, o2) are
incomparable.

(ii) Suppose that d1 6= d2. Then ( , d1, o1) and ( , d2, o2) are incomparable.

(iii) Suppose that |Ag| = 3 and d 6= 3. Then ( ,3, α) and ( , d, α) are incomparable.

(iv) Suppose that |Ag| > 3 or 3 6∈ {d1, d2}, and d1 6= d2. Then ( , d1, β) and ( , d2, α) are
incomparable.

(v) Suppose that |Ag| > 3 or d 6= 3. Then ( , d, α) and ( , d, β) are incomparable.

The above Lemmas imply the classification of the ∼τa relations given in Theorem 5.1 and
visualized in Figures 1 and 2. Indeed, the equalities (represented as sets) are established in
Lemma 5.2, the strict inclusions (that correspond to the arrows) are established in Lemma 5.3,
and Lemma 5.4 implies that no further strict inclusions (i.e., arrows) are present. For example,
there is no arrow in Figure 2 between two different diamond shaped subgraphs that correspond
to the direction types .,3, and / because by Lemma 5.4(iv) for d1 6= d2 the call types ( , d1, β)
and ( , d2, α) are incomparable.

6 Applications of the Classification

The section shows how the above systematisation of ∼τa relations, through the standard epis-
temic logic semantics of Definition 3.6, enables general insights into the epistemic effects of call
sequences and offers a natural handle on how to model assumptions to the effect that agents
have common knowledge of the protocol in use.
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6.1 Epistemic effects of communication types

The above classification is useful in order to draw general epistemic consequences in presence
of different communication types. Below we will be using two fragments of L:

• L+
1 , consisting of the literals FaS and ¬FaS, ∧,∨ and Ka,

• L+
2 , consisting of the atomic formulas FaS, ∧,∨ and Ka.

Proposition 6.1. Consider two call types τ1 and τ2 such that τ1(d) = τ2(d).

(i) For all literals ψ and all c, c |=τ2 ψ =⇒ c |=τ1 ψ.

(ii) If τ1 ⊆ τ2 then

for all formulas φ ∈ L+
1 and all c, c |=τ2 φ =⇒ c |=τ1 φ.

Proof.
(i) By assumption τ1(d) = τ2(d), so both occurrences of c refer to identical call sequences.
Hence for all atomic formulas FaS and all c, c |=τ2 FaS iff c |=τ1 FaS.

(ii) We proceed by induction on the structure of φ. The only case that requires explanation is
when φ is of the form Kaψ. Suppose that c |=τ2 Kaψ. To prove c |=τ1 Kaψ take a call sequence
d such that c ∼τ1a d. By assumption τ1 ⊆ τ2, hence c ∼τ2a d and so d |=τ2 ψ. By the induction
hypothesis d |=τ1 ψ, so by definition c |=τ1 Kaψ.

We finally compare knowledge for call types with different direction types. Then claim (i)
in the above Proposition does not hold anymore. Indeed, for τ1 and τ2 such that τ1(d) = 3 and
τ2(d) = . we have ab |=τ2 ¬FaB but not ab |=τ1 ¬FaB. However, the following weaker claim
does hold.

Proposition 6.2. Consider two call types τ1 and τ2 such that τ1(d) = 3.

(i) For all atomic formulas ψ and all c, c |=τ2 ψ =⇒ c |=τ1 ψ.

(ii) If τ1 ⊆ τ2 then

for all formulas φ ∈ L+
2 and all c, c |=τ2 φ =⇒ c |=τ1 φ.

Proof. By Proposition 6.1 we can assume that τ2(d) 6= 3.
(i) We use induction on the length |c| of c. Assume that τ2(d) = .. If |c| = 0 then c = ε and
ε |=τ2 FcD iff D = C iff ε |=τ1 FcD. Now suppose the claim is proven for c and consider c.ab.

