EPiC Series in Computing Sl
omputing

Volume 50, 2017, Pages 148-161
GCAI 2017. 3rd Global Con-

ference on Artificial Intelligence E ; EE

Quantification and Analysis of the Resilience of Two

Swarm Intelligent Algorithms

Joshua Cherian Varughese'?, Ronald Thenius', Thomas Schmickl!, and Franz
Wotawa?

L Institut fiir Zoologie
Karl Franzens Universitat Graz, Austria
joshua.varughese@uni-graz.at
2 Institut fiir Software Technologie
Technische Universitat Graz, Austria

Abstract

Nature showcases swarms of animals performing various complex tasks efficiently where
capabilities of individuals alone in the swarm are often quite limited. Swarm intelligence is
observed when agents in the swarm follow simple rules which enable the swarm to perform
certain complex tasks. This decentralized approach of nature has inspired the artificial
intelligence community to apply this approach to engineered systems. Such systems are
said to have no single point of failure and thus tend be more resilient. The aim of this
paper is to put this notion of resilience to the test and quantify the robustness of two swarm
algorithms, namely “swarmtaxis” and “FSTaxis”. The first simulation results of the effects
of introducing an impairment in agent-to-agent interactions in these two swarm algorithms
are presented in this paper. While the FSTaxis algorithm shows a much higher resilience
to agent-to-agent communication failure, both the FSTaxis and swarmtaxis algorithms are
found to have a non-zero tolerance towards such failures.

1 Introduction

Swarm intelligence is a well studied phenomenon in bees [9], fireflies [5], fish [2] etc. One of the
most fascinating aspects of swarming behavior is their high tolerance towards loss of individual
entities without losing the overall performance of the superorganism. Another noticeable aspect
of the system is that swarm entities with very limited abilities work together to perform a much
more complex task in a decentralized manner. If successfully implemented in robotics or similar
systems, this will similarly lead to the ability of the system to function resiliently. Inspired by
natural swarms and its resilience, much effort has been directed at designing systems in a
decentralized and self organizing manner for higher resilience and flexibility [1].

Several studies have been conducted in the past about the aforementioned robustness of
swarm intelligent algorithms. In [8], the authors present an analysis of the BEECLUST algo-
rithm and experimentally verify the robustness of the algorithm by adding agents with impaired
temperature sensors. In [4], the authors perform a comprehensive analysis of the resilience of

C. Benzmiiller, C. Lisetti and M. Theobald (eds.), GCAI 2017 (EPiC Series in Computing, vol. 50),
pp. 148-161

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

the swarmtaxis algorithm with respect to failure modes such as IR sensor failure and motor
failure. For the purpose of this paper, we consider the ability of a system to perform its overall
goals even with suboptimal agent behavior to be its “resilience”. In order to approach the
topic of resilience of the algorithms in a comprehensive manner, we need to consider all the
capabilities of the individuals of a swarm and how their failure could affect the overall goals of
the swarm. Broadly speaking about functional components in any robotic system, they can be
categorized into communication systems, sensors and actuators. Failure of each of these sys-
tems can affect swarms in different ways. In this paper, we will concentrate on agent-to-agent
communication failures and its effects on the overall swarm behavior.

This study is part of project subCULTron [13] which aims at developing a swarm of au-
tonomous underwater robots to perform environmental measurements and monitoring. One
of the subtasks that has been identified is the swarm being able to follow a gradient. This
motivation leads the authors to investigate swarm intelligent behaviors which can be used to
navigate a group of robots from a starting point to a predefined goal. Since the robots are
operating underwater in a real world scenario, in order to avoid the loss of robots, it has to
be stressed that the robots need to be connected directly or indirectly at all times. Since this
paper deals with the effects of communication behavior on the overall swarm performance, we
have to clarify what kind of communication is available on the robotic platforms we are working
with. Classic long range underwater communication is mainly based on acoustics. However,
acoustics are expensive and susceptible to interference and cross talk especially when a swarm
of robots need to communicate with one another. Therefore, we will use a local communication
method, blue-light communications, where we exchange small packets of modulated blue-light
signals. The range of such a communication device has been tested to be around one meter
under water. Keeping the limited communication bandwidth and also the possibility of loss of
packets, our algorithms and tasks must be resilient to failure in agent-to-agent communication.
The rest of the paper is dedicated to the selection and resilience test of two swarm intelligent
algorithms.

