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Abstract

There is an increasing demand from numerous applications such as bioinformatics and
cybersecurity to efficiently process various types of queries on datasets in a multidimen-
sional Non-ordered Discrete Data Space (NDDS). An NDDS consists of vectors with values
coming from a non-ordered discrete domain for each dimension. The BoND-tree index was
recently developed to efficiently process box queries on a large dataset from an NDDS on
disk. The original work of the BoND-tree focused on developing the index construction
and query algorithms. No work has been reported on exploring efficient and effective up-
date strategies for the BoND-tree. In this paper, we study two update methods based on
two different strategies for updating the index tree in an NDDS. Our study shows that
using the bottom-up update method can provide improved efficiency, comparing to the
traditional top-down update method, especially when the number of dimensions for a vec-
tor that need to be updated is small. On the other hand, our study also shows that the
two update methods have a comparable effectiveness, which indicates that the bottom-up
update method is generally more advantageous.

1 Introduction

Various types of queries on non-ordered discrete vector data are used in numerous contempo-
rary applications including genome sequence analysis, internet intruder detection, social network
analysis, and business intelligence. The vectors with non-ordered discrete values coming from
the domain of each dimension constitute a vector space, called the Non-ordered Discrete Data
Space (NDDS). For example, many genome sequence analysis techniques (e.g., DNA sequencing
error correction [11] and back-translated protein query on DNA sequences [15]) rely on process-
ing fixed-length subsequences, so-called k-mers, of one or more target genome sequences. gacct,
aatga, and tagga are examples of k-mers of length 5, which can be considered vectors (e.g.,
< g, a, c, c, t >) in a 5-dimensional NDDS with a domain consisting of non-ordered discrete val-
ues (i.e., nucleotide bases: a, g, t and c) for each dimension. Other applications [4, 17, 18] may
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deal with non-ordered discrete data from domains such as color, gender, season, IP address,
social media symbols, user ids, and text descriptions.

One type of query used in many applications for an NDDS are called box queries. A box
query retrieves vectors from a dataset in an NDDS that have values from a specified subset of
the domain for each dimension. The BoND-tree was recently introduced as a new disk-based
indexing structure specifically designed to support efficient processing of box queries on large
datasets in an NDDS [5]. To maintain the BoND-tree for a dynamically changing dataset in an
NDDS (e.g., to capture changing variants in the genome sequence for a sick person developing
a disease), efficient and effective updates also need to be supported.

The construction (insertion) and query algorithms were presented in the original work of the
BoND-tree [5]. Further study examined the efficient and effective deletion strategies in [6] for
removing vectors from the BoND-tree while maintaining effective support for subsequent box
queries. A straightforward method for performing an update operation is to execute a deletion
of the outdated vector followed by an insertion of the updated form of the vector. However,
other approaches for performing updates in the BoND-tree are yet to be explored. In particular,
alternative approaches for updates may be beneficial when taking into account considerations
such as whether a particular update is independent from a subsequent update or whether an
outdated vector targeted for an update is similar to its new representative form.

Updates have been studied for indexing schemes in a Continuous Data Space (CDS), such
as the R-tree [12] and the R*-tree [1], in the literature [2, 19, 23]. However, the CDS indexing
schemes rely on the natural ordering of underlying data and as such cannot directly be applied to
an NDDS that is what we are interested in here. The update issue has also been studied for some
index trees that may be applicable to an NDDS. For example, index trees for a metric space [3]
(e.g., the vantage-point tree [13, 25]) and string indexing techniques based on the Trie structures
[8] (e.g., the suffix tree [24]) addressed updates in [10] and [9], respectively. However, these are
main memory structures, while we are interested in performing updates on a dynamic indexing
scheme for a large dataset on disk. The M-tree [7] is a disk-based dynamic indexing structure
developed for a metric space, which could be applied to an NDDS although its performance is
not optimized for an NDDS due to its generality [20, 21]. Another disk-based dynamic indexing
structure developed for a metric space is the MB+tree[14] that supports dynamic updates for
similarity searches. However, an index scheme supporting similarity queries, such as range
queries or k-NN queries, may not be effective for an index scheme that supports box queries.
For example, this is evident in the contrasting splitting strategies of the ND-tree [20], which is
an index structure supporting similarity queries in NDDS, to those of the BoND-tree[5]. The
BoND-tree was also found to prefer a different deletion strategy[6] from the traditional deletion
strategies studied for the ND-tree[22].