For any agent c 6= b, we have by Definition 3.5 c.a . b |=τ2 FcD iff c |=τ2 FcD, which
implies by the induction hypothesis c |=τ1 FcD, and hence c.a3b |=τ1 FcD. For agent b, we
have c.a . b |=τ2 FbD iff (c |=τ2 FaD or c |=τ2 FbD) and c.a3b |=τ1 FbD iff (c |=τ1 FaD or
c |=τ1 FbD), so the claim for b holds by the induction hypothesis, as well.

The proof for τ2(d) = / is analogous and omitted.

(ii) The claim follows by (i) and the argument used in the proof of Proposition 6.1.

Proposition 6.1 holds for example for τ1 = ( ,3, β) and τ2 = ( ,3, α), since by Theorem 5.1

( ,3, β) ⊂ ( ,3, β) ⊂ ( ,3, β) ⊂ ( ,3, α).

In turn, Proposition 6.2 holds for example for τ1 = ( ,3, β) and τ2 = ( , ., α), since by
Theorem 5.1

( ,3, β) = ( , ., β) ⊂ ( , ., β) ⊂ ( , ., β) ⊂ ( , ., α).
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6.2 Common knowledge of protocols

When reasoning about specific protocols it is necessary to limit the set of considered call se-
quences to those that are ‘legal’ for it. When the agents form a graph given in advance one
can simply limit the set of considered call sequences by allowing only syntactically legal calls.
This affects the definition of semantics and can be of importance when reasoning about the
correctness of specific protocols.

For example, in [1] a specific protocol for a directed ring is proved correct (Protocol R2 on
page 61, for 3 or 4 agents) by allowing for each agent a only the calls between her and her
successor a⊕1, and using the fact that the formula KaFa⊕1A	1→ FaA	1 is then true. Here
A 	 1 is the secret of the predecessor of agent a, so this formula states that if agent a knows
that her successor is familiar with the secret A 	 1 of her predecessor then agent a is familiar
with the secret A	 1.

A more challenging task is to incorporate into the framework an assumption that the agents
have common knowledge of the underlying protocol.1

Example 6.3. Consider Protocol 1 (Hear my Secret) from Section 2 with the direction type
3. Recall that in this protocol an agent a can call agent b if ¬KaFba is true after the current
call sequence. So each pair of agents can communicate at most once.

Assume now four agents a, b, c, d. Then the call sequence ab, bc, bd is compliant with the
protocol independently on the assumptions about the privacy degree and observance. Let us
analyse the situation after this call sequence took place.

Assume first the privacy degree . Then agent c knows which calls took place and hence
knows that after the third call agent d is familiar with her secret, C. So after these three calls
agent c cannot call agent d anymore.

The situation changes when the privacy degree is . Through the second call agent c learns
the secret A, so she knows that the first call was ab or ba. Agent c is not involved in the third
call, but by the assumed privacy degree she still knows that a third call has taken place.

Assume now that the agents have common knowledge of the protocol. So agent c knows
that each pair of agents can communicate at most once. Hence she can conclude that d must be
involved in the third call and consequently that the third call was between agent d and agent
a or b. Agent c therefore now knows that after the third call agent d is familiar with at least
3 secrets: A,B,D if the call was with agent a or A,B,C,D if the call was with agent b. But
agent c cannot anymore conclude that agent d is familiar with her secret, C, and consequently
can call d.

Finally, consider the privacy degree . Then agent a does not know whether any calls took
place after the call ab. In particular she cannot conclude that any of the agents c and d are
familiar with her secret and hence can call either c or d. 2

To discuss the matters further let us be more precise about the syntax of the protocols.
An epistemic gossip protocol (in short a protocol) consists of the union of |Ag| sets of
instructions, one set for each agent. Each instruction is of the form

if φ then execute call c,

in symbols φ → c, where φ is a Boolean combination of formulas of the form Kaψ, where a is
the caller in the call c. The formula φ is referred to as an epistemic guard . Such instructions

1This issue was identified as an open problem for epistemic gossip in [1]. The same issue manifests itself in
other knowledge-based asynchronous protocols, such as the one investigated recently in [26].
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are executed iteratively, where at each time one instruction is selected (at random, or based on
some fairness considerations) whose guard is true after the call sequence executed so far.2

We therefore view a protocol P as a set of instructions φ→ c. For example, the instructions
composing Protocol 1, are of the form

¬KaFbA→ ab

for all agents a and b. That is, if a does not know whether b is not familiar with her secret, a
calls b.

