EPiC Series in Computing Sl
omputing

Volume 100, 2024, Pages 445-463

Proceedings of 25th Conference on Logic for Pro- m
gramming, Artificial Intelligence and Reasoning (‘\

Veritying SQL Queries
using Theories of Tables and Relations

Mudathir Mohamed!, Andrew Reynolds!, Cesare Tinelli', and Clark Barrett?

1 The University of Iowa
2 Stanford University

Abstract

We present a number of first- and second-order extensions to SMT theories specifically
aimed at representing and analyzing SQL queries with join, projection, and selection op-
erations. We support reasoning about SQL queries with either bag or set semantics for
database tables. We provide the former via an extension of a theory of finite bags and the
latter via an extension of the theory of finite relations. Furthermore, we add the ability to
reason about tables with null values by introducing a theory of nullable sorts based on an
extension of the theory of algebraic datatypes. We implemented solvers for these theories
in the SMT solver cvch and evaluated them on a set of benchmarks derived from public
sets of SQL equivalence problems.

1 Introduction

The structured query language (SQL) is the dominant declarative query language in relational
databases. Two queries are equivalent in SQL if and only if they return the same table for
every database instance of the same schema. Query equivalence problems are undecidable in
general [1]. For conjunctive queries, the problem is NP-complete under set semantics [5] and
[I5-hard under bag semantics [6]. SQL query equivalence problems have many applications in
databases and software development, including query optimization and sharing sub-queries in
cloud databases. There is a financial incentive to reduce the cost of these subqueries, since
cloud databases charge for data storage, network usage, and computation.

Recently, these problems got some attention from researchers in formal verification who have
developed software tools to prove query equivalence in some SQL fragments. To our knowledge,
the state of the art of these tools is currently represented by SQLSolver [9] which supports a
large subset of SQL, and SPES, an earlier tool that was used to verify queries from cloud-scale
applications [26].

We present an alternative solution for the analysis of SQL queries based on a reduction
to constraints in a new SMT theory of tables with bag (i.e., multiset) semantics. This work
includes the definition of the theory and the development of a specialized subsolver for it within
the cve5 SMT solver. We have extended a previous theory of finite bags [16] with map and
filter operators which are needed to support SQL select and where clauses, respectively. We
represent table rows as tuples and define tables as bags of tuples. We also support the product

N. Bjgrner, M. Heule and A. Voronkov (eds.), LPAR 2024 (EPiC Series in Computing, vol. 100), pp. 445-463

Verifying SQL queries Mohamed et al.

operator over tables. While multiset semantics captures faithfully the way tables are treated
in relational database management systems, there is a lot of work in the database literature
that is based on set semantics. We provide set semantics as an alternative encoding based on
a theory of finite relations by Meng et al. [17], extended in this case too to accommodate SQL
operations.

An initial experimental comparison of our implementation with SQLSolver and SPES places
it between the two in terms of performance and supported features. While there are several
opportunities for further performance improvements, our solution has two main advantages
with respect to previous work: (i) it is not limited to SQL equivalence problems, and (i7) it
comes fully integrated in a state-of-the-art SMT solver with a rich set of background theories.
Additionally, it could be further extended to provide support for SQL queries combining set and
bag-set semantics [8]. This opens up the door to other kinds of SQL query analyses (including,
for instance, query containment and query emptiness problems) over a large set of types for
query columns (various types of numerical values, strings, enumerations, and so on).

Specific Contributions We introduce a theory of finite tables by extending a theory of
bags with support for product, filter and map operators. We also extend a theory of finite
relations with map, filter, and inner join operators. We introduce a theory of nullable sorts as
an extension of a theory of algebraic datatypes. These new theories enable the encoding in SMT
of a large fragment of SQL under either multiset or set semantics and the automated analysis
of problems such as query equivalence. We extend the cve5 SMT solver [3] with support for
quantifier-free constraints over any combination of the theories above and those already defined
in cves. We discuss an initial experimental evaluation on query equivalence benchmarks.

Our contribution does not include support for aggregations in SQL yet but we plan to add
that in future work.

