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Abstract

Term rewriting has a significant presence in various areas, not least in automated
theorem proving where it is used as a proof technique. Many theorem provers employ
specialised proof tactics for rewriting. This results in an interleaving between deduction
and computation (i.e., rewriting) steps. If the logic of reasoning supports partial functions,
it is necessary that rewriting copes with potentially ill-defined terms. In this paper, we
provide a basis for integrating rewriting with a deductive proof system that deals with
well-definedness. The definitions and theorems presented in this paper are the theoretical
foundations for an extensible rewriting-based prover that has been implemented for the set
theoretical formalism Event-B.

1 Introduction

Term rewriting has an important presence in many areas including abstract data type specifica-
tions and automated reasoning. In this regard, many automated theorem provers employ rewrit-
ing as a proof technique where it may interleave with deduction. PVS [15] and Isabelle/HOL [14]
are higher-order theorem provers that include specialised tactics for rewriting.

The interleaving between rewriting steps and deduction steps poses several difficulties. The
termination of rewriting becomes an issue of paramount importance. Many techniques, such
as term orderings [5], have been explored to provide good practical solutions to termination
problems. We argue that, in the presence of potentially ill-defined terms, rewriting has to be
further constrained.

Ill-defined terms arise in the presence of partial functions. They result from the application
of functions to terms outside their domain. If ill-definedness is a concern, the adopted reasoning
framework has to cope with it. Different approaches exist to reason in the presence of partial
functions. Each of these approaches has its own specialised proof calculus. In [12], it is shown
that it is possible to reason about partiality without abandoning the well-understood domain
of two-valued predicate logic. In that approach, the reasoning is achieved by extending the
standard calculus with derived proof rules that preserve well-definedness across proofs. We
argue that, in order to integrate rewriting as a proof step in such a calculus, it is necessary that
rewriting preserves well-definedness.

In this paper, we present a treatment of term rewriting where term well-definedness is an
issue. Our treatment unifies the notions of well-definedness (WD) and rewriting, and provides
a basis to integrate rewriting as a proof step within the proof system presented in [12]. Central
to our contribution is the concept of WD-preserving rewriting where rewrite rules preserve
well-definedness in the same direction in which they are applied. We establish the necessary
conditions under which rewriting preserves well-definedness. We, finally, show how a rewrite
step can be interleaved with deduction steps in a valid fashion.
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1.1 Practical Setting

Event-B [3] is a formalism for discrete systems modelling based on Action Systems [6]. It can
be used to model and reason about complex systems such as concurrent and reactive systems.
The semantics of a model developed in Event-B is given by means of its proof obligations.
These obligations have to be discharged to show consistency of the model with respect to some
behavioural semantics.

Modelling in Event-B is conducted by defining contexts and machines. Contexts describe
static properties of a model by specifying carrier sets and constants. Machines, as their name
suggests, define the dynamics of a model by means of variables (state) and events (transitions).
Variables are constrained by invariants. A machine can be refined by another machine, and can
see (import) contexts. Proof obligations arise to verify the consistency of a model. For instance,
there are proof obligations to establish the refinement relationship between two machines, and to
establish invariant preservation by the events (transitions). The logic used in Event-B is typed
set theory built on first-order predicate logic, and allows the definition of partial functions.
As such, it is necessary that the used proof system handles ill-definedness. Indeed, the proof
calculus outlined in [12] is the one used to reason in Event-B. Figure 1 illustrates a simple
Event-B model for a door entry system.

The Rodin platform [1] is an open extensible tool for Event-B based on Eclipse1. It offers
support for specification and proof, and it can be easily extended with other useful tools e.g.,
there is a plug-in for model checking called Pro-B [10].

1.2 Motivation

The Rodin platform has a proving infrastructure which is extensible with new proof rules. Ex-
ternal provers can also be used; Atelier-B [2] provers ML and PP have been incorporated into
Rodin. Adding new proof rules requires the use of the Java programming language, knowledge
of Eclipse as well as an understanding of the internal architecture of Rodin. A complication of
such approach is that newly implemented rules could compromise the soundness of the prover.
This work has been carried out as part of an effort to address this limitation of Rodin from the
viewpoint of prover extensibility. This paper discusses some theoretical results in the context
of rewriting and well-definedness. The ideas presented in this paper have resulted in provid-
ing proof support for the set theoretical formalism Event-B [3]. An extensible rewriting-based
prover [11] has been implemented and integrated into Rodin.