In the following sections of the paper, we will briefly describe how the algorithms under
consideration work (section 2), then in the section on methods (Section 3), we will establish
a method by which we will simulate failures of the communication devices and also define
performance parameters. Subsequently, we will present the results (Section 4) and discuss
them (Section 5) before concluding the paper (Section 6).

2 Algorithms

Algorithms for collective navigation and foraging problems are the most investigated fields
in swarm intelligence [15][6][11]. These algorithms that are inspired by natural swarms, can
be broadly subdivided into pheromone based navigation [14], navigation based on physical
robot chains [19], navigation based on signaling [3] [17] and navigation based on pheromone-
like gradients [10] [7] which can be considered to be a combination of navigation based on
explicit signaling, pheromones, and robot chains. In [14], the authors use a combination of
cameras and LEDs to project virtual pheromone trails which “evaporate” with time. Such global
observation based algorithms are evidently not suitable for an underwater environment where
global observation is expensive and difficult to implement. In [19], the authors use immobile
robots as “chains” from the “food” to the “nest” which is a navigation algorithm based on
physical robot chains. Considering that the range of blue-light communication mechanism is
low, a large number of robots will be needed to form ”beacons” which would then act as a
navigation landmarks for moving robots. Therefore, such an implementation is also infeasible

149

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

for subCULTron and similar underwater projects. In the approach used by [10] and [7], the
authors present algorithms in which a value is exchanged between robots and this value acts
as a gradient which enables the robots to navigate between the ‘food source” and the “nest”.
This can be viewed as a combination of using explicit signaling and physical robot chains as a
means to emulate the function of a pheromone trail. This approach also has disadvantages with
respect to scalability as it would need a large number of robots for a longer trail. In the taxis
approach presented in [3] and [17], the authors use a single bit ping as a signaling mechanism in
their algorithms to achieve gradient taxis and source localization respectively. This approach
seems to be the most suitable for underwater environments where robots need to stay cohesive
and connected. Henceforth, we will be concentrating on approaches which employ a single ping
communication between agents.

As discussed in Section 1, the underwater environment introduces additional constraints over
and above the widely accepted swarm intelligence criteria [16]. These additional constraints are
as follows:

1. Algorithms must involve cohesive movement of agents.
2. Algorithms must involve purely local communication.

3. Algorithms must aim at navigating a swarm from a starting point to the goal.

The swarmtaxis algorithm [3] and the FSTaxis [17] algorithm are two algorithms which
fulfill all of the above criteria. They are similar to each other in some aspects which include the
utilization of a single ping, purely local communication etc. The main difference between these
algorithms is that the swarmtaxis algorithm uses a technique that forces all the agents to be
connected to its neighbors while FSTaxis demands no such constraint. Despite few differences,
largely, the algorithms are comparable to each other thus enabling us to use the performance
parameters we designed for this comparison. In this section, we will look into each of these
algorithms in detail.

2.1 The swarmtaxis algorithm

The swarmtaxis algorithm [3] uses a differential movement to navigate a swarm to the goal. Each
of these agents is equipped with a communication device to emit a single bit, a long range sensor
to sense the goal, a local communication device to sense the pings (single bit communication)
emitted by other agents and an avoid sensor to detect its surroundings. The “source” or “goal”
can be occluded from one agent by another agent. If an agent is occluded by another agent
from the source, it is said to be in “shadowed” mode; otherwise, it is in “illuminated” mode.
The “avoid radius” of those agents in shadowed mode is lesser than those in illuminated mode.
This means that an agent in illuminated mode can detect agents in shadowed before the latter
can detect the former. While implementing the swarmtaxis algorithm, each agent is allowed to
be in one of the following states: “forward”,“coherence”, “avoid” or “random”. All agents are
set to the “forward” state by default and each agent chooses one of the other states depending
on certain conditions. When the agent detects a drop in the number of locally connected agents
below the entire population of the swarm, it enters the “coherence” state. Alternatively, when
the agent detects a rise in the number of connected agents, it enters the “random” state. When
an agent detects another agent within its “avoid radius”, it enters the avoid state. The behavior
of agents in each of these states is as follows:

1. “Forward” state: The agent moves straight ahead at a constant speed.

150

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

2. “Coherence” state: The agent executes a 180° turn and then enters into the “forward”
state.

3. “Random” state: The agent takes a random turn and then enters into the “forward”
state.

4. “Avoid” state: The agent takes a turn in the opposite direction with respect the agent it
detected within its avoid radius and then enters the “forward” state.

