
EPiC Series in Computing

Volume 100, 2024, Pages 136–146

Proceedings of 25th Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning

Efficient Simulation for Hardware Model Checking

Joseph Tafese and Arie Gurfinkel

University of Waterloo, Waterloo, Ontario, Canada
{jetafese, agurfink}@uwaterloo.ca

Abstract

Simulation is an important aspect of model checking, serving as an invaluable pre-
processing step that can quickly generate a set of reachable states. This is evident in
model checking tools at the Hardware Model Checking Competitions, where Btor2 is
used to represent verification problems. Recently, Btor2MLIR was introduced as a novel
format for representing safety and correctness constraints for hardware circuits. It provides
an executable semantics for circuits represented in Btor2 by producing an equivalent
program in LLVM-IR. One challenge in simulating Btor2 circuits is the use of persistent
(i.e., immutable) arrays to represent memory. Persistent arrays work well for symbolic
reasoning in Smt but they require copy-on-write semantics when being simulated natively.
We provide an algorithm for converting persistent arrays to transient (i.e., mutable) arrays
with efficient native execution. This approach is implemented in Btor2MLIR, which
opens the door for rapid prototyping, dynamic verification techniques and random testing
using established tool chains such as LibFuzzer and KLEE. Our evaluation shows that
our approach, when compared with BtorSim, has a speedup of three orders of magnitude
when safety properties are trivial, and at least one order of magnitude when constraints
are disabled.

1 Introduction

Model Checking [7] has been an important part of the hardware verification pipeline. Given
a circuit and its specifications, model checking exhaustively searches through the circuit state
space to determine if any property is violated. This is known to be expensive for circuits with
a large number of states. Simulation as a preprocessing step can provide a fast, yet incomplete,
method of exploring the state space defined by a circuit. In a well integrated pipeline [18],
the states that are found to be reachable by the simulation effort can be used to guide the
model checking component. These semi-formal [11] verification methods have been used to
verify microprocessors [4] by striking a balance between the speed of simulation and the rigor of
model checking. We are interested in exploring semi-formal verification through the simulation
of formal designs with native code. This is not only useful as a preprocessing step for model
checking, but it is also a valuable addition to a verification pipeline.

Formal designs are tailored to capture specifications in a format that benefits downstream
solvers. Adjacent fields have seen this with the adaption of Smt-Lib [3] for Smt solving and
Conjunctive Normal Form for SAT solving. In the domain of hardware verification, Btor2 [12]

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 136–146

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

has risen to be a popular format for word-level verification as seen in the Hardware Model
Checking competitions [5]. Benchmarks in these competitions span two categories: bit-vectors
and arrays. We focus our attention on the simulation of arrays. A robust memory representation
is a prerequisite for model checking and simulation alike. For instance, Btor2 has persistent
arrays (i.e., immutable) that are designed to correspond to Smt-Lib [3] arrays. This is a
convenient logical representation of memory for the underlying solvers. Tools like BtorSim [2]
simulate circuits with arrays using an interpreter that maintains a map from array indices to
values. For native simulation, however, enforcing copy-on-write semantics can be an expensive
ordeal. It is therefore interesting for us to convert as many persistent arrays to transient (i.e.,
mutable) arrays as possible. This allows us to reap the benefits of compiling to native code
while maximizing the speed at which simulations are executed.

To this end, we extend Btor2 with new operations that are applied to transient arrays.
We provide the semantics for existing Btor2 operations as well as our extensions. Using the
new operations, we enable an efficient simulation of Btor2 circuits by contributing: a sound
but incomplete algorithm for converting persistent arrays to transient arrays and translation
passes that generate executable native programs in LLVM-IR. The implementation has been
incorporated into Btor2MLIR [16] to build a verification pipeline that produces native code
for the purpose of simulation.

The rest of the paper is organized as follows: we provide the necessary background in
Section 2, present semantics for Btor2 and new operations for transient arrays in Section 3,
our transformation algorithm in Section 4, an evaluation of our techniques in Section 5 and our
conclusions in Section 6.