Outline. In Section 2, we recall some of the preliminary concepts of term rewriting systems.
Section 3 describes the necessary conditions under which rewriting preserves well-definedness.
Section 4 shows how a WD-preserving rewrite rule can be used in proofs. The application of
the previous ideas to Event-B [3] is shown in Section 5. We conclude in Section 6 by stating
what we have achieved and its impact on the Event-B toolset [7].

1.3 Related Work

The interleaving between deduction and rewriting steps has gathered much interest given its
importance to automated reasoning. In this work, we identify the necessary conditions under
which rewriting can interleave with deduction in the proof calculus defined in [12]. In other
works, this interleaving is studied from different perspectives.

1http://www.eclipse.org/
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Figure 1: A Simple Model for A Door Entry System

Theorem proving modulo is an approach that removes computational steps from proofs by
reasoning modulo a congruence on propositions [9]. The advantage of this technique is that
it separates computation steps (i.e., rewriting) from deduction steps in a clean way. In [9], a
proof-theoretic account of the combination between computations and deductions is presented
in the shape of a sequent calculus modulo. The congruence on propositions, on the other hand,
is defined by rewrite rules and equational axioms.

The combination of rewriting and deduction makes properties of rewrite systems of practical
interest. Termination and confluence properties of term rewriting systems are important, and
have been studied extensively [5, 8]. When rewriting is interleaved with deduction, it is critical
that computation steps terminate. Term orderings, in which any term that is syntactically
simpler than another is smaller than the other, provides a practical technique to assess the
termination of rewrite systems.

In our work, we aim to unify the notions of well-definedness and rewrite systems. Our objec-
tive is to characterise the interaction between deduction and rewriting when well-definedness is
taken into consideration. This is achieved by identifying the necessary conditions under which
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computations can interleave with the deduction steps (i.e., proof rules) in [12].

2 Preliminaries

In this section, we lay the groundwork for the rest of the paper. We briefly introduce the
proof calculus defined in [12]. We also shed some light on basic concepts of term rewriting
systems. For the rest of this paper, we use the language signature Σ defined by a set V of
variable symbols, a set F of function symbols and a set P of predicate symbols. In the next
two definitions, we introduce the syntax of the first-order predicate calculus with equality that
will be used in the subsequent sections.

Definition 2.1 (Term). TΣ, the set of Σ-terms is inductively defined by:
• each variable of V is a term;
• if f ∈ F , arity(f) = n and each of e1, ..., en is a term, then f(e1, ..., en) is a term.

Definition 2.2 (Formula). FΣ, the set of Σ-formulas is inductively defined by:
• ⊥ is a formula;
• p(t1, ..., tn) is a formula provided p ∈ P , arity(p) = n and each of t1, ..., tn is a term;
• t1 = t2 is a formula provided t1 and t2 are terms;
• ϕ ∧ ψ is a formula if ϕ and ψ are formulas;
• ¬ϕ is a formula if ϕ is a formula;
• ∀x.ϕ is a formula if x ∈ V and ϕ is a formula.

Note that other logical operators (e.g., ∃) can be defined (as in [13]) by means of the
operators in the previous definition. For the rest of the paper, we assume a syntactic operator
Var : (FΣ ∪ TΣ)→ P(V ) such that Var(t) is the set of variables occurring free in t.

2.1 The Well-Definedness Operator

The well-definedness operator ’D’ formally encodes what is meant by well-definedness. D :
(FΣ ∪TΣ)→ FΣ is a syntactic operator that maps terms and formulae to their well-definedness
predicates. We interpret the formula D(F ) as being valid if and only if F is well-defined. For
a detailed treatment of the D operator, we refer to [4].