2.2 The FSTaxis algorithm

The Firefly and Slime mold Taxis (FSTaxis) algorithm [17] is an emergent gradient taxis algo-
rithm inspired by the communication strategy used by slime mold and fireflies. In the FSTaxis
algorithm, each agent has three communication states: “pinging”, “refractory” and “inactive”.
Each of the agents has an internal countdown timer whose value is associated with its position
in the environmental gradient and each agent has basic motoring capabilities. During the ex-
ecution of the algorithm, all agents are set to inactive mode. In the inactive mode, the agent
only checks for incoming single bit local communication (pings). When an agent receives a ping
or the agent’s internal timer counts down to zero, it broadcasts a ping (or 1 bit communication)
for a certain duration, say t,. Immediately as the agent receives a ping, apart from relaying
the ping, the agent moves towards this incoming ping. After ¢,, the agent enters the refractory
mode. During refractory time, ¢, the agent ignores all incoming pings. After the refractory
time, the agent sets itself back to inactive mode. The cycle continues when the agent receives
another ping or when its internal timer counts down to zero before it gets a ping.

The above mentioned behavior results in “scroll waves” [12] propagating through the swarm.
Since pinging can be caused by either an agent receiving a ping or by an agent’s internal timer
counting down to zero, the agents with low timer values will hijack the communication frequency
of the entire swarm and force the swarm to ping at hijacker’s frequency and also forces the rest
of the swarm to move towards the hijacker. This movement results in a collective gradient
ascent or descent, depending on the scaling of the gradient value. Thus, gradient taxis is a
result of an emergent tendency of the swarm to move against the scroll waves emerging from
single bit communications between agents. A typical run of the FSTaxis algorithm in simulation
is shown in Figure 2(b). For more details on FSTaxis, please refer to the paper on the FSTaxis
algorithm [17].

It is clear from the description above that the communication module needed in the FSTaxis
algorithm is only the device needed to send and receive pings. This communication module on
each agent is responsible for communicating a single ping to the surrounding agents. In Section
3.1, we will discuss how we simulate failure of such a communication device.

This algorithm enables a group of agents to move together towards the goal (or source).
The goal in the case of the swarmtaxis algorithm is a quantity that can be measured by means
of a long range sensor. For example, a light source can be the goal for the swarmtaxis because
it can be measured using a long range sensor and can be occluded from some agents by other
agents. Since the illuminated agents see the shadowed agents before the latter can see the
former, this results in the illuminated agents moving away from shadowed agents which is in
fact, the direction of the goal. A typical run in the swarmtaxis algorithm is shown in Figure
2(a). As discussed above, the “coherence” state of the swarmtaxis algorithm keeps the agents
together. After the initial publication [3], the authors presented a method where the entire
swarm needed to be connected for the swarm to consistently move forward towards the goal
without entering the “coherence” state. In later modifications of the swarmtaxis algorithm

151

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

Ping behaviour

ping or
tri nactive mode end o
riager Q& refractory
time
end of Coherence state Random state
one ping
Active mode Refractory mode JL ﬁ JL ﬁ
@ Forward state
Motion behaviour JL ﬁ llﬁ

Start motion —) Stop motion Avoid state Avoid state
(shadow)

(illuminated)
distance moved = R

(a) (b)

Figure 1: State transition diagrams of both algorithms are shown in the figures. Figure 1(a)
shows the state transition diagram of the FSTaxis algorithm and Figure 1(b) shows the state
transition diagram of the swarmtaxis algorithm [3]

(a) (b)

Figure 2: Typical runs of the swarmtaxis and the FSTaxis algorithms are shown in Figures 2(a)
and 2(b), respectively. The green patch represents the starting point (randomly chosen), the
yellow patch represents the goal, the blue trace represents the trajectory of the centroid (blue
circle) of the swarm. The red arrow like shapes at the goal represent agents and the patch
colors in Figure 2(b) represent the local gradient value.

[21][4], the authors presented improved version (8 and w versions) of the algorithm, where the
agents were required to communicate more than a single ping in order to reliably work. In
this paper, we will therefore consider the basic algorithm presented in [3], and based on the
connectivity study presented in [21], we will present the improvement in resilience due to the
relaxation of the connectivity constraint c.

3 Methods

In this section, we describe how we simulated' failures in the algorithms of interest and also
which performance measures we used to study the effects of agent-to-agent communication
failure in each of these algorithms. The parameters used for simulation are the same as those

I The simulation of both of these algorithms were done in Netlogo 5.3.1 simulation environment [20].