1.1 Related work

A decision procedure for quantifier-free formulas in the theory of bags (QFB), or multisets, based
on a reduction to quantifier-free Presburger arithmetic (QFPA) first appeared in Zarba [24].
The theory signature did not include cardinality constraints or difference operators. These are
supported in a new decision procedure by Logozzo et al. [16]. The new decision procedure
reduces QFB to QFPA*, which extends QFPA with formulas @ € {Z | ¢}, where ¢ € QFPA.
Then, the QFPA* formula is translated into a QFPA formula, but with the addition of space
overhead [15]. An improved decision procedure which addresses the space overhead issue by
using approximations and interpolation with a set of Constrained Horn Clauses was provided
in Levatich et al. [15]. Our work is closest to Zarba’s [24], with additional support for map and
filter operators. As in that work, we do not support the cardinality operator yet.! cvc5 already
supports the theory of finite sets [2] and its extension to finite relations [17]. We add support
for the map and filter operators to cvcs’s theory solver for sets and, by extension, to the theory
solver for relations, proving the decidability of the satisfiability problem in a restricted fragment
of the theory of finite sets. That fragment is enough to handle the benchmarks considered in
our experiments under set semantics.

Cosette is an automated tool specifically written to prove SQL query equivalence [7]. To do
that, it translates the two SQL queries into algebraic expressions over an unbounded semiring,
which it then normalizes to a sum-product normal form. Finally, it searches for an isomor-
phism between the two normal forms using a custom decision procedure. If an isomorphism is

Indirect support for that will be provided in future work through the support for SQL aggregations.

446

Verifying SQL queries Mohamed et al.

found, the two queries are declared equivalent. To show that queries are inequivalent, Cosette
translates the SQL queries into bounded lists and uses an SMT solver to find a counterexample
to the equivalence. Cosette is a significant step forward in checking SQL query equivalences.
However, it has several limitations. For instance, it does not support null values, intersection,
difference, arithmetic operations, or string operations, which are all common in SQL queries.

EQUITAS [25] and its successor SPES [20] are used to identify shared subqueries automat-
ically in cloud databases. Both support aggregate queries and null values. They use symbolic
representations to prove query equivalence. EQUITAS follows set semantics, whereas SPES
follows bag semantics for tables. EQUITAS starts by assigning symbolic tuples for the input
tables in the queries, and then applies specialized algorithms to build two formulas representing
output tuples for the two queries. If the two formulas are equivalent, then the two queries are
classified as such. SPES also uses symbolic representations for queries. However, it reduces
the query equivalence problem to the existence of an identity map between the tuples returned
by the two queries [26]. In experimental evaluations [26], SPES proved more queries than
EQUITAS and was 3 times as fast. Both tools have the limitation of only supporting queries
with similar structure. They do not process queries with structurally different abstract syntax
trees (e.g., queries with different number of joins), or queries that use basic operations such as
difference or intersection. They also do not support concrete tables, built using the keyword
VALUES.

SQLSolver, which to our knowledge represents the current state of the art, was released
recently and addresses many of the limitations highlighted above [9]. It follows bag semantics
and, similar to Cosette, reduces the input queries to unbounded semiring expressions. How-
ever, it then translates them into formulas in an extension of QFPA* that supports nested,
parametrized, or nonlinear summation. This extension supports projection, product, and ag-
gregate functions. SQLSolver implements algorithms similar to those in Levatich et al. [15] to
translate these formulas into QFPA. SQLSolver dominates other tools both in terms of per-
formance and expressiveness of the supported SQL fragment. However, it lacks the ability to
generate counterexamples for inequivalent queries [9].

We follow a different approach from all the equivalence checkers discussed above. Our solver,
incorporated into cvch, supports difference and intersection operations, as well as evaluation on
concrete tables. Thanks to the rich set of background theories provided by cvc5, it also supports
arithmetic and string operations, as well as null values. Finally, our solver is not restricted to
SQL query equivalence, as it supports in general any quantifier-free statements over SQL queries.
As a consequence, it can also be used for other applications such as, for instance, checking for
query containment or emptiness [23].

1.2 Formal Preliminaries

We define our theories and our calculi in the context of many-sorted logic with equality and
polymorphic sorts and functions. We assume the reader is familiar with the following notions
from that logic: signature, term, formula, free variable, interpretation, and satisfiability of a
formula in an interpretation. Let ¥ be a many-sorted signature. We will denote sort parameters
in polymorphic sorts with o and S, and denote monomorphic sorts with 7. We will use = as
the (infix) logical symbol for equality — which has polymorphic rank « x a and is always
interpreted as the identity relation over . We assume all signatures 3 contain the Boolean
sort Bool, always interpreted as the binary set {true, false}, and two Boolean constant symbols,
T and L, for true and false. Without loss of generality, we assume = is the only predicate
symbol in ¥, as all other predicates can be modeled as functions with return sort Bool. We will

447

Verifying SQL queries Mohamed et al.