The well-definedness (WD) of terms is defined recursively as follows:

D(x) =̂ > if x ∈ V (2.1)

D(f(t1, ..., tn)) =̂

n∧
i=1

D(ti) ∧ Cft1,...,tn . (2.2)

where Cft1,...,tn effectively defines the domain of the function f . For this study, we assume
that predicate symbols are total. As a result, ill-definedness can only be introduced by terms.
Therefore, we have the following:

D(p(t1, ..., tn)) =̂

n∧
i=1

D(ti) if p ∈ P (2.3)

D(t1 = t2) =̂ D(t1) ∧ D(t2) . (2.4)
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For the well-definedness of other formulae, we use the following expansions [4]:

D(⊥) =̂ > (2.5)

D(¬ϕ) =̂ D(ϕ) (2.6)

D(ϕ ∧ ψ) =̂ (D(ϕ) ∧ D(ψ)) ∨ (D(ϕ) ∧ ¬ϕ) ∨ (D(ψ) ∧ ¬ψ) (2.7)

D(∀x · ϕ) =̂ (∀x · D(ϕ)) ∨ (∃x · D(ϕ) ∧ ¬ϕ) (2.8)

The well-definedness of formulae built using derived logical operators can be straightforwardly
derived, see [13]. An important property of well-definedness conditions is that they are them-
selves well-defined [12]; i.e.,

D(D(P )) ⇔ > .

2.2 The WD-preserving Sequent Calculus

We assume the signature Σ is equipped with a proof theory in the shape of a WD-preserving first-
order sequent calculus similar to the one appearing in [12]. A judgement in the aforementioned
calculus is called a well-defined sequent, and is of the form H `D G defined as follows:

H `D G =̂ D(H),D(G), H ` G .

That is, the well-definedness of H and G is assumed when proving H ` G. Generally speaking,
when proving a sequent H ` G, the approach suggests proving its validity as well as its well-
definedness:

WDD : `D D(H ` G) Validity
D

: H `D G

where D(H ` G) is defined as D(∀−→x ·H ⇒G) such that −→x are the free variables of H and G.
A proof rule is said to preserve well-definedness (WD) iff its consequent and antecedents

only contain well-defined sequents (i.e., `D sequents). Figure 2 introduces the theory FoPCeD

(a collection of WD-preserving inference rules) as developed in [12]. Note that we use x\H to
denote the non-freeness condition of x in H. We also use [x := E]P to denote the syntactic
replacement of all free occurrences of the variable x in P by the term E. The boxed sequents
in Figure 2 correspond to the additional sequents that has to be discharged compared to the
classical version of the rule in order to preserve well-definedness.
Proof rules for derived logical operator (i.e., ⇒, ∨, ⇔ and ∃) can be derived directly from
the rules of FoPCeD . The following two proof rules can be derived with a detour through `
sequents (classical reasoning):

P,D(R) `D R

P `D R
goal

WD

and
P,D(P ) `D R

P `D R
hyp

WD .

In Section 3 and 4, we show how rewriting can be interleaved with the inference rules of
FoPCeD . For the rest of the paper, we assume that the reader is familiar with the basic notions
of rewriting as found, for instance, in [5]. We define the domain and range of a substitution σ
(both finite), denoted Dom(σ) and Ran(σ) respectively, as follows:

Dom(σ) = {x ∈ V | σ(x) 6= x} ,
Ran(σ) = {t ∈ TΣ | ∃x · x ∈ Dom(σ) ∧ t = σ(x)} .
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H,P `D P
hypD

H `D Q

H,P `D Q
monD

H,¬Q `D ⊥
H `D Q

contrD

H,⊥ `D P
⊥hypD

H,P `D ⊥
H `D ¬P

¬goalD
H `D P

H,¬P `D Q
¬hypD

H `D P H `D Q

H `D P ∧Q ∧goalD
H,P,Q `D R

H,P ∧Q `D R
∧hypD

H `D P

H `D ∀x · P
∀goalD (x\H)

H `D E = E
= goalD

H `D [x := E]P

H,E = F `D [x := F ]P
= hypD

H `D D(P ) H `D P H,P `D Q

H `D Q
cutD

H `D D(E) H, [x := E]P `D Q

H,∀x · P `D Q
∀hypD

Figure 2: Inference Rules of FoPCeD

Note that the application of a substitution σ to a term l simultaneously replaces occurrences
of variables by their respective σ-images. For the rest of this work, we restrict substitutions
according to the following definition:

Definition 2.3 (Non-conflicting Substitution). A substitution σ is said to be non-conflicting
iff

[
⋃

t∈Ran(σ)

Var(t)] ∩ Dom(σ) = ∅ .