Effective and efficient update strategies are needed to support the maintenance of the BoND-
tree. An update strategy yielding the BoND-tree that can support efficient box query processing
after updates is said to be effective. An update strategy yielding minimal I/O overhead during
the update procedure is said to be efficient.

In this paper, we will examine two update strategies for the BoND-tree to support efficient
box queries and present the experimental results to evaluate the efficiency and effectiveness of
the proposed update methods. In particular, we present a new bottom-up update strategy for
the BoND-tree that is efficient and effective for both general random updates and increasingly
efficient for updates where the new updated vector is similar on many dimensions to the out-
dated vector. This is useful for applications where an outdated vector targeted for an update
shares many dimensions in common with the updated representation of that vector. For exam-
ple, a vector representing a DNA gene profile in a bioinformatics database may require such an
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update when a small percentage of dimensions have changed in the vector due to mutation or
cancer.

The rest of the paper is organized as follows. Section 2 presents preliminary concepts that
are useful in our discussions and describes the BoND-tree structure. Section 3 discusses our
proposed update methods for the BoND-tree. Section 4 reports the experimental evaluation
results. Section 5 concludes the paper.

2 Preliminaries and the BoND-tree

In this section, we present some geometric concepts for an NDDS [5, 16, 20] that are essential
to our discussion on update strategies for the BoND-tree.

In general, a d-dimensional Non-ordered Discrete Data Space (NDDS) Ωd is defined as the
Cartesian product of d alphabets (domains): Ωd = A1 × A2 × ... × Ad, where an alphabet
Ai(1 ≤ i ≤ d) consists of a finite number of non-ordered discrete values (letters). A discrete
rectangle R in Ωd is defined as R = S1 × S2 × ... × Sd, where Si ⊆ Ai(1 ≤ i ≤ d) is called the
i-th component set of R. The area of rectangle R is defined as |S1| ∗ |S2| ∗ ... ∗ |Sd|. We use a
span to refer to the edge length of a particular dimension for a rectangle, which is normalized
by the alphabet size of the corresponding dimension. The discrete minimum bounding rectangle
(DMBR) of a set SV of vectors is defined as the discrete rectangle whose i-th component set
(1 ≤ i ≤ d) consists of all the letters appearing on the i-th dimension for the vectors in SV .

A box query q on a dataset in an NDDS is a query that specifies a set of values/letters
for each dimension. Let qci ⊆ Ai be the set of values allowed by box query q along the i-th
dimension, where Ai is the alphabet of Ωd on the i-th dimension (1 ≤ i ≤ d). The box query
q with box/window w = udi=1qci will return every vector α in the dataset that falls within this
box/window. A random-span box query has the span of its i-component set on each dimension
i (1 ≤ i ≤ d) to be randomly chosen between 1 to C ≤ |Ai|. A uniform-span box query has the
same size of its i-component set on each dimension i (1 ≤ i ≤ d). We refer to an update with
certain percent fixed dimensions when we set static some percentage of all the dimensions for
an updating vector.

The BoND-tree is a disk-based balanced index tree that grows upwards as vectors are
inserted. The BoND-tree is made up of two types of nodes: non-leaf nodes and leaf nodes.
Each non-root node N in the BoND-tree is represented by a corresponding entry in its parent
node, which consists of a pointer to N and a DMBR covering all the vectors in the subtree
rooted at N . Each entry in a leaf node consists of the indexed vector and a pointer pointing to
an associated object in the underlying database, which may provide further information about
the indexed vector. All the leaf nodes appear at the same level of the index tree.

Each node has a maximum number M of entries that can be contained in it. M is typically
determined by the disk block size. If another entry is added into a node with M entries, this
node is said to be overflow. Each node also has a minimum number m of entries that have to
be contained in it. m is typically determined by a minimum space utilization criterion. If one
entry is removed from a node with m entries, this node is said to be underflow.