Symbol Type SMT-LIB syntax Description

n Int n All constants n € N
—+ Int X Int — Int + Integer addition

* Int X Int — Int * Integer multiplication
— Int — Int - Unary Integer minus
< Int X Int — Bool <= Integer inequality
Do Bag(a) bag.empty Empty bag

bag a X Int — Bag(a) bag Bag constructor

m a X Bag(a) — Int bag.count Multiplicity

setof Bag(a) — Bag(a) bag.setof Duplicate remove
U Bag(a) x Bag(a) — Bag(a) bag.union_max Max union

tH Bag(a) x Bag(a) — Bag(a) bag.union_disjoint Disjoint union

m Bag(a) X Bag(a) — Bag(a) bag.inter_min Intersection

\ Bag(a) X Bag(a) — Bag(a) bag.diff_subtract Difference subtract
\ Bag(a) X Bag(a) — Bag(«) bag.diff_remove Difference remove
E a X Bag(a) — Bool bag.member Member

C Bag(a) x Bag(a) — Bool bag.subbag Subbag

o (ov — Bool) x Bag(a) — Bag(a) bag.filter Bag filter

™ (o1 — a2) X Bag(a1) — Bag(aws) bag.map Bag map

(. ag X -+ X a — Tuple(ag, ..., ar) tuple Tuple constructor
select; Tuple(ag, ..., ar) = a; (_ tuple.select i) Tuple selector
tuple.projil___in Tuple(avo, - ..,) — Tuple(ay, ..., @i,) (- tuple.proj iy ---in) Tuple projection

® Table(ax) x Table(3) — Table(a, B8) table.product Table cross join
Dy Gy ipip Table(ax) x Table(3) — Table(a, B8) (_ table.join i1j1 ---ipjp) Table inner join
table.proj; ;, ~ Table(ao,..., o) — Table(a, ..., a;,) (- table.proj i1---in) Table projection

Figure 1: Signature Y, for the theory of tables. Here Table(ex,3) is a shorthand for
Table(ay, . .., ap, Bo, - - -, By) when & = g, ..., and 8= S, ..., By

write, e.g., p(z) as shorthand for p(z) ~ T, where p(x) has sort Bool. We write s % t as an
abbreviation for —s = ¢.

A X-term is a well-sorted term, all of whose function symbols are from ¥. A X-formula is
defined analogously. If ¢ is a Y-formula and Z a X-interpretation, we write Z |= ¢ if Z satisfies
p. If t is a term, we denote by Z(t) the value of t in Z. A theory is a pair T = (X, 1), where ¥ is
a signature and I is a class of Y-interpretations that is closed under variable reassignment (i.e.,
every Y-interpretation that differs from one in I only in how it interprets the variables is also
in I). T is also referred to as the models of T. A ¥-formula ¢ is satisfiable (resp., unsatisfiable)
in T if it is satisfied by some (resp., no) interpretation in I. A set I of X-formulas entails in T a
Y-formula @, written I' =1 ¢, if every interpretation in I that satisfies all formulas in T satisfies
v as well. We write I" = ¢ to denote that I" entails ¢ in the class of all X-interpretations. Two
Y-formulas are equisatisfiable in T if for every interpretation A of T that satisfies one, there is
an interpretation of T that satisfies the other and differs from A at most in how it interprets
the free variables not shared by the two formulas.

2 Theory of Tables

We define a many-sorted theory T, of (database) tables. Its signature X, is given in Figure 1.
We use « and 3, possibly with subscripts, as sort parameters in polymorphic sorts. The theory
includes the integer sort Int and a number of integer operators, with the same interpretation as
in the theory of arithmetic. Additionally, T, has three classes of sorts, with a corresponding
polymorphic sort constructor: function sorts, tuple sorts, and bag sorts. Function sorts are
monomorphic instances of a; X -+ X ax — « for all £ > 0. Tuple sorts are constructed by

448

Verifying SQL queries Mohamed et al.