Intuitively, a non-conflicting substitution can be simulated by a syntactic replacement as
follows:

σ(l) =̂ [x1 := σ(x1)]...[xn := σ(xn)]l .

such that x1, ..., xn are the free variables in l, and xi\σ(xj) for all i and j where 1 ≤ i ≤ n and
1 ≤ j ≤ n. In this case, we have the following important property:

D(σ(l)) ⇔
∧

e∈Ran(σ)

D(e) ∧ σ(D(l)) ,

which can proved by induction on the structure of terms.

One of the main concepts of term rewriting is that of positions in terms and formulae where ε
denotes the root position. Positions within a formula (or a term) describe paths to its subterms
and subformulae. When p is a position in a formula F , we write F |p for the term or formula at
position p in formula F . We write F [s]p for the formula that results from replacing F |p with s
in F .
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3 WD-Preserving Rewriting

In this section, we show how rewriting preserves equality of terms, validity of formulae and
well-definedness of both terms and formulae. The next definitions describe what is meant by a
conditional rewrite rule.

Definition 3.1 (Conditional Identity). A Σ-conditional identity (or simply conditional iden-
tity) is a triplet (l, c, r) ∈ TΣ × FΣ × TΣ. In this case, l is called the left hand side, r the right
hand side, and c the condition of the identity.

Definition 3.2 (Valid Conditional Identity). A conditional identity (l, c, r) is valid iff the
following sequent is provable

c `D l = r .

A conditional identity can be turned into a rewrite rule if it satisfies the syntactic restrictions
presented in the following definition:

Definition 3.3 (Conditional Term Rewrite Rule). A conditional term rewrite rule is a condi-
tional identity (l, c, r) such that:

1. l is not a variable,

2. Var(c) ⊆ Var(l),

3. Var(r) ⊆ Var(l).

In this case, we use the notation l
c−→ r instead of (l, c, r).

In the derivations of Figure 4 and Figure 3, we single out the necessary conditions under
which rewriting can be performed. Figure 3 concerns the rewriting of an hypothesis that has
an occurrence of a rewrite rule left hand side l. Note the presence of the condition σ(c). We
assume that the free variables of σ(c) also occur free in ϕ[σ(l)]p; this ensures that σ denotes
the same substitution in both σ(c) and ϕ[σ(l)]p. We use ‘hyp

WD
;monD ’ to denote that proof

rule monD is applied after applying the rule hyp
WD

. Figure 4, on the other hand, concerns the
rewriting of a goal which has an occurrence of a rewrite rule left hand side l.

The boxed sequents correspond to the conditions under which a formula (an hypothesis or

the goal) can be rewritten. In summary, a conditional term rewrite rule l
c−→ r can be applied to

a formula ϕ[σ(l)]p (the goal or one of the hypothesises) iff the following sequents are provable:

σ(c),D(ϕ[σ(l)]p) `D D(ϕ[σ(r)]p) (3.1)

σ(c) `D ϕ[σ(l)]p⇔ ϕ[σ(r)]p . (3.2)

In the rest of this section, we examine the sufficient restrictions on conditional term rewrite
rules to ensure that sequents 3.2 and 3.1 are provable for a given formula ϕ, a position p and a
substitution σ.

Definition 3.4. A conditional rewrite rule l
c−→ r is said to be WD-preserving iff the following

sequent is provable:

D(l), c `D D(r) .
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We turn our attention to rewrite rule application. Consider applying rule l
c−→ r to formulae

P [s]p where s is a term as is P |p. The left hand side l is matched against s by finding a
substitution σ such that σ(l) = s (one-way matching). Provided σ(c) holds, P [s]p can be
rewritten to P [σ(r)]p.