To justify the restriction on the syntax of the epistemic guards note the following observation.

Note 6.4. Consider a call type τ such that τ(p) = . Then for all agents a, b, c and all call
sequences c and formulas φ

c |=τ Kaφ iff c.bc |=τ Kaφ.

Consequently, the same equivalence holds for all formulas that are Boolean combinations of
formulas of the form Kaφ, so in particular for all epistemic guards used in the instructions for
agent a.

Proof. By Definition 4.1 if the privacy type of τ is then c ∼τa c.bc, which implies the claim.

This note states that the calls in which agent a is not involved have no effect on the truth of
the epistemic guards used in the instructions for agent a. If we allowed in the epistemic guards
for agent a as conjuncts formulas not prefixed by Ka, this natural and desired property would
not hold anymore.

Indeed, assume the privacy type and consider the protocol for three agents, a, b, c, in
which the only instructions are ¬FbA∧FbC → ab for agent a and ¬FbC → bc for agent b. Then
initially only the call bc can be performed. After it, the call ab can be performed upon which
the protocol terminates. In other words, the call bc, of which agent a is not aware, affects the
truth of its epistemic guard, which contradicts the idea behind the privacy type .

For the privacy type this restriction on the syntax of the epistemic guards is not needed
as then all formulas are equivalent to the propositional ones.

Note 6.5. Consider a call type τ such that τ(p) = . Then for all agents a and all formulas φ
and call sequences c

c |=τ Kaφ iff c |=τ φ.

Proof. This is a direct consequence of the fact that when the privacy type of τ is then by
Lemma 5.2(i) each relation ∼τa is the identity.

Let us return now to the matter of common knowledge of a protocol. In Definition 4.1 the
τ -dependent indistinguishability relations are constructed assuming that any call is possible
after any call sequence. This builds in the resulting gossip models Mτ = (Cτ , {∼τa}a∈Ag) the
assumption that agents may consider any call sequence possible in principle, including calls
that are not legal if we assume that the agents have common knowledge of the protocol in use.

Specifically, given a gossip model Mτ = (Cτ , {∼τa}a∈Ag) and a protocol P we define the
computation tree Cτ

P ⊆ Cτ of P (cf. [1]) as the set of call sequences inductively defined as
follows:

[Base] ε ∈ Cτ
P ,

2This simple rendering of protocols suffices for the purposes of this section. More sophisticated formalizations
of epistemic gossip protocols have been provided in [5, 1].
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[Step] If c ∈ Cτ
P and c |=τ φ then c.c ∈ Cτ

P , where φ→ c ∈ P .

So Cτ
P is a (possibly infinite) set of finite call sequences that is iteratively obtained by performing

a ‘legal’ call (according to protocol P ) from a ‘legal’ (according to protocol P ) call sequence.
We refer to such legal call sequences as P -compliant.3

Note however, that when building such a computation tree, the epistemic guard φ is eval-
uated with respect to the underlying gossip model Mτ , which may well include call sequences
that are not P -compliant. So in order to restrict the domain of the gossip model to only P -
compliant sequences, the epistemic guards of the protocol need to be evaluated, and to do that
one needs in turn a gossip model, which contains only P -compliant sequences.

To resolve this circularity we propose a solution showing how under a natural assumption
on the syntax of the epistemic guards one can construct a gossip model which consists only of
call sequences that are compliant with a given protocol P .

Fix till the end of the section an arbitrary call type τ . First, we introduce the definition of
semantics relativised to a set X ⊆Cτ of call sequences. LetMτ

X = (X, {∼τa}a∈Ag), where each
∼τa relation is restricted to X ×X, and let c ∈ X. Then the definition of semantics is the same
as before with the except of the formulas of the form Kaφ:

(Mτ
X , c) |= Kaφ iff ∀d ∈ X such that c ∼τa d, (Mτ

X ,d) |= φ.