the varyadic constructor Tuple which takes zero or more sort arguments. With no arguments,
Tuple denotes the singleton set containing the empty tuple. With k& + 1 arguments for & >
0, Tuple(rp,...,) denotes the set of tuples of size k + 1 with elements of sort 7o,..., 7%,
respectively. Bag sorts are monomorphic instances Bag(7) of Bag(a). The sort Bag(7) denotes
the set of all finite bags (i.e., finite multisets) of elements of sort 7. We model tables as bags
of tuples. We write Table(7o, ..., ;) as shorthand for the sort Bag(Tuple(ry,...,7x)). The sort
Table, with no arguments, abbreviates Bag(Tuple).” Following databases terminology, we refer
to 7o, . . ., Tk as the columns of Table(7y, ..., k), and to the elements of a given table as its rows.
For convenience, we index the columns of a table by natural numbers (starting with 0), instead
of alphanumeric names, as in SQL.

The symbols in the first five lines in Figure 1 are from arithmetic and are interpreted as
expected. The next eleven function symbols operate on bags and are defined as in Logozzo et
al. [16]. Specifically, for all sorts 7, @, is interpreted as the empty bag of elements of sort 7.
The term bag(e,n) denotes a singleton bag with n occurrences of the bag element e if n > 1;
otherwise; it denotes @, where 7 is the sort of e. The term m(e, s) denotes the multiplicity of
element e in bag s, that is, the number of times e occurs in s. Its codomain is the set of natural
numbers. For convenience, we use Int as the codomain and, during reasoning, assert m(e, s) > 0
for each multiplicity term. The term setof(s) denotes the bag with the same elements as s but
without duplicates. The predicate e £ s holds iff element e has positive multiplicity in bag s.
The predicate s C t holds iff bag s is contained in bag t in the sense that m(e, s) < m(e, t) for all
elements e. The binary operators LI, 1, M, \,\\ are interpreted as functions that take two bags
s and t and return their max union, disjoint union, subtract difference, and remove difference,
respectively, making the following equalities valid in Tr,p:

m(e,sUt) =~ max(m(e,s), m(e,t)) m(e,stHt) =~ m(e,s)+mle,t)
m(e,sMt) = min(m(e,s),m(e,t)) m(e,s\t) ~ max(m(e,s)— m(e,t),0)
m(e,s \t) =~ ite(m(e,t) > 1,0,m(e,s))

The next two symbols in Figure 1 are the filter and map functionals. These symbols require
an SMT solver that supports higher-order logic, which is the case for cve5 [4]. The term o(p, s)
denotes the bag consisting of the elements of bag s that satisfy predicate p, with the same
multiplicity they have in s. The term 7(f, s) denotes the bag consisting of the elements f(e),
for all e that occur in s. The multiplicity of f(e) in o(f,s) is the sum of the multiplicities (in
s) of all the elements of s that f maps to f(e). Note that while 7(f,s) and s have the same
cardinality, i.e., the same number of element occurrences, m(f(e),7(f,s)) may be greater than
m(e, s) for some elements e unless f is injective.

The last six symbols denote dependent families of functions over tuples and tables. The
term (eq,...,ex) is interpreted as the tuple comprised of the elements e, ..., e, in that order,
with () denoting the empty tuple. For 0 < i < k where k + 1 is the size of a tuple ¢, select;(t) is
interpreted as the element at position ¢ of t. Note that 7 in select; is a numeral, not a symbolic
index. This means in particular that selects({a,b)) is an ill-sorted term. tuple.proj takes an
unbounded number of integer arguments, followed by a tuple. tuple.proj, ; where n > 1 and
each i; is an element of {0,...,k}, applies to any tuple of size at least k + 1 and returns the
tuple obtained by collecting the values at position iy, ...,%, in t. In other words, it is equivalent
to (select;, (t),...,select;, (t)). Note that 41, ...,%, are not required to be distinct. When n = 0,
the term is equivalent to the empty tuple. table.proj, , extends the notion of projection to
tables. It is similar to tuple.proj except that it takes a table instead of a tuple as argument.
Note that the cardinality of table.proj;, ; (s) is the same as the cardinality of s. The term

2And so denotes the set of all tables containing just occurrences of the empty tuple.

449

Verifying SQL queries Mohamed et al.

m(e,@.) — 0 sH@, — s
eEs — 1< m(es) gt —
bag(e,—n) — @, sCt — (s\t)=go.