The following theorem states that the application of a valid and well-definedness preserving
conditional term rewrite rule preserves equality (3.3) and well-definedness (3.4) of terms.

Theorem 3.5. Let l
c−→ r be a conditional term rewrite rule, t be a term, p be a position within

t, and σ be a non-conflicting substitution such that

Dom(σ) ⊆ Var(l) .

If l
c−→ r is valid and WD-preserving, then the following two sequents are provable:

σ(c) `D t[σ(l)]p = t[σ(r)]p , (3.3)

D(t[σ(l)]p), σ(c) `D D(t[σ(r)]p) . (3.4)

Proof. The following lemma is needed to prove Theorem 3.5:

Lemma 3.6. Let l
c−→ r be a conditional term rewrite rule, and σ be a non-conflicting substi-

tution such that

Dom(σ) ⊆ Var(l) .

1. If l
c−→ r is valid, then the following sequent is provable:

σ(c) `D σ(l) = σ(r) .

2. If l
c−→ r is WD-preserving, then the following sequents are provable:

D(σ(l)) ∧ σ(c) `D D(σ(r)) .

Proof. We observe that the sequent

`D ∀−→x · [(D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r] (3.5)

(−→x are the free variables of l) is provable if the sequent

c `D l = r

is also provable. We also observe that the sequent

`D D(∀−→x · [(D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r]) (3.6)

is provable. Since the substitution σ can be simulated as a sequence of syntactic replacements,
instantiating −→x in (3.5) with the appropriate terms in Ran(σ) is the main idea of the proof of
the first claim. The proof of the second claim follows a similar approach.

1. Proof of sequent (3.3): We proceed by induction on the structure of the term t.
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(a) Base Case: t is a variable, t = x. In this case (3.3) becomes

σ(c) `D x[σ(l)]ε = x[σ(r)]ε ,

since variables have only one position (ε the root position). This simplifies to

σ(c) `D σ(l) = σ(r) ,

which is a provable sequent according to Lemma 3.6.

(b) Inductive Case: t is a function, t = f(t1, ..., tn). We distinguish the cases p = ε
and p = iq for 1 ≤ i ≤ n and some position q.

i. Case p = ε: this case is similar to the base case.

ii. Case p = iq: we assume the following inductive hypothesis (in this case a prov-
able sequent)

σ(c) `D ti[σ(l)]q = ti[σ(r)]q ,

and we show that

σ(c) `D f(t1, ..., ti[σ(l)]q, ..., tn) = f(t1, ..., ti[σ(r)]q, ..., tn) ,

is a provable sequent where iq = p.

2. Proof of sequent (3.4): We proceed by induction on the structure of the term t.

(a) Base Case: t is a variable, t = x. In this case (3.4) becomes

D(x[σ(l)]ε), σ(c) `D D(x[σ(r)]ε) ,

since variables only have the root position ε. This simplifies to

D(σ(l)), σ(c) `D D(σ(r)) ,

which is a provable sequent according to Lemma 3.6.

(b) Inductive Case: t is a function, t = f(t1, ..., tn). We distinguish the cases p = ε
and p = iq for 1 ≤ i ≤ n and some position q.

i. Case p = ε: this case is similar to the base case.

ii. Case p = iq: We assume the following inductive hypothesis

D(ti[σ(l)]q), σ(c) `D D(ti[σ(r)]q) ,

and we show that

D(f(t1, ..., ti[σ(l)]q, ..., tn)), σ(c) `D D(f(t1, ..., ti[σ(r)]q, ..., tn)) ,

is a provable sequent where iq = p.

64



Rewriting and Well-Definedness within a Proof System Maamria and Butler

The following theorem asserts that Definition 3.2 and 3.4 are adequate for a conditional
term rewrite rule to preserve validity and well-definedness when applied to a formula.

Theorem 3.7. Let l
c−→ r be a conditional term rewrite rule, f be a formula, p be a position

within f such that f |P is a term, and σ be a non-conflicting substitution such that

Dom(σ) ⊆ Var(l) .

If l
c−→ r is valid and WD-preserving, then the following two sequents are provable:

σ(c) `D f [σ(l)]p⇔ f [σ(r)]p , (3.7)

D(f [σ(l)]p), σ(c) `D D(f [σ(r)]p) . (3.8)

Proof.