2 Background

The dominant format in the Hardware Model Checking competition has been Btor2. It is
used to represent sequential circuits over Smt-Lib theories of BitVec [14] and Arrays [17]. The
formal syntax is provided in [12]. A circuit consists of sort definitions, state definitions, inputs,
gates, safety and liveness properties, and initial state and next state functions. We illustrate
Btor2 using a four bit counter, C (see Fig. 1a), that uses an array to store its current value.
The example does not show the use of liveness properties or inputs. Observe that each line in
C is referred to by a line identifier (lid) that represents a sort (sid) or a node (nid). For a given
line, a sid gives the sort of the operation and arguments are given by their nid. For a nid to be
used as an argument, the syntax requires that it refers to a value producing gate i.e., it cannot
refer to a property or function.

Sort definitions are shown in line 1 for a bit-vector of bit width 4 (bv4) and line 2 for an
array of index and element sort bv4. Constants b0001 (resp. b1000) are defined in line 3 (resp.
line 4). A state definition for an array is shown in line 5. Btor2 has an implicit clock that
simulates the execution of a circuit. Therefore, the initial (resp. next) state function is used
to initialize (resp. update) a state given a value. The initial state function (line 6) sets all
the indices of our state array (nid 5) to b0001. This is run once at the beginning of circuit
execution. C uses the 8th (nid 4) index of the state array as the counter by reading the current
value (nid 7), incrementing it (nid 9) and storing it (nid 10). Then, depending on whether the
safety property has been violated (nid 13), either the old state array (nid 5) or the new array
(nid 10) is chosen and stored at nid 14. The next state function (line 15) updates the state with
nid 14 at the end of each cycle. The safety property (line 17) asserts that the counter is not 15
(b1111). It is checked using the value of the counter at the beginning of the cycle (nid 7).

137

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

�
; BTOR counter
; using arrays
1 sort bitvec 4
2 sort array 1 1
3 one 1
4 constd 1 8
5 state 2
6 init 2 5 3
7 read 1 5 4
8 one 1
9 add 1 7 8
10 write 2 5 4 9
11 ones 1
12 sort bitvec 1
13 neq 12 7 11
14 ite 2 13 10 5
15 next 2 5 14
16 eq 12 7 11
17 bad 16� �
(a) Counter in Btor2.

�
module {

func @main() {
%0 = constant 1 : bv4
%1 = array %0 : a<4,4>
br ^bb1 (%1 : a<4,4>)

^bb1 (%2):
%3 = constant 1 : bv4
%4 = constant 8 : bv4
%5 = read %2[%4] : bv4
%6 = add %5, %3 : bv4
%7 = write %6 ,%2[%4]: a<4,4>
%8 = constant 15 : bv4
%9 = cmp ne , %5, %8 : bv1
%10 = ite %9,%7,%2 : a<4,4>
%11 = cmp eq, %5, %8 : bv1
assert_not (%11)
br ^bb1 (%10 : a<4,4>)

}
}� �
(b) Counter in Btor Dialect.

�
...
define void @main() {

br label %1
1: ; preds = %10, %0

%2 = phi <16xi4 >[%7, %10],
[<1,..>, %0]

%3 = extractelement %2, 8
%4 = add i4 %3, 1
%5 = icmp ne i4 %3, 15
%6 = insertelement %2, %4, 8
%7 = select %5, %6, ... %2
%8 = icmp eq i4 %3, 15
%9 = xor i1 %8, true
br i1 %9, label %10, label %11

10: ; preds = %1
br label %1

11: ; preds = %1
unreachable

}� �
(c) Counter in LLVM-IR.

Figure 1: Running Problem: Btor2 to Btor Dialect

Btor2MLIR: A format and toolchain for hardware verification that is build on the Multi-
Level Intermediate Representation (MLIR) [10] framework. It is a publicly available project [1]
that makes use of MLIR parsers, generators and optimizations to support efficient compilation
of Btor2 circuits to executable LLVM-IR programs. This enables the use of software model
checkers [8,13], dynamic verification [6,15] and static analysis [9] techniques. It also facilitates
analysis and optimization at different levels of abstraction. For example, given the running
problem (Fig. 1a), we generate Btor Dialect and LLVM-IR. We show the simplified versions
of these dialects in Fig. 1b and Fig. 1c respectively. A detailed presentation of the dialects and
their conversions can be found in [16].