152

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

used in [17] and [3] for FSTaxis and swarmtaxis respectively. In order to ensure fair comparison,
a common communication range of 3 patches (distance unit in Netlogo) and an agent velocity of
0.5 patches per time step has been used for agents in both algorithms. The initial distribution
of agents around the starting point is a uniform distribution. In order to minimize run to run
differences and enable appropriate comparison, the same starting point and ending point are
used for all experiments conducted henceforth for both algorithms.

3.1 Simulating failures

In Section 2, we discussed briefly about each algorithm and we saw that, in both of these
algorithms, agents use a single bit communication method to let the surrounding agents know
of their presence. A failure in the communication device would mean that the other agents
will not detect the presence of the failed agent. The illustration of such a case in the FSTaxis
algorithm and in the swarmtaxis algorithm is shown in figures 3 and 4 respectively. In order to
simulate this failure, we used a probability based roll of a dice each time the agent attempts to
communicate and decided whether the communication should fail or not. Then, we increased
this failure probability progressively and, for each failure probability, we collected 100 data
sets in order to have substantial data to support our conclusions. In the following subsection,
we discuss data collection during each simulation run and why each parameter is suitable to
analyze the performance of the swarm.

PING TRIGGER

Figure 3: A scenario of ping failure in the FSTaxis algorithm. Agent 1, triggered by its internal
counter, broadcasts a ping. The arrows represent the relaying of that ping to those agents
whose communication device can detect this ping (represented by dotted circles for agents 5
and 2). Agent 2 is normal and relays the ping to the nearby agents. Agent 5 (black color) has
a malfunction in its communication module and hence does not relay the ping to agents 6 and
7. Agent 6 gets the ping via agent 4 and that ping is in turn relayed to agent 7.

3.1.1 Ping failure in FSTaxis

Figure 3 illustrates an event of ping failure in the FSTaxis algorithm. Agent 1, triggered by
its internal counter, broadcasts a ping. The arrows represent the relaying of that ping to the
agents whose communication device can detect this ping. Agent 2 is normal and relays the
ping to the surrounding agents. Agent 5 (black color) has a malfunction in its communication
module and hence does not relay the ping to agents 6 and 7. This makes agent 5 invisible to the

153

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

(b)

Figure 4: Two scenarios of communication in the swarmtaxis algorithm. Scenario 1 is shown on
the left, where agent 1 broadcasts its periodic ping and all other agents in the range will perceive
this ping. Scenario 2 is shown on the right, where agent 1 (black) has a ping malfunction which
prevents it from broadcasting the ping, and hence the other agents in range are blind to the
presence of agent 1.

other agents in the surroundings and in effect, the “original” ping direction is misunderstood
by agent 6. The result is that Agent 7 does not move at all, while agent 6 incorrectly moves
towards agent 4.

3.1.2 Ping failure in swarmtaxis

Figure 4 illustrates two scenarios of ping success and failure in the swarmtaxis algorithm.
In Figure 4(a), a successful scenario of pinging agents within a range is shown. The circle
represents a range within which all agents can communicate with each other. In Figure 4(b),
a failed scenario of pinging is shown. Agent 1 (black) has a malfunction and hence does not
broadcast the ping to the other agents in range. Since the swarmtaxis algorithm is based on
counting the number of connected agents, a failed ping means that the other agents in range
(agents 2, 3, 4, 5) register a decrease in number of connected agents.

3.2 Performance measures

In this subsection, we describe several observer level performance parameters which can be
used to quantify the resilience of each algorithm as well as to compare the algorithms with each
other.

3.2.1 Time performance

One of the intuitive performance measures that points directly to the performance of the swarm
is the time or number of iterations the swarm takes to “converge” to the goal. We define
“convergence” as the centroid of the swarm reaching the goal. The“time to convergence” for
different probabilities of failure is measured for comparison with the other runs. This is a very
intuitive way of penalizing runs which take longer than the baseline time for the respective
algorithm. A typical run with no communication failure takes on average 2,000 iterations
for the FSTaxis algorithm and 10,000 iterations for the swarmtaxis algorithm. The standard
deviation of the number of iterations for each of these algorithms does not exceed 200 iterations.
The difference in the averages of iterations does not imply worse performance as the number