1. Proof of sequent (3.7): We proceed by induction on the structure of the formula f . We
show a sketch of the proof, and only cover three interesting cases.

(a) Base Case: f is of the shape r(t1, ..., tn) such that r ∈ P and t1, ..., tn are terms.
In this case, position p can only be of the form iq for some position q and 1 ≤ i ≤ n
since the root position is of a formula. Therefore, (3.7) becomes

σ(c) `D r(t1, ..., tn)[σ(l)]p⇔ r(t1, ..., tn)[σ(r)]p ,

where p = iq for some position q and 1 ≤ i ≤ n. This can be rewritten to

σ(c) `D r(t1, ..., ti[σ(l)]q, ..., tn)⇔ r(t1, ..., ti[σ(r)]q, ..., tn) .

This amounts to proving the following two sequents:

σ(c), r(t1, ..., ti[σ(l)]q, ..., tn) `D r(t1, ..., ti[σ(r)]q, ..., tn) ,

σ(c), r(t1, ..., ti[σ(r)]q, ..., tn) `D r(t1, ..., ti[σ(l)]q, ..., tn) .

Using Theorem 3.5, both sequents can be shown to be provable.

(b) Inductive Case: f is of the shape ϕ ∧ ψ such that ϕ and ψ are formulae. In this
case, (3.7) becomes

σ(c) `D (ϕ ∧ ψ)[σ(l)]p⇔ (ϕ ∧ ψ)[σ(r)]p . (3.9)

Position p can only be of the form p = 1q or p = 2q for some position q. We
distinguish the two cases:

i. p = 1q: In this case, sequent (3.9) becomes

σ(c) `D (ϕ[σ(l)]q ∧ ψ)⇔ (ϕ[σ(r)]q ∧ ψ) . (3.10)

To proceed, we assume the following inductive hypothesis

σ(c) `D (ϕ[σ(l)]q)⇔ (ϕ[σ(r)]q) , (3.11)

and we show that sequent (3.10) is provable.

ii. p = 2q: analogous to the previous case.
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(c) Inductive Case: f is of the shape ∀x · ϕ such that ϕ is a formula. In this case,
(3.7) becomes

σ(c) `D (∀x · ϕ)[σ(l)]p⇔ (∀x · ϕ)[σ(r)]p . (3.12)

Position p can only be of the form p = 1q for some position q. Sequent (3.12)
simplifies to

σ(c) `D (∀x · ϕ[σ(l)]q)⇔ (∀x · ϕ[σ(r)]q) . (3.13)

To proceed, we assume that the following sequent is provable:

σ(c) `D (ϕ[σ(l)]q)⇔ (ϕ[σ(r)]q) , (3.14)

and we show that sequent (3.13) is provable.

2. Proof of sequent (3.8): is similar to the proof of sequent (3.7). We only show one inductive
case.

(a) Inductive Case: f is of the shape ϕ ∧ ψ such that ϕ and ψ are formulae. In this
case, (3.8) becomes

D((ϕ ∧ ψ)[σ(l)]p), σ(c) `D D((ϕ ∧ ψ)[σ(r)]p) . (3.15)

Position p can only be of the form p = 1q or p = 2q for some position q. We
distinguish the two cases:

i. p = 1q: In this case, sequent (3.15) becomes

D((ϕ[σ(l)]q ∧ ψ)), σ(c) `D D((ϕ[σ(r)]q ∧ ψ)) . (3.16)

To proceed, we assume that the following sequent is provable:

D((ϕ[σ(l)]q)), σ(c) `D D((ϕ[σ(r)]q)) , (3.17)

and we show that sequent (3.16) is provable.

ii. p = 2q: analogous to the previous case.

Summary. In this section, we have defined the criteria for the validity and well-definedness
preservation of term rewrite rules when rewriting interleaves with the rule of the proof system
developed in [12]. In the next section, we show how rewriting can be systematically used as a
proof step.