3 Semantics

In this section, we introduce formal semantics for Btor2 extended with transient write op-
erations. To this end, we capture the behaviour of a Btor2 circuit in a transition system,
T = ⟨St , I , O , INIT , TR⟩. St is a set of states, I represents the set of possible inputs and
O represents the set possible outputs. INIT is a subset of St that represents the set of ini-
tial states for the system. TR represents the relationship between states such that a directed
edge (s, i, s′, o) relates state s to state s′ given input i ∈ I and producing output o ∈ O. Let
r = (s1, i1, o1), (s2, i2, o2), . . . be an infinite sequence of tuples of states, inputs and outputs that
represents the run of a transition system. It is a feasible run if s1 satisfies INIT , and, for all
i, (si, ii, si+1, oi) is in TR. The semantics of a circuit A is the set L(A) of all its feasible runs,
called the language of A. Two circuits, A and B, are observationally equivalent iff they have
the same languages, i.e., L(A) = L(B).

Let π : Nid → Val be an evaluation context – a map from node identifiers Nid to values
Val . The domain of values is Val = Bv(BitVec) | Array(Arr) | ArrayRef (Nid), where BitVec,
Arr , and Nid are, respectively, the sorts for bit-vectors, arrays, and node identifiers. Let dec :
(Nid → Val) → St to decode an evaluation context into a state in St . The opposite direction is
performed by function enc : St → (Nid → Val). Note that dec is bijective, and enc its inverse,
since there is a unique encoding of the state of an evaluation context i.e., π = enc(dec(π)).

138

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

Inputs are encoded into the evaluation context with enci : I → (Nid → Val). Outputs are
extracted from the evaluation context with deco : (Nid → Val) → O . An evaluation context
for a state, i.e. enc(s), can be combined with a non-intersecting evaluation context for inputs,
i.e. enci(i), with (+) where the values for inputs are added to the encoding of a state. For
example, in enc(s) + enci(i), the resulting evaluation context is enc(s) with the values from
enci(i) added to it.

We describe the semantics of Btor2 operations relative to Smt-Lib theories of BitVec
and Array, as shown in Fig. 2. The definition of the semantics relies on the helper functions
root : Nid × (Nid → Val) → Nid and IsArrayRef : Val × Nid → Bool defined in Fig. 2b. We
use the notation JBKmode(π) in Fig. 2a to represent the evaluation of circuit B under a specific
mode. For example, we use the rules in Fig. 2c to determine the initial states of circuit B.
More specifically, we get the initial states of T by evaluating every line in B using the general
rules in Fig. 2 and the mode specific rules in Fig. 2c. Similarly, we use JBKnext(π) to represent
the evaluation of circuit B using the mode specific rules and an Offset in Fig. 2d. Offset
is the size of circuit B and it allows us to hold new values for an Nid in π. We assume that a
given Nid is assigned at most one new value per cycle.

Btor2 operations can represent circuit gates or circuit level functions. There are two
important functions in Btor2: init and next. These define the initial state function and
the next state function respectively. To simplify the presentation of our semantics, we use the

notation
B−→init and

B−→next to represent the rules for evaluating a circuit B in the respective
mode. The sets in T are defined as:

INIT = {s ∈ St | B−→init t ∧ s = dec(t)}

TR = {s, s′ ∈ St , i ∈ I, o ∈ O | enc(s) + enci(i)
B−→next t ∧ s′ = dec(t) ∧ o = deco(t)}