154

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

of iterations are dependent on step size of individual agents and other parameters. During
experimentation with communication failure, it is possible that the swarm never converges to
the goal. In order to prevent infinite run time, keeping in mind the mean and standard deviation
of the number of iterations typically needed for convergence, we limited the number of iterations
to 10 times the number of iterations a swarm needs to converge to the goal with all functions
intact. Thus, the iteration limit is 100,000 iterations for the swarmtaxis algorithm and 20,000
iterations for the FSTaxis algorithm. Therefore the time performance, normalized against its
own ideal performance, can thus be represented as per Equation 1.

number_of _iterations

time = !
per formance iteration_limit W

3.2.2 Optimal path and deviation

From Figures 2(b) and 2(a) it is evident that the typical trajectories of the centroid of the swarm
(hereafter referred to as “centroid trajectory”) for both algorithms do not follow a straight path
from the starting point to the goal. Assuming that the optimal path is a straight line joining the
starting point to the goal, experiments with faulty agent-to-agent communication modules show
that the centroid trajectory has a tendency to swerve away from the optimal path. Therefore,
the deviation of the centroid trajectory from the optimal path has some information about
suboptimal swarm behavior. Following this logic, we consider the error between the actual
path and the optimal path to be a performance measure of the swarm. Figure 5 shows an
illustration of deviation of a centroid trajectory from the displacement vector. Here, “start”
block represents the starting point S = (zs,ys) of the swarm and “goal” block represents the
goal 8 = (24,Yy). The free drawn line traces the actual trajectory 7 of the centroid of the

swarm and the ideal path can be represented as a vector B The trajectory 7 can be represented
as set T of point vectors in cartesian coordinates that the centroid of the swarm passed through
during the actual runs. For each failure probability px, we conducted 100 runs and obtained
the set of all centroid trajectories, Oy, and, for each run, we obtained a set 7; which contains
points Tkji. Tk; corresponds to the trajectory in the k' failure probability and j* run and
Tyj: corresponds to one point in the centroid trajectory of the it" iteration in the j** run with
kth failure probability. Subsequently, the projection of the point vector Dyj; of the point vector

T}ji on was computed. Furthermore, the error vectors, obtained as shown in Equation 5,
can be used to represent the deviation from the optimal path. From all the computed error

vectors, the root mean square error E,:;”S can be obtained across a single run from start to goal

as per Equation 6. Ej’"* represents a window of operation for the centroid trajectory of the

swarm for runs with a certain py. The optimal window of operation is the range of Eg;"* for
all runs with zero probability of failure. Therefore, the set of all Epre for a particular pg, say
€k, as formulated in Equation 7 can be represented on a box-plot to visualize how the window
of operation shifts with changing py.

P = {px|pr=0.0501,015 ...1}
, wherek = 1,2,3, ..., | P|

V pr 3 Ok, where Oy, = {m; | j = 1, 2,..., 100}

—
andi]— = {Tkji| 7 = 1, 2,..., Nkj}

155

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

G=(x,y)

Goal

Figure 5: Illustration of the deviation of a swarm centroid trajectory from the straight line
passing through (zs,ys) and (x4,y,). The “start” block represents the starting point of the
swarm and “goal” block represents the end point of the swarm. The free drawn line represents
the actual trajectory T’ of the swarm and the displacement vector is considered as the ideal
path ’D’. Points T7, T etc. represent samples from the swarm trajectory and e;, es etc. are
the distance of points on T to corresponding points on D.

— = — — —
V Tkji E“ ijis.t. (Tkji - Dk‘ji) 1 (iji — ?) (4)
e —
erji = Diji — Thji (5)
1 &
E”.”s = — _’>L
0= g X I ®
V pr 3 ek, where e = {E" | je[l, 2,..., 100]} (7)
Q = {ex| ke1,| P|]and k € N} (8)

4 Results

In order to minimize run to run differences, the same starting point ? and goal 8 are used for
all 100 runs for each py. Also, agents in both algorithms move with the same individual step
size = 0.5 units, where one unit is unit length in cartesian coordinates.

4.0.1 Time performance

Figure 6 shows the performance parameter ¢per formance and how it changes as the probability of
failure increases. We see that tper formance saturates as maximum allowed iterations are reached.
Time performance saturates rapidly for the swarmtaxis algorithm, while the FSTaxis shows a
wider range of operation before tper formance saturates.