When processing a box query using the BoND-tree, at each non-leaf node (starting from
the root), we only need to follow its child node(s) whose DMBR(s) has an overlap with the
query box/window. Those nodes whose DMBRs do not overlap with the query box/window
are pruned during the query processing. More details of the BoND-tree can be found in [5].
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3 Update Methods for the BoND-tree

An update operation is motivated by the need to modify an existing (outdated) vector in a
given database/dataset from an NDDS. There exist multitudinous reasons that may prompt
an update operation. For example, a vector is found to have been inserted with an erroneous
value(s) on some dimension(s); a vector is believed to have undergone a transformation on some
dimensions since it was inserted or last updated; the alphabet for a particular dimension has
been changed so that the vectors with obsolete values on that dimension must be updated.

3.1 Update Concept and Procedure

In general, an update operation can be defined as follows: given an outdated vector α and an
updated vector β, the update operation Update(α, β, S) on a database/dataset S is to ensure
that S has β but not α after the update operation. Usually, α and β share many common
values and differ only in a few dimensions.

For the BoND-tree T built for vectors in a given database S, the update procedure takes as
input an outdated vector α that needs to be updated and an updated vector β that represents
the desired one after the update. First, the procedure issues a query for vector β on the BoND-
tree T to determine if β already exists in T (i.e., S) to avoid any attempt to add a duplicate
vector. If vector β exists in T , then all that is left is to remove vector α from T if it exists.
Specifically, the update procedure tries to locate the leaf node Nα containing vector α in the
BoND-tree T . It follows a path Pα from root node RN to leaf node Nα. If it is not found, a
‘not present’ flag is returned. If such a leaf node Nα is found, the procedure removes vector α
from Nα.

In the event that vector β is not found in T (i.e., S), the procedure can involve one of the
update methods (to be discussed below) that applies its specific update strategy to decide how
the update is performed. Essentially, a suitable leaf node Nβ to accommodate vector β must
be located. Different strategies may choose a different Nβ , which may affect the efficiency and
effectiveness of the update. Note that Nβ may or may not be the same as Nα.

Additional update overhead (I/Os) may also occur if either the removal of vector α from
leaf node Nα triggers an underflow handling process or the addition of vector β to Nβ causes
an overflow splitting process. For the underflow handling process, we adopt the BoND-tree
Inspired Node Reinsertion (BNDINR) strategy [6]. This process is done by invoking function
UnderflowHandling(). The overflow situation is handled by splitting the overflow node into two
according to a set of special heuristics as described in [5]. This process is done by invoking
function OverflowHandling().

Even if no underflow or overflow has occurred, the update procedure may still need to adjust
the DMBRs in the parent nodes along the path Pα from Nα to root RN and/or the parent
nodes along a path Pβ from Nβ to root RN when necessary. This is done by invoking function
ComputeDMBR(), which takes as input a node and its path to the root node and recursively
moves up the BoND-tree until no more DMBR changes are detected.

In the following discussion, we present two update strategies to determine a suitable node
Nβ for vector β, which result in two update algorithms/methods.

3.2 Top-Down Update (TDU) Method

A straightforward strategy for updating vectors in the BoND-tree is the Top-Down Update
(TDU) method. This is accomplished by executing a deletion operation followed by an insertion
operation. First, the outdated vector α is targeted for deletion. Any underflow scenarios are
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handled by function UnderflowHandling(), and the DMBRs in the BoND-tree are adjusted by
function ComputeDMBR() when needed for the case having no underflow. It may be the case
in which vector α does not exist in the BoND-tree at all. Whether or not it exists, the next
step is the same. A query for vector β is performed on the index tree. It may be the case
vector β already exists in the BoND-tree, in which case the update process is finished. If not,
vector β is inserted into the BoND-tree via the root RN . Any overflow cases are handled
by function OverflowHandling(), and the DMBRs in the BoND-tree are adjusted by function
ComputeDMBR() when needed for the case having no overflow. The details of this method are
described in Algorithm TDU.