Btor2 has three instructions that work with array values: read, write and ite. The
formal semantics are presented in Fig. 2e. For example, consider a′ = write(a, x, v), where a
and a′ are indexes of arrays in the execution context π. After write executes, π(a) and π(a′)
refer to the original and updated array respectively. This is consistent with the behaviour of
persistent arrays, therefore, we map write to Smt-Lib store in our semantics. read and ite

are mapped to Smt-Lib select and ite with the results stored at the operation nid.
Our key idea is to extend the semantics of Btor2 with transient array operations:

write mut and write mutz to represent, respectively, unconditional and conditional mutable
writes. Unlike their persistent counterparts, these operations update an array in place. We
describe the intuition behind the semantics with the write mut operation since write mutz is
similar. Consider an instruction a′ = write mut(a, x, v), where a and a′ are indexes of arrays
in the execution context π. After write mut executes, π(a) and π(a′) both refer to the same
array. Moreover, that array is the same as the array π(a) before the execution, but with value
v stored at index x. To this end, we add the notion of pointing in the execution context π, by
extending allowed values with ArrayRef . Intuitively, the value ArrayRef (i) represents a pointer
to an array at location i in the context π. This allows us to represent references to an array
while preserving support for existing array operations. In our example above, at the end of
execution, π(a′) = ArrayRef (a), π(a) = Array(u), and u is the new array value. In our formal
semantics, we resolve (or dereference) pointers using a helper root , that returns the index of
an Array in π pointed to by the corresponding reference. Note that in our semantics, every
ArrayRef is one hop away from an array value. That is, root(d, π) returns d if π(d) is an Array ,
or v if π(d) = ArrayRef (v) and, therefore, π(v) must be an Array .

Conditional writes in Btor2 are a result of combining the write and ite instructions.
To support in place conditional writes, we extended Btor2 with write mutz. The formal

139

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

t = π JBKmode(π) ; π′ t′ = π′

t
B−→mode t′

∃π1, . . . , π|B| ∀i.JBiK(πi) ;mode πi+1 π′ = π|B|

JBKmode(π) ; π′

(a) Semantics of whole-circuit evaluation

root(d, π) =


d if IsArray(π(d))

v if IsArrayRef(π(d), v)

d otherwise

IsArrayRef(u, v) =

{
True if u = ArrayRef (v)

False otherwise

(b) Helper functions.

Jnext(s, v)K(π) ;init π

IsBv(π(s))

Jinit(s, v)K(π) ;init π[s := π(v)]

a = π(root(s, π)) ∀i ∈ N<|a|, a[i] = π(v)

Jinit(s, v)K(π) ;init π[s := a]

(c) Semantics of init mode.

Jinit(s, v)K(π) ;next π

a = π(root(v, π)) s′ := s+Offset

Jnext(s, v)K(π) ;next π[s′ := a]

(d) Semantics of next mode.

m = π(root(a, π)) v = select(m,π(x))

Jn = read(a, x)K(π) ;mode π[n := v]

u = π(root(a, π)) v = π(root(b, π))

Jn = ite(c, a, b)K(π) ;mode π[n := ite(π(c), u, v)]

m = π(root(a, π))

Jn = write(a, x, v)K(π) ;mode π[n := store(m,π(x), π(v))]

p = root(a, π) m = store(π(p), π(x), π(v)) π′ = π[p := m, a := m]

Jn = write mut(a, x, v)K(π) ;mode π
′[n := p]

p = root(a, π) m′ = store(π(p), π(x), π(v)) π′ = ite(π(c) = 0, π[p := m′, a := m′], π)

Jn = write mutz(c, a, x, v)K(π) ;mode π
′[n := p]

(e) Semantics of array operations

∃v. IsBv(v)
Jn = inputK(π) ; π[n := v]

v = bv op(π(a))

Jn = op(a)K(π) ;mode π[n := v]

v = bv op(π(a), π(b))

Jn = op(a, b)K(π) ;mode π[n := v]

v = bv op(π(a), π(b), π(c))

Jn = op(a, b, c)K(π) ;mode π[n := v]

(f) Semantics of bit-vector operations

Figure 2: Semantics of Btor2 operations.

140

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

semantics for write mut and write mutz are shown in Fig. 2e. Observe that the instruction
a′ = write mutz(c, a, x, v) ensures that π(a) and π(a′) refer to the same array. If the condition
c is zero, π(a′) at index x gets value v. Otherwise, the instruction does nothing. This pattern
should be familiar to those acquainted with the jmpz instruction. The rest of the operations
in Btor2 are presented in Fig. 2f, separated by the number of arguments they take. None of
these operate on arrays. Unary operations (op) are mapped to their corresponding operation
in Smt-Lib (bv op), and their results stored in π at the operation nid. Binary and Ternary
operations follow the same pattern. At the end of a cycle, the next state function computes
new values for each state using π. For array states that are modified with transient writes, the
ArrayRef is resolved using root before being assigned to the next state.