4.0.2 Root mean square error

Figures 8 and 9 show the distribution of mean square errors (E"°) of the centroid trajectory
with respect to the optimal path D’ of a swarm executing the FSTaxis algorithm and the
swarmtaxis algorithm respectively. We see that as the probability of failure increases, the
median and spread of ™™ increases for the FSTaxis algorithm, while it remains more or less
constant for the swarmtaxis algorithm. It is also important to note the “outliers” in the box-plot

156

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

[=] [=]
-] o -

g 2 0 5 0
[I S T

o
N

(no:of iterations)/{iteration limit}

(=]
|.¢

—f—FsTaxis

=== swarmtaxis

o

0 0.1 0.2 03 04 05 06 0.7 0.8 0.9 1
probability of communication failure

Figure 6: Performance parameter, tper formance and how it changes as the probability of failure
increases. The presented data is based on 1000 simulation runs (100 runs per pg).

1008858

920

80

70

60

50

40

30

percentage of convergence

20

10 —f— FSTaxis
=== swarmtaxis

o oy = o = -
(1} 0.1 0.2 0.3 0.4 O. 0. 0. 0. 0.9

probability of communication failure

Figure 7: Percentage of runs of each algorithm that converged to the goal with increasing
probability of failure. The presented data is based on 1000 simulation runs (100 runs per pg).

as they also contribute to the increasing spread of the distribution. The increasing deviation
from the optimal path, or, in other words, the increasing range of root mean square error,
shows the increasing deviation of the swarm centroid from the optimal path. This means that
the “window of operation” (as defined in Section 3) widens as the ping loss increases for the
FSTaxis algorithm. Those probabilities with more than 50% non-converging runs are marked
as “non-converging runs”.

5 Discussion

From figures 7 and 6, we observe a “Resilient operating limit” (ROL) of failure probabilities py.
In Figure 7, the percentage of runs of each algorithm that converged to the goal for the FSTaxis
algorithm is consistently 100% until py = 70%, while the swarmtaxis algorithm tolerates only
5% failure probability for 100% convergence. Therefore, for the FSTaxis algorithm, ROL of pr=

157

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

10

T T T T T
5 —}- non-converging runs

o
8
* + +
&
7
6
I
5 : 7 ¢
1 1
1 1 T
1 1

B
= i

:

;

i
0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
Probability of failure (pk}

Root mean square error (E"™°)

QQHHQ

1
e L

...
|—|ﬂ-—4++
F -

kAT A+
F{TF -1 #+

Figure 8: Distribution of root mean square error of centroid trajectory of a swarm executing
FSTaxis. Those probabilities of failure with more than 50% non-converging runs are marked as
“non-converging runs”. The red ‘4’ signs represent the root mean square error of a single run
among the total 1000 (100 runs per py) runs.

"
N

L | -1-non-converging runs

+

...
=] o
B p

-+

Root mean square error (E"™"}

-
1
1
- 1
I H
T
L
1
L

—tte i —{———a——— -
0.0 0.1 0.2 03 04 05 06 07 0.8 09 1.0
Probability of failure (pk}

Figure 9: Distribution of root mean square error of centroid trajectory of a swarm executing
swarmtaxis. Those probabilities of failure with more than 50% non-converging runs are marked
as “non-converging runs”. The red ‘4’ signs represent the root mean square error of a single
run among the total 1000 (100 runs per py) runs.

70%, while for the swarmtaxis algorithm, ROL of py = 5%. The reason for this limited ROL of
the swarmtaxis algorithm is that the swarmtaxis algorithm needs all the members of the swarm
to be connected to each other in order to avoid losing swarm members. In the paper [3], we
see that the a value (connected swarm members) is set to the population of the swarm. This
constraint makes the swarm enter repeatedly into “coherence” state which drives the swarm
away from the goal. As the probability of failure increases, the probability of at least one
agent not being connected to the rest of the swarm increases drastically and, hence the swarm
remains in coherence state. In contrast, the reason for high resilience of the FSTaxis algorithm
is that the behavior of the swarm is not based on the number of pings received, but rather on

158

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

the presence of a ping. Even if a high amount of pings are lost due to agents failing to relay it
further, due to the presence of some incoming pings, the agents move towards it. This is not
always the correct direction for successful gradient taxis, but nevertheless has some information
about the gradient due to the sole origin of pings being from the agent at the local gradient
extrema. Therefore, the swarm takes many unnecessary steps swinging away from the optimal
path, but still it manages to reach the goal each time even with a very high ping loss. In [21]
and [4], the authors present a modified swarmtaxis algorithm and experiment with various «
values, that is, they relax the connectivity criteria presented in [3]. Such an approach intuitively
will reduce the number of transitions into the “coherence” state and therefore slightly improve
the ROL but the basic state transition is still based on a polling method.