Algorithm 1: Top-down Update (TDU)

Input: (1) the BoND-tree with root RN ; (2) the outdated vector α; (3) the updated vector β
Output: the root of the modified BoND-tree with α being removed and β being inserted

1 locate the leaf node Nα containing vector α by following a path Pα from root RN ;
2 if vector α exists then
3 remove vector α from leaf node Nα;
4 if Nα is underflow then
5 UnderflowHandling(Nα, Pα);
6 else
7 ComputeDMBR(Nα, Pα);
8 end if
9 end if

10 query vector β;
11 if vector β does not exist then
12 insert vector β via root RN ;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ);
15 else
16 ComputeDMBR(Nβ , Pβ);
17 end if
18 end if
19 return RN ;

In Algorithm TDU, steps 1 through 9 perform the deletion of α from the given BoND-tree.
Steps 10 through 18 perform the insertion of β into the given BoND-tree. Step 12 realizes the
actual insertion into the BoND-tree using the insertion heuristics and procedure of [5]. A path
Pβ from root RN to a suitable leaf node Nβ is taken to insert vector β into the BoND-tree.
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Figure 1: Example of Top-down Update

Figure 1 shows an example of a typical top-down update process. Assume that we want to
perform an update to change an outdated vector “cg...” to an updated vector “cc...” in a BoND-
tree T built for vectors in a given database/dataset. Note that only the first two dimensions
are explicitly displayed in this example. The TDU method first searches for vector “cg...” in
T by following a path from the root to leaf node C. Vector “cg...” is then deleted from node
C in T . This process is illustrated in Figure 1(a). The removal of vector “cg...” causes node
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C to be underflow. Node C is then removed from node B. Assume node B is not underflow
after removing node C. The vectors in node C are then merged/inserted into a sibling node D.
Assume the augmented node D is not overflow – otherwise, an overflow handling process has
to follow. The underflow handling process for node C is illustrated in Figure 1(b). The TDU
method then starts an insertion process for updated vector “cc...” via the root. Assume the
heuristics for insertion [5] selects the path from the root to leaf node F. The updated vector
“cc...” is then placed in node F, as shown in Figure 1(c). If node F is not overflow, the update
process ends. Otherwise, node F has to be split, which may cause its parent node E to be
overflow and split. The overflow and split may be propagated to the root, which may make T
grow one level taller.

3.3 Bottom-Up Update (BUU) Method

An alternative strategy we examine for updating vectors in the BoND-tree is the Bottom-Up
Update (BUU) method. The BUU employs a strategy that caches the node DMBRs along
the path Pα from the root RN down to the leaf node Nα where vector α is to be removed.
Utilizing the cached node DMBRs along Pα, the algorithm will compare the vector β against
the cached DMBRs from the leaf on up to the root until a cached DMBR is found to contain
vector β. At the level this occurs, or the root level if no containing DMBR is found, a local
insertion is performed via the node at this level along path Pα. The normal insertion heuristics
and procedure of the BoND-tree in [5] are applied to transform path Pα into a path Pβ leading
down to a leaf node Nβ that accommodates vector β. Any overflow scenarios are handled by
function OverflowHandling(), and the DMBRs for the new path Pβ from leaf node Nβ up to
the root RN are adjusted by function ComputeDMBR() when needed for the case having no
overflow.

For the BUU, the deletion and insertion operations are integrated into one update operation.
We find a node with a suitable cached DMBR along the path Pα from which a potential new
path Pβ down the tree is formed and a leaf node Nβ for the vector β is located. A suitable
DMBR is the first one from the bottom up which contains vector β. The I/O cost of adding
vector β into the BoND-tree is bound in the worst case by the height of the tree with root RN
when no suitable cached containing DMBR exists.

The best case occurs when vector β is contained in the leaf node Nα’s DMBR. In this case,
vector β can directly replace vector α in Nα. Effectively, leaf node Nα is leaf node Nβ , and
path Pα is path Pβ . Advantageously no underflow or overflow situations occur that demand
additional I/O cost when vector β directly replaces vector α in Nα. Also, the bottom-up update
strategy usually avoids the I/O cost incurred by the top-down update strategy when traversing
the entire path from root RN to the leaf level to find a suitable home for vector β. The details
of this method are described in Algorithm BUU.

In Algorithm BUU, steps 1 through 6 determine the update scenario based on whether an
insertion of vector β would introduce a duplicate. Steps 8 through 20 handle scenarios where
outdated vector α does not exist in the BoND-tree. A standard insertion via the root for vector
β occurs if β did not already exist in the BoND-tree. Steps 22 through 29 handle a scenario in
which we know vector α exists and we need to remove it, but vector β is already present. If
the algorithm reaches step 30, we are in the typical update scenario in which we will remove
outdated vector α and add desired vector β. Steps 30 through 33 handle the case in which the
BoND-tree consists of only one root node which is also a leaf node at the same time. Since α
is directly replaced by β, no underflow or overflow processing is needed. Steps 35 through 40
handle the best case in which vector β becomes a direct replacement for vector α and guarantees
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Agorithm 2: Bottom-Up Update (BUU)