To illustrate the semantics, consider the two Btor2 circuits shown in Fig. 3. The circuit
on the left (C1) uses write while the one on the right (C2) uses the new conditional write
write mutz. Both circuits create and initialize an array state, write to the array, read from
the array state and output the read value. Let π1 (resp. π2) be the evaluation context for C1

(resp. C2). Assume that the evaluation contexts have the array state initialized according to
the initial state function. In C1, root returns 5 when write is evaluated under our semantics
and the result is referred to as π(7). Note that root(7, π) ̸= root(5, π). Therefore, when C1

is evaluated under our semantics, root never returns an id that resolved to an ArrayRef in π.
Hence, the values that are written are not visible at π(5). Now consider C2, where root returns
5 when write mutz is evaluated and the result is referred to as π(7). Unlike the evaluation of
C1, root(7, π) = root(5, π). Therefore, unlike the evaluation of C1, the value written at π(7) are
also visible at π(5) in the evaluation of C2.

4 Persistent to Transient Arrays

Btor2 write operations use persistent arrays which, as shown in the previous section, have
copy-on-write semantics. This is expensive to simulate when large arrays are involved, especially
when the copied array is not used by future operations. For example, if the copied array is never
used, it does not need to be preserved, and we can replace write with write mut. In fact, we
have found two common patterns where significant gains can be made: unconditional writes and
conditional writes. We offer the intuition behind our approach by breaking down these cases.
In the first case, we observe that the copied array is not used after a write operation. If this
pattern is detected, we can perform the replacement discussed above. In the case of conditional
writes, we observe that an array is copied, a value is written into it and an ite operation is used
to determine which array will be used going forward. If this pattern is detected, then we can
perform a replacement of the write and ite operations with a single write mutz operation. In
both cases, under some conditions, we can omit the copy altogether by using transient arrays
and their corresponding operations.

To present the conditions under which our transformation takes place, we setup some useful
terminology. Let op represent an operation in Btor2, and id(op) its unique identifier (line id).
Then, for two operations op1 and op2, let uses(op2, op1) be a function that returns true iff op2
uses the result of op1. In other words, op2 has id(op1) as an argument. Using this, we construct
a def-use graph G = (V,E), where V is the set of nodes corresponding to an array operation and
E the set of use relationships between nodes. Thus, for {u, v} ∈ V, (u, v) ∈ E ⇐⇒ uses(v, u).
There are four array operations: state, write, ite and read. The first three operations are
used to define arrays and the last three operations use arrays. Let us call write and ite hybrid
operations since they do both. Let u ∈ V be a node corresponding to an array valued state,
and Gu the largest connected component containing u. We assume that the operations of a

141

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

�
1 sort bitvec 4
2 sort array 1 1
3 one 1
4 constd 1 8
5 state 2
6 init 2 5 3
7 read 1 5 4
8 one 1
9 add 1 7 8
10 write 2 5 4 9
11 ones 1
12 sort bitvec 1
13 neq 12 7 11
14 ite 2 13 5 10 ; replaced -->
15 next 2 5 14
16 eq 12 7 11
17 bad 16� �

�
1 sort bitvec 4
2 sort array 1 1
3 one 1
4 constd 1 8
5 state 2
6 init 2 5 3
7 read 1 5 4
8 one 1
9 add 1 7 8
10 write 2 5 4 9
11 ones 1
12 sort bitvec 1
13 neq 12 7 11
14 write_mutz 2 13 5 4 9
15 next 2 5 14
16 eq 12 7 11
17 bad 16� �

Figure 3: Comparing running example using write vs write mutz.

7 10

5

14

5

7 14

Figure 4: Graph representation for running example.

circuit are sorted in topological order relative to the def-use graph. Under these conditions, we
say that Gu represents an array group.