From Figure 8, it can be inferred that the median of root mean square error of the FS-
Taxis algorithm increases with increasing probability of failure. A swarm operating with high
probability of failure p; has a very irregular movement around the optimal path in contrast
to the exemplary run of the FSTaxis algorithm shown in Figure 2(b). This is due to the fact
that pings that originate from the agent whose internal trigger counts out are lost as shown
in Figure 3. As a result, the agents in the swarm either do not get the pings or get the pings
via other agents whose communication mechanism is working. This in turn causes the agents
to move towards the incoming ping and hence, in a suboptimal direction as compared to the
goal. These suboptimal movements explain the increase in spread of root mean square error
signified by the median and quartile shift. We also see more outlying data points (Figure 8)
as compared to the runs with lower probability of failure due to the same reason mentioned
above. It is remarkable that even with a very high amount of ping loss, the swarm manages to
find the goal most of the time as shown in Figure 7.

6 Conclusion

From the above sections, evidently, the FSTaxis algorithm exhibits resilient behavior even with
a high ping loss. The reason for the high resilience of the FSTaxis algorithm is the ping relaying
mechanism (borrowed from slime mold and fireflies) as described in Section 2. This mechanism
increases the probability of pings being relayed reliably despite ping loss. The communication
mechanism of FSTaxis can be implemented in other swarm robotic algorithms or even for
multi-robot systems where communication is crucial to goal achievement.

The operating range of the swarmtaxis algorithm is cut short to a resilient operating range
- 0 < pr < 0.05 due to the algorithm repeatedly driving the swarm into “coherence” mode.
In [21], the authors present various techniques to ensure connectivity and avoid unnecessary
state transitions into“coherence” state. However, these modifications do not retain the 1-bit
communication feature which is a strong argument for underwater swarms since communication
is expensive and subject to noise.

For projects like subCULTron which aim at developing algorithms in environments where
communication is costly, the FSTaxis can be employed for its resilience. Since the behavior of
swarmtaxis algorithm is not tightly coupled with the polling mechanism it employs, one very
interesting question at this point is “What would be the result if one were to implement the
communication strategy of the FSTaxis algorithm in swarmtaxis?”. The authors have published
[18] a modified swarmtaxis algorithm to employ the communication method of FSTaxis based
on the research presented in this paper.

159

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

7

Acknowledgements

This work was supported by EU-H2020 Project no. 640967, subCULTron, funded by the Eu-
ropean Unions Horizon 2020 research and innovation programme.

References

(1]

2]
8]

(4]

[5]

(7]

(10]

(11]

[12]
(13]

(14]

[15]

160

Andreas Angerer, Michael Vistein, Alwin Hoffmann, Wolfgang Reif, Florian Krebs, and Manfred
Schnheits. Towards multi-functional robot-based automation systems. In Proc. 12th Intl. Conf.
on Inform. in Control, Autom. & Robot., Rome, Italy, 2015.

I. Aoki. A simulation study on the schooling mechanism in fish. Bulletin of the Japanese Society
of Scientific Fisheries, 48(8):1081-1088, 1982.

Jan Dyre Bjerknes, Alan Winfield, and Chris Melhuish. An analysis of emergent taxis in a wireless
connected swarm of mobile robots. In IEEE Swarm Intelligence Symposium, pages 45-52, Los
Alamitos, CA, 2007. IEEE Press.

Jan Dyre Bjerknes and Alan FT Winfield. On fault tolerance and scalability of swarm robotic
systems. In Distributed autonomous robotic systems, pages 431-444. Springer, 2013.

John Buck and Elisabeth Buck. Biology of synchronous flashing of fireflies. Nature, 211:562-564,
1966.

Frederick Ducatelle, Gianni A Di Caro, Alexander Forster, Michael Bonani, Marco Dorigo,
Stéphane Magnenat, Francesco Mondada, Carlo Pinciroli, Philippe Rétornaz, Vito Trianni, Luca M
Gambardella, F Ducatelle, Ga Di Caro, A Forster, LM Gambardella, M Bonani, S Magnenat,
F Mondada, P Rétornaz, M Dorigo, C Pinciroli, and V Trianni. Cooperative navigation in robotic
swarms. Swarm Intell, 8:1-33, 2014.