Input: (1) the BoND-tree with root RN ; (2) the outdated vector α; (3) the update vector β
Output: the root of the modified BoND-tree with α being removed and β being present

1 query vector β;
2 if vector β exists then
3 set VectorβAlreadyExist = true;
4 else
5 set VectorβAlreadyExist = false;
6 end if
7 locate leaf node Nα containing vector α by following path Pα from root RN ;
8 if vector α does not exist then
9 if VectorβAlreadyExist then

10 return RN ;
11 else
12 insert vector β via root RN ;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ);
15 else
16 ComputeDMBR(Nβ , Pβ);
17 end if
18 return RN ;
19 end if
20 end if
21 remove vector α from leaf node Nα;
22 if VectorβAlreadyExist then
23 if Nα is underflow then
24 UnderflowHandling(Nα, Pα);
25 else
26 ComputeDMBR(Nα, Pα);
27 end if
28 return RN ;
29 end if
30 if leaf node Nα is the root node RN then // 0 height tree
31 insert vector β into leaf node Nα;
32 return RN ;
33 end if
34 set path Pβ = path Pα ; // finding path for vector β
35 if vector β is contained in leaf node Nα’s DMBR then // β can direct replace α
36 set leaf node Nβ = leaf node Nα;
37 insert vector β into leaf node Nβ ;
38 ComputeDMBR(Nβ , Pβ);
39 return RN ;
40 end if
41 if leaf node Nα underflow then // tree structure changes
42 UnderflowHandling(Nα, Pα);
43 insert vector β via root RN ; // default to insert
44 if Nβ is overflow then
45 OverflowHandling(Nβ , Pβ);
46 else
47 ComputeDMBR(Nβ , Pβ);
48 end if
49 return RN ;
50 end if
51 set node PNi = parent node of leaf node Nα;
52 while PNi is not root && vector β is not contained in PNi’s DMBR do
53 set node PNi = parent node of PNi;
54 end while
55 insert vector β via node PNi ; // new path Pβ taken to leaf node Nβ
56 if Nβ is overflow then
57 OverflowHandling(Nβ , Pβ);
58 else
59 ComputeDMBR(Nβ , Pβ);
60 end if
61 return RN ;
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no underflow or overflow. Steps 41 through 50 handle the underflow situation. In this case, the
update process defaults to a standard insertion of vector β via the root RN since the underflow
handling may have altered the tree structure and the path of cached nodes may be no longer
valid. Steps 51 through 54 climb up the tree until the level where a suitable cached node is
found to insert vector β. In the worst case, this node would be in fact the root RN . Step 55
through 61 perform a local insertion of vector β via the node PNi at this particular level so
that a path Pβ is found to leaf node Nβ .
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Figure 2: Examples of Bottom-up Update

Figure 2 shows two examples of the bottom-up update process. Figure 2(a) illustrates the
best scenario in which the outdated vector “cg...” is directly replaced by the updated vector
“cc...” in leaf node C since the DMBR for node C contains both vectors. No underflow or
overflow would occur in such a case. The cost of locating the home leaf node for the updated
vector is also the minimum. Figure 2(b) illustrates a typical scenario, in which the BUU method
recursively checks the DMBRs of the entries in the parent node of a current node to see if the
updated vector is contained in any of the DMBRs. Once such a DMBR is found (i.e., the first
DMBR in node B in this example), the updated vector is then inserted into the BoND-tree via
the local subtree corresponding to the found DMBR (i.e., node D in this example) rather than
via the root node for the entire tree.

4 Experiments

Experiments were conducted to evaluate the efficiency and effectiveness of the two presented
update methods for the BoND-tree. The efficiency is measured in terms of the disk I/Os for
performing the updates. The effectiveness is measured by the box query I/Os (average) on the
resulting BoND-tree after the updates. The update methods were implemented in C++ on a
Dell PC with a 3.6 GHz Intel Core i7-4790 CPU, 12 GB RAM, 2 TB Hard Drive, and Linux
3.16.0 OS.