Our goal is to replace all hybrid operations in Gu with write mut and write mutz, as
appropriate. We illustrate this using our running example (left of Fig. 3) where u represents
the state operation in line 5. The array group, Gu, is shown on the left of Fig. 4. We can see
that Gu has four nodes corresponding to the array operations in the circuit, and each use is
represented with an edge, as expected. We would like to replace each hybrid operation in Gu

such that write and ite are replaced with write mutz. To do this safely, we use a common
definition of liveness, i.e., the result of an array operation with identifier v is live at location w
if it is defined before w and used after w.

We now present the conditions under which it is legal to transform an array group (e.g.,
Gu) by replacing its hybrid operations. Condition 4.1 relies on the fact that an operation result
cannot be resurrected. Once it is not live at a location, it is not live in all future locations.
Therefore, storage can be transferred from one member of a component to its successor. These
are the conditions under which we can replace write with write mut. Condition 4.2 relies on
the fact that a conditional write, represented with a combination of write and ite operations,
will result in a connected component that does not satisfy our first condition. Note that it
would require at most two members of the component are live at a given location and time. If
the connected component satisfies our first condition when the ite operation is removed, we
can replace the conditional write with write mutz.

Condition 4.1. Let C be a connected component of G that has at least one write operation.
The write operations in C can be replaced with write mut if for every location l, only one
member of the component is live at any one time.

Condition 4.2. Let C be a connected component of G where for every location l, at most two

142

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

Algorithm 1: Transformation Algorithm.

Function transform(Q : Btor2 Circuit, G = ⟨V ,E ⟩ : def-use graph for Q):
Q′ := Q;
for C = ⟨VC , EC⟩ ∈ G do

if Cond2(C) then
for (u, v) ∈ EC do

if u = write and v = ite then
/* u = write arr, idx, val; v = ite c, id(u), arr */

arr , idx , val := u; c, , := v;
Q′[id(v) := write mutz c, arr , idx , val , arr];

if Cond1(C) then
for v ∈ VC do

if v = write then
/* v = write arr, idx, val */

arr , idx , val := v;
Q′[id(v) := write mut arr , idx , val];

return Q’;

members of the component are live at any one time. Let w be a write operation and t be an
ite operation in C. Then, if C \ t satisfies Condition 4.1 and uses(t, w) is true, t can be
replaced with write mutz.

We present Algorithm 1 using ⟨Q,G⟩ as input, where Q is a Btor2 circuit and G is its cor-
responding def-use graph. Let Cond1(C) (resp. Cond2(C)) be a function that take a component
C, of G, and evaluates the condition described in Condition 4.1 (resp. Condition 4.2). Algo-
rithm 1 iterates over every component in G and checks if it satisfies Cond2(C) or Cond1(C). It
is clear that the two conditions are mutually exclusive, hence, a component will satisfy at most
one of our conditions.

We illustrate the algorithm using the running example on the left of Fig. 3 and its corre-
sponding def-use graph on the left of Fig. 4. Observe that there is only one component in G and
it does not satisfy Cond1(C). Therefore, since Cond2(C) is satisfied, Algorithm 1 iterates over
every edge in the component to find a write that is succeeded by an ite operation. Then, the
ite operation is replaced with write mutz and the change is persisted in an updated circuit.
Let Q′ be the transformed circuit that results from running Algorithm 1 on Q. Note that the
only update to Q happens at index id(v). Therefore, Q and Q′ differ only at line 14, where the
ite operation of Q is replaced with write mutz in Q′. It is important to note that the write

operation at line 10 of Q has no uses in Q′, i.e., the result of write is dead. We show Q′ on
the right of Fig. 3 and G′, its corresponding def-use graph, on the right of Fig. 4. Note that,
under the semantics we have provided for Btor2, Q′ is equivalent to Q.

In the case where Q satisfies Cond1(C), Algorithm 1 iterates over every vertex in the compo-
nent to identify a write. Then, the write operation is replaced with its mutable counterpart,
write mutz. Let Q′ be the resulting transformed circuit. Since the update only happens at
most once for an array in a component, Q and Q′ will only differ at these locations. Similar to
the previous case, under the semantics we have provided for Btor2, Q and Q′ are equivalent.

Theorem 1. Let Q be a Btor2 circuit. Let Q’ be the result of Algorithm 1. Q and Q’ are
observationally equivalent.