4 Rewriting as a Proof Step

Rewriting can be used in proofs alongside the WD-preserving sequent calculus. Conditional
term rewrite rules which have the same left hand side are grouped together. For this purpose,
we use a more convenient notation. Given a valid and WD-preserving (grouped) conditional
term rewrite rule

l→ c1 : r1

...

cn : rn
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we can add the following proof step to our calculus H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn))
H,P [σ(l)]p `D σ(c1) ∨ ... ∨ σ(cn)
H,σ(c1), P [σ(r1)]p `D R ... H, σ(cn), P [σ(rn)]p `D R

H,P [σ(l)]p `D R
→ hypD (4.1)

under the proviso that all free variables of σ(r) (for all i such that 1 ≤ i ≤ n) occur free
in P [σ(l)]p. This proof step allows the hypothesis P [σ(l)]p to be rewritten to several cases
according to the rewrite rule. Under the proviso that all free variables of σ(ri) (for all i such
that 1 ≤ i ≤ n) occur free in R[σ(l)]p, the following proof step can be added for goal rewriting H `D D(σ(c1) ∨ ... ∨ σ(cn))

H `D σ(c1) ∨ ... ∨ σ(cn)
H,σ(c1) `D R[σ(r1)]p ... H, σ(cn) `D R[σ(rn)]p

H `D R[σ(l)]p
→ goalD . (4.2)

Proof steps (4.1) and (4.2) can be derived using the cut rule, followed by a disjunction elimina-
tion (i.e., case split) after which rewriting can be applied. We now examine some special cases
that can be used to facilitate proofs.

4.1 Unconditional Term Rewrite Rules

A term rewrite rule l
c−→ r is called unconditional iff c =̂ >. In this case, steps (4.1) and (4.2)

can be simplified as follows:

H,P [σ(r)]p `D R

H,P [σ(l)]p `D R
→ uhypD (4.3)

H `D R[σ(r)]p
H `D R[σ(l)]p

→ ugoalD . (4.4)

4.2 Case-complete Grouped Term Rewrite Rules

A grouped term rewrite rule

l→ c1 : r1

...

cn : rn

is called case-complete iff the following sequent is provable:

`D c1 ∨ ... ∨ cn .

In this case, steps (4.1) and (4.2) can be simplified as follows:{
H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn))
H,σ(c1), P [σ(r1)]p `D R ... H, σ(cn), P [σ(rn)]p `D R

H,P [σ(l)]p `D R
→ chypD (4.5)

{
H `D D(σ(c1) ∨ ... ∨ σ(cn))
H,σ(c1) `D R[σ(r1)]p ... H, σ(cn) `D R[σ(rn)]p

H `D R[σ(l)]p
→ cgoalD . (4.6)
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4.3 Top-level Occurrence

Definition 4.1 (Top-Level Occurrence). Let t be a term, f be a formula, p be a position within
f . We say that t has a top-level occurrence in f if f is either of the form

1. q(t1, ..., tn)[t]p where q ∈ P and t1,..., tn are terms, or;

2. (t1 = t2)[t]p where t1 and t2 are terms.

If t has a top-level occurrence in f , then it also has a top-level occurrence in ¬f .

We have the following interesting property:

Proposition 4.2. If the term t has a top-level occurrence in formula f , then the following
holds

`D D(f)⇒ D(t) .

If we further constrain grouped conditional term rewrite rules such that we have

`D D(l)⇒
n∧
i=1

D(ci) ,

Proposition 4.2 can be used to simplify proofs. Let P [σ(l)]p be a formula such that σ(l) occurs
at the top-level. Since the grouped term rewrite rule is valid and WD-preserving, and using
the previous proposition, we have the following

`D D(P [σ(l)]p)⇒ D(σ(l))

and, consequently:

`D D(P [σ(l)]p)⇒
n∧
i=1

D(σ(ci))

under the proviso that all free variables of σ(ci) (for all i such that 1 ≤ i ≤ n) occur free in
P [σ(l)]p. In this particular case, the sequents

H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn)) ,

H, P `D D(σ(c1) ∨ ... ∨ σ(cn))

in (4.1) and (4.2) respectively, are guaranteed to be provable. As such, they could be removed
from the list of sub-goals that the modeller sees.