Fix now a protocol P and a set X ⊆Cτ . We define the relativised computation tree of P
as the set Cτ

(P,X) obtained by replacing the above Base and Step conditions by

[Base] ε ∈ Cτ
(P,X),

[Step] If c ∈ X ∩Cτ
(P,X) and (Mτ

X , c) |= φ then c.c ∈ Cτ
(P,X), where φ→ c ∈ P ,

and refer to each call sequence from Cτ
(P,X) as (P,X)-compliant.

We now limit the syntax of epistemic guards as follows. A formula K̂aφ is an abbreviation
for ¬Ka¬φ and L̂ denotes the existential fragment of L, consisting of only literals, ∨, ∧, and
K̂a.

The following lemma clarifies the introduction of the language L̂.

Lemma 6.6. If X ⊆ Y ⊆Cτ then

for all formulas φ ∈ L̂ and all c ∈ X, (Mτ
X , c) |= φ =⇒ (Mτ

Y , c) |= φ.

Proof. The only case that requires explanation is when φ is of the form K̂aψ. Suppose that
(Mτ

X , c) |= φ. Then for some d ∈ X such that c ∼τa d, (Mτ
X ,d) |= ψ. By the induction

hypothesis (Mτ
Y ,d) |= ψ, so by definition (Mτ

Y , c) |= φ.

Define next an operator ρP : 2C
τ → 2C

τ

by

ρP (X) = X ∩Cτ
(P,X).

That is, ρP removes from a given set X of call sequences those that are not (P,X)-compliant.
What we are after is a set from which no sequences would be removed, so a fixpoint of ρP .

Proposition 6.7. Suppose the epistemic guards of a protocol P are all from L̂. Then there
exists an X ⊆ Cτ such that X = ρP (X).

3We call CτP a tree since its elements can be arranged in an obvious way in (a possibly infinite, but finitely
branching) tree.
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Proof. Suppose that X ⊆ Y and c ∈ X ∩Cτ
(P,X). We prove that c ∈ Cτ

(P,Y ) by induction on
the length of c. If c = ε, then c ∈ Cτ

(P,Y ) by the Base condition.

Otherwise, by the Step condition c is of the form c′.c, where c′ ∈ X ∩Cτ
(P,X), and for some

φ ∈ L̂, (Mτ
X , c

′) |= φ, and φ → c ∈ P . By the induction hypothesis c′ ∈ Cτ
(P,Y ). Further,

c′ ∈ Y and by Lemma 6.6 (Mτ
Y , c

′) |= φ, so c ∈ Cτ
(P,Y ).

It follows that ρP is a monotonic function, that is, X ⊆ Y implies ρP (X) ⊆ ρP (Y ). By the
Knaster-Tarski theorem of [32] ρP has therefore fixpoints, including a largest and a smallest
one.

Intuitively, when the domain X ⊆Cτ of a gossip model is a fixpoint of ρP , then the restric-
tion of the definition of the indistinguishability relations ∼τa to such a domain has the effect that
the call sequences considered possible by the agents coincide with the call sequences generated
by the protocol. Such gossip models incorporate then the assumption that there is common
knowledge among the agents about the protocol in use.

Furthermore, by the Knaster-Tarski theorem one can construct the largest fixpoint of ρP

by iteratively applying ρP to Cτ . Such fixpoint νρP is the most natural domain for a gossip
model that realises the assumption of common knowledge of the protocol, with the (P, νρP )-
compliant call sequences viewed as the P -compliant ones. When the privacy degree is such a
gossip model has a very simple structure, namely (Cτ

P , {∼τa}a∈Ag).

Corollary 6.8. Consider a protocol P and a call type τ such that τ(p) = . Then νρP = Cτ
P .

Proof. Note that we always have ρP (Cτ ) = Cτ
P . We now show that Cτ

P ⊆Cτ
(P,CτP ) by induction

on the length of the call sequences. We only need to consider the induction step. So consider
some c.c ∈ Cτ

P . By definition c ∈ Cτ
P and c |=τ φ, where φ → c ∈ P , and by the induction

hypothesis c ∈ Cτ
(P,CτP ).