Figure 2: Simplification rules for 1 p-terms. In the last two rules, € is the sort of e and of the
elements of s, respectively; n is a numeral.

t ® t’ is interpreted as the cross join of tables t and ¢/, with every tuple occurrence in t being
concatenated with every tuple occurrence in t’. The operator ><;, j,...i, j, is indexed by n pairs
of natural numbers. It takes two tables as input, each with at least n columns, and outputs the
inner join of these tables on the columns specified by these index pairs. The paired columns
have to be of the same sort. Notice that if n = 0, the join is equivalent to a product.

Simplifying Assumptions 7o simplify the exposition and the description of the calculus,
from now on, we will consider only bags whose elements are not themselves bags, and only
tuples whose elements are neither tuples nor bags. Note that this non-nestedness restriction
applies to tables as well — as they are just bags of tuples. This is enough in principle to
model and reason about SQL tables.” We stress, however, that none of these restrictions are
necessary in our approach, nor required by our implementation, where we rely on cvcb’s ability
to reason modularly about arbitrarily nested sorts. Finally, we will not formalize in the calculus
how we process constraints containing table projections (i.e., applications of table.proj). Such
constraints are reduced internally to map constraints, with mapping functions generated on the
fly, and added to the relevant background solver.

Definition 2.1. A (monomorphic) sort is an element sort if it is not an instance of Bag(a). An
element term is a term of an element sort. A tuple/bag/table term is a term of tuple/bag/table
sort, respectively. A Trap-atom is an atomic Yr,p-formula of the form ¢ ~ t5, e E s, or s1 C s9,
where t; and ty are terms of the same sort, e is a term of some element sort 7 and s, s1, and
sq are terms of sort Bag(T).

A Ytap-formula ¢ is a table constraint if it has the form s &~ t or s % ¢; it is an arithmetic
constraint if it has the form s = ¢, s % t, or s < t, where s, t are terms of sort Int; it is an
element constraint if it has the form e; & eq, €1 % ea,p(e), f(e1) = ea, where e, e1, e5 are terms
of some element sort, p is a function symbol of sort € — Bool for some element sort ¢, and f is
a function symbol of sort e — €9, for some element sorts £ and es.

Note that table constraints include (dis)equalities between terms of any sort. This implies
that (dis)equalities between terms of sort Int are both table and arithmetic constraints.

2.1 Calculus

We now describe a tableaux-style calculus with derivation rules designed to determine the
satisfiability in Ttap of quantifier-free Yyap-formulas . To simplify the description, we will
pretend that all tables have columns of the same element sort, denoted generically by e.
Without loss of generality, we assume that the atoms of ¢ are in reduced form with respect
to the (terminating) rewrite system in Figure 2, which means that ¢ is a Boolean combination

3Commercial databases do allow table elements to be tuples. We could easily support this capability in the
future simply by providing two kinds of tuple sorts, one for rows and one for table elements.

450

Verifying SQL queries Mohamed et al.

of only equality constraints and arithmetic constraints. Thanks to the following lemma, we will
further focus on just sets of table constraints and arithmetic constraints.”

Lemma 2.1. For every quantifier-free Yrap-formula ¢, there are sets By, ..., B, of table con-
straints, sets Ay, ..., Ay, of arithmetic constraints, and sets E1, ..., E, of elements constraints
such that ¢ is satisfiable in Tap iff A; U B; U E; is satisfiable in Trap for some i € [1,n].

As a final simplification, we can also assume, without loss of generality, that for every term
t of sort Tuple(7g, ..., 7x) occurring in one of the sets B; above, B; also contains the constraint
t ~ (xg,...,x) Where g, ...,z are variables of sort 7, ..., g, respectively.

Configurations and Derivation Trees. The calculus operates on data structures we call
configurations. These are either the distinguished configuration unsat or triples (A, B, E) con-
sisting of a set A of arithmetic constraints, a set B of table constraints, and a set E of element
constraints. Our calculus is a set of derivation rules that apply to configurations.

We assume we have a (possibly multi-theory) element solver that can decide the satisfiability
of constraints in E. This requires the computability of all predicates p and functions f used as
arguments in applications of filter (o) and map (), respectively. We also define the set W to
be an infinite set of fresh variables, which will be used in specific derivation rules.

Derivation rules take a configuration and, if applicable to it, generate one or more alternative
configurations. A derivation rule applies to a configuration c if all the conditions in the rule’s
premises hold for ¢ and the rule application is not redundant. An application of a rule is
redundant if it has a conclusion where each component in the derived configuration is a subset
of the corresponding component in the premise configuration.