5 Applications to Event-B

As mentioned in 1.1, Event-B modelling is carried out using two constructs: contexts and
machines. A third construct, called theory, has been implemented to bring a degree of meta-
reasoning to the Rodin platform [7]. The theory construct has the following shape:

1. Sets. A theory can define a number of given sets which define the types on which the
theory is parametrised.

68



Rewriting and Well-Definedness within a Proof System Maamria and Butler

Theory theory name

Sets s1, s2, ...

Metavariables v1, v2, ...

Rewrite Rules r1, r2, ...

End

Figure 5: The Theory Construct

2. Metavariables. A theory can define a number of metavariables that can be used to specify
rewrite rules. Each metavariable is associated with a type; this can be constructed using
the given sets of the theory as well as the built-in types (e.g., Z) using type constructors.
For example, if a given set S is defined within a theory, then P (Z)× S can be used as a
type for a metavariable.

3. Rewrite Rules. Rewrite rules are one-directional equations that can be used to rewrite
formulae to equivalent forms. As part of specifying a rewrite rule, the theory developer
decides whether the rule can be applied automatically without user intervention or inter-
actively following a user request.

The theory construct can be extended to enable the specification of inference rules. In brief, it
facilitates the following:

• specification of proof rules within the same platform providing a degree of meta-reasoning
within Rodin,

• validation of specified proof rules to ensure that the soundness of the prover is not com-
promised.

The validation of rewrite rules is achieved by means of proof obligations. Definition 3.2 and 3.4
defined the criteria for validity and WD-preservation of rewrite rules.

The theory construct has been developed as part of a rule-based prover [11] which, in brief,
offers the following capabilities:

1. Users can develop theories in the same way as contexts and machines. At the moment,
theory development includes specification of rewrite rules including definition of sets and
metavariables. Metavariables must be defined with their types which can be constructed
from the theory sets and any built-in types (e.g., Z) using type constructors (e.g., P).

2. Users can validate rewrite rules through generated proof obligations. The proof obligations
generated for rules are to establish soundness, well-definedness preservation as well as
case-completeness.

3. Users can deploy theories to a specific directory where they become available to the inter-
active and automatic provers of Rodin. Theory deployment adds soundness information
to all deployed rules.
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4. Users can use rewrite rules defined within the deployed theories as a part of the proving
activity. A pattern matching mechanism is implemented to calculate applicable rewrite
rules to any given sequent.

Examples. The following two rules are valid and WD-preserving:

card(i..j)
i≤j−−→ j − i+ 1 (5.1)

card(i..j)
i>j−−→ 0 , (5.2)

where i and j are integers, i..j denotes an integer range, and card denotes the cardinality
operator. The following rules are not WD-preserving:

a
>−→ a

a
(5.3)

(f �− {z 7→ y})(x)
x 6=z−−−→ f(x), (5.4)

where a is an integer, f a relation, x, y, and z are of arbitrary types. Moreover, ‘�−’ denotes
relational override. Rule 5.4 is not WD-preserving since there could be a case where f�−{z 7→ y}
is a function but f is not. For instance, consider f = {1 7→ 2, 1 7→ 3, 2 7→ 4}, then f �− {1 7→
5} = {1 7→ 5, 2 7→ 4}. In this case, (f �− {1 7→ 5})(1) is well-defined, but f(1) is not.

6 Future Work & Conclusions

In this paper, we provided a treatment of well-definedness and rewriting. We singled out the
necessary conditions under which rewriting preserves well-definedness. These conditions are
necessary for the valid interleaving between rewriting steps and deduction in the WD-preserving
proof calculus presented in [12]. In our study, we used the language signature Σ whereby terms
are only defined using other terms. In general, however, terms can also be constructed using
formulae e.g., set comprehension {x ·P}. This changes the well-definedness conditions of terms,
and it is interesting to establish whether the conditions outlined in Definition 3.2 and 3.4 are
indeed sufficient.

We have presented a study unifying the notions of term rewriting and well-definedness in
the context of the interleaving between deduction and rewriting. The results of this paper
provided the theoretical foundations of an extensible rewriting-based prover (also called rule-
based prover) that has been implemented for Event-B.
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