143

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

BtorSim Btor2MLIR speedup BtorSim Btor2MLIR speedup

constraints disabled constraints enabled

w 18A 991 9 544 17 28 4 222 8
w 19A 409 2 577 7 385 1 752 4
w 19B 1 895 32 138 17 1 2 8747 28 747
w 19C 201 2 616 23 2 1 1
19 mann 3 429 13 697 4 1 1 1
20 mann 4 770 79 966 156 1 738 43 843 10

Table 1: Mean running time of BtorSim vs Btor2MLIR in execution cycles per second.

5 Implementation and Evaluation

Implementation. We implement Algorithm 1 in Btor2MLIR to convert persistent ar-
rays in Btor2 to transient arrays in LLVM-IR. Our implementation is encapsulated in the
convert-btor-to-memref pass i.e., a conversion from Btor Dialect to MemRef Dialect.
An MLIR dialect is designed to capture the operations and types of a language through its
syntax, instructions and properties. MemRef is an MLIR dialect for representing operations
on transient array types and Btor Dialect [16] is used to represent Btor2 circuits. In
addition to MemRef, there is a Vector Dialect for representing array operations on Single
Instruction/Multiple Data (SIMD) vectors (i.e., persistent arrays). These define operations
that use register allocated memory and can be useful for efficiently modelling small arrays. We
implement this in the convert-btor-to-vector pass.

A core contribution of MLIR is that its users can define dialects that meet their needs
and interoperate with other dialects using conversion and translation passes. Conversion (resp.
translation) passes represent a conversion from a dialect to another dialect (resp. target lan-
guage). This is why we use existing conversion passes for translating Btor2 to Btor Di-
alect, MemRef Dialect to LLVM Dialect and Btor Dialect to LLVM Dialect. Once all
the passes have been run, we use a translation pass that generates LLVM-IR from LLVM
Dialect. Working in the MLIR framework makes it easy to manipulate the intermediate rep-
resentation structure for def-use analysis when checking the conditions in Algorithm 1 and
pattern-based rewrites. Pattern-bases rewrites are how MLIR matches the operations to be
transformed with their respective transformation. For example, to convert write mut to a store
in MemRef Dialect, we provide a function that performs the conversion and a pass that marks
all write mut operations for conversion.

Evaluation. An important metric in evaluating the efficacy of our approach is cycles per
second. A fast simulation approach is beneficial because the user can explore more cycles, and
potentially more states. In contrast to model checking, simulation does not exhaustively search
a state space. Therefore, having a fast simulator makes guiding a simulation more effective
than the slower counterpart. The goal of our evaluation is to show that Btor2MLIR makes it
easy to produce efficient LLVM programs that can be compiled and executed for the purpose
of simulation. In the future, we plan to do a case study using LLVM-based analysis tools, such
as symbolic execution engine KLEE [6], and fuzzing framework LibFuzzer [15].

For the evaluation, we have chosen the array category of Btor2 benchmarks from the most
recent Hardware Model Checking Competition (HWMCC) [5]. All our experiments are run on
a Linux machine with x86 64 architecture, with a timeout of 1 second and memory limit of 65

144

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

GB. These results are reported in Table 1, grouped by competition contributor and whether
constraints are enabled or disabled. For all benchmarks, safety properties are set to false so
that we can maximize the number of cycles for both tools.

BtorSim was chosen because it is well integrated with the HWMCC environment and is
specifically designed for Btor2. We evaluate BtorSim and show the results in the first column
of Table 1. For each category, we show the mean number of cycles per second. For example, for
the case where constraints are disabled, the w 19B category has an average of 1 895 cycles per
second. Btor2MLIR is evaluated by compiling the harnessed LLVM-IR output with clang to
create an executable that generates random values for inputs and reports its metrics after each
cycle. We present the results for this run in the second column of Table 1. For example, for
the case where constraints are disabled, the w 19B category has an average of 32 138 cycles per
second. The speedup of Btor2MLIR compared to BtorSim is computed for each benchmark
in a category. For each category, the mean of these values is presented in the third column
of Table 1. When constraints are enabled, the running time varies heavily. This is expected
when running simulation experiments since the approach does not exhaustively search through
a circuits search space. The results show that Btor2MLIR is consistently faster regardless of
what benchmarks we run.