A configuration other than unsat is saturated with respect to a set R of derivation rules if
every possible application of a rule in R to it is redundant. It is saturated if it is saturated with
respect to all derivation rules in the calculus. A configuration (A, B, E) is satisfiable in T, if
the set A U B UE is satisfiable in Trap.

A derivation tree is a (possibly infinite) tree where each node is a configuration whose
(finitely-many) children, if any, are obtained by a non-redundant application of a rule of the
calculus to the node. A derivation tree is closed if it is finite and all its leaves are unsat. As we
show later, a closed derivation tree with root (A, B, E) is a proof that AU B UE is unsatisfiable
in Trap. In contrast, a derivation tree with root (A, B, E) and a saturated leaf with respect to
all the rules of the calculus is a witness that AU B U E is satisfiable in Tr,p.

The Derivation Rules. The rules of our calculus are provided in Figures 3, 4 and 5. They
are expressed in guarded assignment form where the premise describes the conditions on the
current configuration under which the rule can be applied, and the conclusion is either unsat, or
otherwise describes changes to the current configuration. Rules with two conclusions, separated
by the symbol ||, are non-deterministic branching rules.

In the rules, we write B, ¢, as an abbreviation of B U {c¢} and denote by T(B) the set of all
terms and subterms occurring in B. Premises of the form A f=nja ¢, where ¢ is an arithmetic
constraint, can be checked by a solver for (nonlinear) integer arithmetic.” Premises of the form
E gL L are checked by the element solver discussed earlier.

4 Proofs of this lemma and later results can be found in a longer version of this paper [18].

5A linear arithmetic solver is enough for problems not containing the ® operator. For problems with SQL
joins, whose encoding to SMT does require the ® operator, a solver for nonlinear arithmetic is needed, at the
cost of losing decidability in that case.

451

452

Verifying SQL queries

Mohamed et al.

A € t#tebB”
ACo ENIA #

E ':EL 1
unsat B-Conr unsat E-CONF — reat
BoALD s~tecB* s,t:Int BLEP el X~ eq € B* e1, €9 are elem. terms
-A-PRrO -E-PrO
rop A=A s~t ror E:=E,e; = ey
e1,e2 € T(B*) e1, e2 are element terms of the same sort
E-IDENT B_p

,e1 e || B:=B,e1 ey

AEnNas~t s,t €A s or t is a multiplicity term
A-Prop B—Bs~{

s#teB* w is a fresh variable m(e,s) € T(B*)
DISEQ NONNEG
B:=B,m(w,s) # m(w,t) A:=Am(w,s) % m(w,t) A:=A0<m(es)

s = bag(e,n) € B* n<0¢
Consl

A 1<né¢A
A:=An<0,m(es)~0 B:=B,s~a,
| A:=A1<n,m(e,s)=n B:=B,s# o,
s =~ bag(e,n) € B* T #%eecB* ~ g, € B* ,s) € T(B
CoNs2 gle,n) # EmpTY i z m(e,s) € T(B)
A=A m(z,s)=0

A:=A m(es) =0

s~tHu e B*
DisJ UNION

m(e,v) € T(B) v e {s,t,u}
A:=Am(e,s) ~m(e,t)+ m(e,u)

s~tUu e B*
MAax UNION

m(e,v) € T(B) v € {s,t,u}
A := A ,m(e, s) = max(m(e,t),m(e,u))

s~thNue B*
INTER

m(e,v) € T(B) v € {s,t,u}
A:=A m(e,s) ~ min(m(e,t),m(e,u))

sx~t\ueB* m(e,v) € T(B)
DiFr SuB

A=A m(et) < m(e,

[A:=A m(et)>mle,

ve{s,tu}

U ~ 0
u),m(e,s) ~ m(e,t) — m(e,u)

s~t\uebB*
Dirr REM — \\

m(e,v) € T(B)
A,m(e,u) =~ 0,m(e, s) = m(e,t) ||

v e {st,u}
A:=Am(e,u) #%0,m(e,s) ~0

s & setof(t) € B* m(e,v) € T(B*) v e {s,t}
SETOF
A:=A1<m(et),m(es)~1 |

A=A m(et) <0,m(e,s) =0

Figure 3: Bag rules.

Verifying SQL queries Mohamed et al.