Two sets of 1,000 randomly-generated box queries were performed on the resulting index
tree. One set consists of random-span box queries with a random span (edge length) ranging
from 1 to half of the alphabet size for each dimension of the query box. The other set consists
of uniform-span box queries with a uniform span of 2 for each dimension of the query box. The
disk block size (i.e., the tree node size) was set at 4 KB. In the experiments, we also introduced a
“fixed dimension percentage” parameter concerning the updates such that the desired updated
vector was guaranteed to have certain values in common with the outdated vector on at least
0%, 25%, 50%, or 75% of its dimensions.

A synthetic data generator was used to generate random data with the uniform distribution.
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Both synthetic datasets and real genome datasets were used in the experiments. A BoND-tree
was built to index each dataset. Some representative results from our experiments are reported
as follows.

4.1 Update Efficiency

In the first set of experiments, we applied each of the two update methods to update 50%, 70%,
and 90% of the vectors from each BoND-tree. Tables 1 ∼ 4 show the I/O cost incurred from
the update process when updating the dataset of synthetic data with 16 dimensions and an
alphabet of size 10.

Table 1 shows that, when an updated vector is free to change along all dimensions and
become completely distinct from an outdated vector, the bottom-up update method (BUU) is
comparable to top-down update (TDU) method. However, the bottom-up update method is
consistently marginally better because it is bounded in the worst case by the performance of
the top-down update method.

Table 1: Number of I/Os for Updates on BoND-
trees for Synthetic Datasets with Dimensionality
= 16, Alphabet Size = 10, 0% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151639 18888607
2 M 70% 26860623 26491901

90% 34573355 34099559

50% 57034309 56728483
6 M 70% 79856600 79428802

90% 102684411 102134677

50% 95012649 94507540
10 M 70% 133016214 132308510

90% 171019290 170109021

Table 2: Number of I/Os for Updates on BoND-
trees for Synthetic Datasets with Dimensionality
= 16, Alphabet Size = 10, 25% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19152093 18642310
2 M 70% 26863947 26150218

90% 34575678 33659498

50% 57033823 55939969
6 M 70% 79856697 78324221

90% 102684192 100713707

50% 95012889 93233586
10 M 70% 133016356 130523685

90% 171019154 167816000

Table 3: Number of I/Os for Updates on BoND-
trees for Synthetic Datasets with Dimensionality
= 16, Alphabet Size = 10, 50% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151237 18083357
2 M 70% 26855383 25356375

90% 34579733 32649765

50% 57033695 54406359
6 M 70% 79855557 76175575

90% 102682787 97965034

50% 95012813 90806427
10 M 70% 133016223 127120088

90% 171019053 163437333

Table 4: Number of I/Os for Updates on BoND-
trees for Synthetic Datasets with Dimensionality
= 16, Alphabet Size = 10, 75% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19125252 16412311
2 M 70% 26818328 23022498

90% 34524669 29642270

50% 57027989 49738937
6 M 70% 79845601 69644132

90% 102667407 89556492

50% 95012452 83190257
10 M 70% 133015786 116444361

90% 171019251 149730814

Tables 1 ∼ 4 show that increasing the similarity (0% to 75% of fixed dimensions) between
an outdated vector and the updated vector clearly yields increasingly better performance for
the bottom-up update method over the top-down update method. A similar efficiency benefit
with the bottom-up update method was observed on real genome data (see Table 5).

These tables also show that the top-down update method has negligible differences in I/O
cost for performing updates regardless of whether an updated vector is at all related to the
outdated vector it is replacing. This is consistent with one’s intuition because the top-down
update method issues a removal for the outdated vector, and then always issues an insertion via
the root node for the updated vector in all cases. In contrast, the bottom-up update technique
does try to capitalize on any relationship between the updated vector and the outdated vector.
Less I/O is incurred as an updated vector traverses less levels in the BoND-tree to find a suitable
node location to perform a local insertion.
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Table 5: Number of I/Os for Updates on BoND-
trees for Real Genome Datasets with Dimension-
ality = 20, Alphabet Size = 4, 75% Fixed Dimen-
sions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19016031 16851815
2 M 70% 26629245 23604711

90% 34246081 30362353

50% 57051316 51512964
6 M 70% 79895890 72180793

90% 102738854 92848747

50% 95099141 86886452
10 M 70% 133167594 121698210

90% 171252292 156576717

Table 6: Number of I/Os for Box Queries with
Uniform-Span = 2 on BoND-trees after Updates
for Synthetic Datasets with Dimensionality = 16,
Alphabet Size = 10, 75% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 34.336 34.286
2 M 70% 35.067 35.088