6 Conclusion

In this paper we present semantics for existing and new Btor2 operations. We use the
new operations to develop an algorithm for converting persistent arrays to transient arrays.
This conversion provides a fast method for simulating formal designs for hardware circuits as
demonstrated by our results. The implementation of the algorithm has been incorporated into
Btor2MLIR and can be used to simulate formal designs of circuits represented in Btor2.
In the future, we plan to extend this work with a case study that evaluates the application of
testing and simulation technologies such as LibFuzzer and Klee, as well as model checking
tools such as SeaHorn. Furthermore, it is interesting to explore the simulation of other formal
designs with the goal of improving verification pipelines that have exhaustive search by design.

References

[1] Btor2MLIR (github). https://github.com/jetafese/btor2mlir.

[2] BtorSim (github). https://github.com/Boolector/btor2tools/tree/master/src/btorsim.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[4] Bob Bentley. Validating the intel pentium 4 microprocessor. In Proceedings of the 38th Annual
Design Automation Conference, DAC ’01, page 244–248, New York, NY, USA, 2001. Association
for Computing Machinery.

[5] Armin Biere, Tom van Dijk, and Keijo Heljanko. Hardware model checking competition 2017. In
2017 Formal Methods in Computer Aided Design (FMCAD), pages 9–9, 2017.

[6] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In USENIX Symposium on Operating
Systems Design and Implementation, 2008.

[7] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors. Handbook
of Model Checking. Springer, 2018.

145

Efficient Simulation for Hardware Model Checking Tafese and Gurfinkel

[8] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The SeaHorn Ver-
ification Framework. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided
Verification, pages 343–361, Cham, 2015. Springer International Publishing.

[9] Arie Gurfinkel and Jorge A. Navas. Abstract interpretation of LLVM with a region-based memory
model. In Roderick Bloem, Rayna Dimitrova, Chuchu Fan, and Natasha Sharygina, editors, Soft-
ware Verification - 13th International Conference, VSTTE 2021, New Haven, CT, USA, October
18-19, 2021, and 14th International Workshop, NSV 2021, Los Angeles, CA, USA, July 18-19,
2021, Revised Selected Papers, volume 13124 of Lecture Notes in Computer Science, pages 122–144.
Springer, 2021.

[10] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: A Compiler
Infrastructure for the End of Moore’s Law, 2020.

[11] Yuan Lu and Weimin Li. A semi-formal verification methodology. In ASICON 2001. 2001 4th
International Conference on ASIC Proceedings (Cat. No.01TH8549), pages 33–37, 2001.

[12] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 , BtorMC and Boolector
3.0. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verification, pages
587–595, Cham, 2018. Springer International Publishing.

[13] Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, and Arie Gurfinkel. Bounded
Model Checking for LLVM. In Formal Methods in Computer Aided Design, FMCAD 2022, page
214, 2022.

[14] Silvio Ranise, Cesare Tinelli, and Clark Barrett. SMT-LIB The Satisfiability Modulo Theories
Library (BitVectors). https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml,
2017.

[15] Kosta Serebryany. Continuous Fuzzing with libFuzzer and AddressSanitizer. In 2016 IEEE Cy-
bersecurity Development (SecDev), pages 157–157, 2016.

[16] Joseph Tafese, Isabel Garcia-Contreras, and Arie Gurfinkel. Btor2MLIR: A Format and Toolchain
for Hardware Verification. In Formal Methods in Computer Aided Design, FMCAD 2023, page
332, 2023.

[17] Cesare Tinelli. SMT-LIB The Satisfiability Modulo Theories Library (ArrayEx).
https://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml, 2017.

[18] Daylen Torres, Joaquin Cortez, and R. González. Semi-formal specifications and formal verification
improving the digital design: Some statistics. Journal of applied research and technology, 7:15–40,
04 2009.

146

	1 Introduction
	2 Background
	3 Semantics
	4 Persistent to Transient Arrays
	5 Implementation and Evaluation
	6 Conclusion
	References