ANl <m(Zn),s) AL < m((F,),1) s@teT(B)
A=A m{(Zm, n), s @t) = Mm{(Zm),s) * m((Gn), 1)

AN L < m({(Tp, Un), s @ 1)
A=A M{(Zm,Tn), s Dt) = M({(Zm), s) * m((Gn), 1)

Prop DowN

AEna L <m((ZTm),s) AL < m((Fn),t)

S P51 ipdp te T(B) Tiy R Yjys---r %y, R Yj, € B*

Jomn Up —— - -
A=A M({(Zo, Yn)y 8 Dy gy iy, 1) = M(Tn), 8) ¥ M((Yn), t)

A ':NIA 1< m(<'fm7?jn>7 S Dy gy ipdp t)

JoiNn DownN
A=A M, Tn)y 8 Dy iyj, L) = M((Tin), 5) ¥ M((Yn), t)
B .= B,(Eil ~ yjl,...7xip ~ yjp
Figure 4: Table rules. The syntax Z,, abbreviates zg,...,Zm.

We define the following closure for B where =, denotes entailment in the theory of tuples,
which treats all other symbols as uninterpreted functions.

B*= {s~t|s,teT(B),BEws~t} U {mes)=met)|BEwp s~t, mles)ecT(B)}
U {m(e1,s) = m(ea,s) | B Etup €1 = €2, m(er,s) € T(B)}
U {s#t]steT(B)BEw s~s Atat for some s’ #t' € B} (1)

The set B* is computable by extending standard congruence closure procedures with rules for
adding equalities of the form select;({(zo,...,2;,...,2k)) = x; and rules for deducing conse-
quences of equalities of the form (s1,...,8,) & (t1,...,1,).

Among the derivation rules in Figure 3, rules A-ConF, E-ConF are applied when conflicts are
found by the arithmetic solver or the element solver. Likewise, rule B-ConF is applied when the
congruence closure procedure finds a conflict between an equality and a disequality constraint.
Rules B-A-Prop, B-E-ProP, and A-Prop communicate equalities between the three solvers.
Rule Diseq handles disequality between two bags s, t by stating that some element, represented
by a fresh variable w, occurs with different multiplicities in s and ¢. Rule NONNEG ensures that
all multiplicities are nonnegative. Rule EMPTY enforces zero multiplicity for elements to a bag
that is provably equal to the empty bag.

Rules Consl and Cons2 reason about singleton bags, denoted by terms of the form bag(e, n).
The first one splits on whether n is positive or not to determine whether bag(e,n) is empty,
and if not, it also determines the multiplicity of element e to be n. The second one ensures that
no elements different from e are in bag(e,n). Rules Diss UNioN, MaAX UNION, INTER, DIFF SUB,
D1rF REM, and SETOF correspond directly to the semantics of their operators. For example, the
Diss Unton rule applies to any multiplicity term related to bags (¢, u,tHw) or their equivalence
classes if tHu € T(B).

The rules in Figure 4 are specific to table operations. Prop Up and PrRop DowN are upward
and downward rules for the ® operator. They are the ones which introduce nonlinear arithmetic
constraints on multiplicities. Join Up and JoiN DowN are similar to the product rules. However,
they consider the equality constraints between joining columns, to account for the semantics of
inner joins.

453

Verifying SQL queries Mohamed et al.

AbEnal<m(et) m(et)eT(B") s~oalpt)eB”
FiLTter Up)

E:=E,ple) A=A m(e,s)~m(et) || E:=E —ple) A:=Am(es)=0

AEna 1l <m(es) m(e, s) € T(B*) s~ o(p,t) € B
E:=E, p(e) A:=A m(e,s) ~ m(e,t)

FILTER DOwN
AEna 1 <m(et) m(e,t) € T(B*) s~mw(f,t) € B* egW
A=A, m(evt) < m(f(e)a S)

m(e, s) € T(B*) s~mn(f,t) e B* f is injective
E:=E flw)~e A=A m(es)~mw,t)

Map Up

INJ MAP DoOwN

A|:N|A1§m(e,t) Szﬂ(f,t)GB*
B :=B,i ~ ind(e,t) A:=A1<i< delem(t)

NotIny Up

AEnal<m(es) s~mn(f,t)eB*
A := A sum(e,t, delem(t)) = m(e, s), sum(e,t,0) =~ 0

NoT1INy DowN

Figure 5: Bag filter and map rules. w, ¢ are fresh variables.