Let φ′ be obtained from φ by removing all occurrences of Ka for all agents a. By Note 6.5
relativised to an arbitrary X ⊆Cτ such that c ∈ X we have c |=τ φ iff c |=τ φ′ iff (Mτ

X , c) |= φ′

iff (Mτ
X , c) |= φ. So in particular (Mτ

CτP
, c) |= φ and hence by definition c.c ∈ Cτ

(P,CτP ).

Consequently ρP (Cτ
P ) = Cτ

P ∩Cτ
(P,CτP ) = Cτ

P and hence Cτ
P is the largest fixpoint of ρP .

The syntactic restriction on the epistemic guards used in Proposition 6.7 is clearly satisfied
by Protocol 1 as its guards can be rewritten as K̂i¬FjI. The same is the case for all protocols
studied in [1].

7 Conclusions

We provided an in-depth study of 18 different types of communication relevant for epistemic
gossip protocols and modelled their epistemic effects in a uniform way through different indis-
tinguishability relations. This led us to establish a precise map of the relative informativeness of
these types of communication (Theorem 5.1). In turn, this result allowed us to prove general re-
sults concerning the epistemic effects of call sequences under different communication regimes
(Propositions 6.1 and 6.2) and to advance a natural proposal on how to model and analyse
agents’ common knowledge of gossip protocols (Proposition 6.7), a still under-investigated is-
sue in the literature.

Several natural directions for future research present themselves. We mention three of them.
The first question concerns the axiomatisation of the modal language L introduced in Section
3. This problem is parametrised by the underlying indistinguishability relations introduced in
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Section 4. For example, by Note 6.5 the equivalence φ↔ Kaφ holds for the privacy type but
not for the other two.

Actually, even the axiomatization of the FaS formulas is not straightforward, as it has to
take into account the nature of the communication. Indeed, consider the following formula,
where a 6= b: (

FbA ∧
∧
i6=a,b

¬FiA
)
→ FaB.

It states that if agent b is the only agent (different from a) familiar with the secret of a,
then agent a is familiar with the secret of b. A more general version is:( ∨

i∈X
FiA ∧

∧
i 6∈X∪{a}

¬FiA
)
→
∨
i∈X

FaI,

where a 6∈ X.

Intuitively it states that if somebody from a group X, to which a does not belong, is familiar
with her secret and nobody from outside of the group X (except a) is familiar with this secret,
then agent a is familiar with a secret of somebody from the group X. Clearly, both formulas
are valid for the 3 direction type.

In general such an axiomatisation project could be carried out at several levels (cf. [16]): by
considering FiS formulas as primitive, as we did in this paper; or analysing them as “knowing
whether” formulas (in epistemic logic notation, KiS ∨Ki¬S) as in [5]. Whether the latter level
of analysis can be easily reconciled with the one proposed in this paper is an interesting open
problem.

The second question addresses the problem of decidability of the 18 definitions of truth
we introduced. In the terminology of this paper [4] established for the call type ( ,3, α) that
the semantics and the definition of truth are both decidable for the formulas without nested
modalities. It would be interesting to establish analogous results for the remaining call types.

The final question concerns the robustness of our analysis, and specifically of the relation-
ships identified in Theorem 5.1, with respect to modes of gossip that involve the transfer of
higher-order epistemic information as introduced and studied in [22, 23]. Intuitively, we would
expect this type of higher-order epistemic communication to have an impact on the effects of
the asymmetric communication types . and / and for the full privacy degree.

Finally, one could envisage other aspects of a call not considered in this framework. For
example in [5] yet another notion of privacy was considered, according to which given a call ab
every agent c 6= a, b noted that at most one call took place. Then for agent c the call sequences ε
and ab are equivalent but ε and ab, ab are not. Another possibility could be to consider a notion
of privacy that is intermediate between and , according to which the caller is anonymous
but the callee not. Then for agent c the call sequences ab and ad are equivalent but ab and bd
are not.
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