Nicholas R Hoff, Amelia Sagoff, Robert J Wood, and Radhika Nagpal. Two foraging algorithms
for robot swarms using only local communication. In Robotics and Biomimetics (ROBIO), 2010
IEEE International Conference on, pages 123-130. IEEE, 2010.

Daniela Kengyel, Payam Zahadat, Thomas Kunzfeld, and Thomas Schmickl. Collective decision
making in a swarm of robots: How robust the beeclust algorithm performs in various conditions. In
Proceedings of the 9th FAI International Conference on Bio-inspired Information and Communi-
cations Technologies (Formerly BIONETICS), BICT’15, pages 264271, ICST, Brussels, Belgium,
Belgium, 2016. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

Charles Duncan Michener. The social behavior of the bees: a comparative study, volume 73.
Harvard University Press, 1974.

T. Schmickl and K. Crailsheim. Trophallaxis within a robotic swarm: bio-inspired communication
among robots in a swarm. Autonomous Robots, 25(1-2):171-188, aug 2008.

Madhubhashi Senanayake, Ilankaikone Senthooran, Jan Carlo Barca, Hoam Chung, Joarder Kam-
ruzzaman, and Manzur Murshed. Search and tracking algorithms for swarms of robots: A survey.
Robotics and Autonomous Systems, 75:422-434, 2016.

Florian Siegert and Cornelis J. Weijer. Three-dimensional scroll waves organize dictyostelium
slugs. PNAS, 89(14):6433—-6437, July 1992.

subCULTron. Submarine cultures perform long-term robotic exploration of unconventional envi-
ronmental niches, 2015. http://www.subcultron.eu/.

Ken Sugawara, Toshiya Kazama, and Toshinori Watanabe. Foraging behavior of interacting robots
with virtual pheromone. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 200/,
IEEE/RSJ International Conference on, volume 3, pages 3074-3079. IEEE, 2004.

Ying Tan and Zhong-yang Zheng. Research Advance in Swarm Robotics. Defence Technology,
9(1):18-39, 2013.

Resilience of Swarm Intelligent Algorithms Varughese, Thenius, Schmickl and Wotawa

[16]

(17]

18]

(19]
[20]

21]

A

Ali E Turgut, F Gokce, Hande Celikkanat, L. Bayindir, and Erol Sahin. Kobot: A mobile robot de-
signed specifically for swarm robotics research. Middle East Technical University, Ankara, Turkey,
METU-CENG-TR Tech. Rep, 5(2007), 2007.

Joshua Cherian Varughese, Ronald Thenius, Franz Wotawa, and Thomas Schmickl. Fstaxis algo-
rithm: Bio-inspired emergent gradient taxis. In Proceedings of the Fifteenth International Confer-
ence on the Synthesis and Simulation of Living Systems. MIT Press, 2016.

Joshua Cherian Varughese, Ronald Thenius, Franz Wotawa, and Thomas Schmickl. swarmfstaxis:
Borrowing a swarm communication mechanism from fireflies and slime mold. In Proceedings of the
Twenty First Annual Meeting on Agent Based Modeling and Simulation. Springer, 2017. in print.
Barry Brian Werger and Maja J Mataric. Robotic” food” chains: Externalization of state and
program for minimal-agent foraging. In In (Maes et al. Citeseer, 1996.

Uri Wilensky. Netlogo. Center for Connected Learning and Computer-Based Modeling, North-
western University. Fvanston, 1L, 1999.

Alan FT Winfield and Julien Nembrini. Emergent swarm morphology control of wireless networked
mobile robots. In Morphogenetic Engineering, pages 239-271. Springer, 2012.

Metadata for the publication

The netlogo code for the swarmtaxis and the FSTaxis algorithms is available at: https://
drive.google.com/open?id=0B-VPQrRNgQZ6VONhNOV1VFF JMKE

161

https://drive.google.com/open?id=0B-VPQrRNqQZ6V0NhN0V1VFFJMkE
https://drive.google.com/open?id=0B-VPQrRNqQZ6V0NhN0V1VFFJMkE

	Introduction
	Algorithms
	The swarmtaxis algorithm
	The FSTaxis algorithm

	Methods
	Simulating failures
	Ping failure in FSTaxis
	Ping failure in swarmtaxis

	Performance measures
	Time performance
	Optimal path and deviation

	Results
	Time performance
	Root mean square error

	Discussion
	Conclusion
	Acknowledgements
	Metadata for the publication