90% 35.445 35.515

50% 40.916 40.912
6 M 70% 41.026 41.026

90% 41.124 41.122

50% 42.989 42.989
10 M 70% 42.999 42.999

90% 42.998 42.998

4.2 Update Effectiveness

To evaluate the effectiveness of the proposed update methods for the BoND-tree, we exam-
ine the number of I/Os (average) for performing two sets of 1,000 randomly-generated box
queries on the resulting BoND-trees after updates. Table 6 shows the observed performance for
1,000 uniform-span box queries run on the resulting BoND-trees after updates for the synthetic
datasets. Table 7 shows the observed performance for 1,000 random-span box queries run on
the resulting BoND-trees after updates for the synthetic datasets. A similar trend for the query
performance between TDU and BUU on real genome sequence data was observed (results omit-
ted here due to space limit). When comparing the effectiveness between TDU and BUU, the
experimental results show that the query performance obtained by BUU is comparable to that
obtained by TDU. This is important because it demonstrates that bottom-up update method
does not suffer significantly in terms of effectiveness by performing local insertions into a subtree
of the BoND-tree. It is not unusual to see different strategies that offer benefits in efficiency
weighed against a trade-off in effectiveness and vice versa. However, our empirical study shows
that the BoND-tree does not have a significant negative trade-off in terms of effectiveness when
using the bottom-up update method over the top-down update method.

Table 7: Number of I/Os for Box Queries with
Random-Span on BoND-trees after Updates for
Synthetic Datasets with Dimensionality = 16, Al-
phabet Size = 10, 75% Fixed Dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 152.626 152.471
2 M 70% 156.590 156.762

90% 158.553 158.944

50% 240.444 240.411
6 M 70% 235.808 235.794

90% 247.632 247.628

50% 264.862 264.862
10 M 70% 274.353 274.353

90% 275.445 275.445

Table 8: Space Utilization for BoND-trees after
Updates for Synthetic Datasets with Dimensional-
ity = 16, Alphabet Size = 10, 75% Fixed Dimen-
sions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.584311 0.584201
2 M 70% 0.584396 0.583958

90% 0.585223 0.584993

50% 0.655938 0.655842
6 M 70% 0.648190 0.648130

90% 0.643987 0.643862

50% 0.591704 0.591675
10 M 70% 0.590900 0.590859

90% 0.590539 0.590486

4.3 Space Utilization

When evaluating an index tree, people usually also examine the space utilization which indicates
how efficient the space is utilized for the index tree. We examined the space utilization of the
BoND-trees after the updates. The typical space utilization statistics are given in Table 8,
which show how the space utilization changes across various database sizes and database update
percentages. We found that the results for the space utilization of the BoND-trees updated by
the two methods were comparable.
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5 Conclusion

Box queries on multidimensional non-ordered discrete vector data are demanded in contempo-
rary applications. To efficiently process box queries, the BoND-tree was recently developed.
Although efficient techniques for query, insertion and deletion were studied for the BoND-tree
in earlier work, developing an efficient and effective update technique is an open issue.

In this paper, we have studied two update strategies for the BoND-tree, i.e., the traditional
top-down update method and the promising bottom-up update method. The bottom-up update
method is bounded by the worst-case of the top-down update method, in the sense of that it
resorts to an insertion of the updated vector via the root if no suitable local insertion node
closer to the leaf level is found. Furthermore, the bottom-up update method promises better
efficiency for applications where an updated vector may be related on some dimensions to the
corresponding outdated vector. This is because the I/O cost is reduced when a local insertion
closer to the leaf level is realized. This strategy does not impact the effectiveness of subsequent
box queries in a significant negative manner when compared to the top-down update method.
Given that the bottom-up update method can provide significant performance boost in terms of
efficiency without a significant trade-off in effectiveness as well as space utilization, it becomes
our general recommendation for processing updates on the BoND-tree in an NDDS.

Future work includes studying the approach to buffering update operations for applications
where a bulk set of updates must be done in which one update is not necessarily independent
from the next, integrating bulk loading and updating techniques, and exploring applications
utilizing the tree maintenance techniques.
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