The rules in Figure 5 reason about the filter (o) and map (7) operators. FILTER UP splits on
whether an element e in s satisfies (the predicate denoted by) p or not in order to determine its
multiplicity in bag o (p, s). FiLTER Down concludes that every element with positive multiplicity
in o(p, s) necessarily satisfies p and has the same multiplicity in s. MapP Up applies the function
symbol f to every element e that is provably in bag ¢. Note that it cannot determine the exact
multiplicity of f(e) in bag 7(f,t) since multiple elements can be mapped to the same one by f if
(the function denoted by) f is not injective. Therefore, the rule just asserts that m(f(e), 7 (f,t))
is at least m(e,t). To prevent derivation cycles with Iny Map Down, rule Map Up applies only
if e is not a variable introduced by the downward rule.

The downward direction for map terms is more complex, and expensive, if f is not injective.
Therefore, before solving, we check the injectivity of each function symbol f occurring in map
terms. This is done via a subsolver instance that checks the satisfiability of the formula f(z) &
f(y) ANz % y for fresh variables x,y. If the subsolver returns unsat, which means that f
is injective, we apply rule INny MaP DowN which introduces a fresh variable w for each term
m(e,7(f,t)) such that e = f(w) and w is in ¢ with the same multiplicity. In contrast, if the
subsolver returns sat or unknown, we treat f as non-injective and rely on a number of features
of cveb to construct and process a set of quantified constraints which, informally speaking and
mixing syntax and semantics here for simplicity, formalize the following relationship between
the multiplicity of an element e in a bag 7(f,t) and that of the elements of ¢ that f maps to e:

m(e, ([, 1) Z{ (z,t) |z €t A f(z)=e} (2)

To encode this constraint, we introduce three uninterpreted symbols, delem : Bag(a) — Int,
ind : o x Bag(a) — Int, and sum : a x Bag(a) x Int — Int. The value delem(t) represents the
number of distinct elements in (the bag denoted by) ¢; ind(e, t) represents a unique index in the
range [1, delem(t)] for element e in bag ¢; for an element e in 7w(f,t), sum(e,t,) accumulates the

454

Verifying SQL queries Mohamed et al.

multiplicities of the elements of ¢ with index in [1,4] that f maps to e. Rule NoTInJ Up ensures
that every element in ¢ is assigned an index ¢ in [1, delem(t)], whereas NoTINJ UP constrains the
multiplicity m(e, s) to be sum(e,t, delem(t)) when e is in s. We do not describe the encoding
of (2) here due to space limitations. However, it is an axiom with bounded quantification
over the interval [1, delem(t)] that is processed by cvc5’s model-based quantifier instantiation
module [19].

Example 2.1. Suppose we have the constraints: {z # s,y E n(f,s),y =~ z + 1} where
x,y are integers and f is defined in the arithmetic solver to be the integer successor function
(f(x) = xz+1). After applying simplification rules in Figure 2, we end up with ¢y = (Ao, Bo, Eo),
where Ag = { (1 < m(z,s)),1 < m(y,n(f,s)),y~x+1} and Eg = {y ~ 2+ 1}. Applying
rule NonNNEG, we get ¢ = (A1, B1,Eq), where Ay = Ag U {0 < m(z,s),0 < m(y,n(f,s))}
and E; = Eg. Since f is injective, we can apply rule Iny MaP Down to get co = (Ag, Bo, Es),
where Ay = A U{m(w,s) = m(y,n(f,s))} and E; = E; U{y ~ w+ 1}. Next, we apply the
propagation rule E-IDENT followed by B-A-Prop to get Az = Ag, Ay = AsU{y ~w—+1}. Now,
A4 is unsatisfiable because it entails = w, =(1 < m(x, s)), and 1 < m(w, s). Hence the rule
A-ConF applies, and we get unsat. If we remove the constraint x #£ s, then the problem is
satisfiable and we can construct a model Z where Z(z) is any natural n, Z(y) = n+ 1, and Z(s)
is a singleton bag containing n with multiplicity 1.

2.2 Calculus Correctness

Logozzo et al. [16] proved the decidability of the theory of bags with linear constraints over bag
cardinality and the operators: &, bag, m, L, &, 11, \, \\, setof, £, C. In this work, we exclude
the cardinality operator. However, we prove that adding the o operator with computable
predicates preserves decidability (See Proposition 2.5 below). In contrast, the further addition
of the ® and proj operators makes the problem undecidable. This is provable with a reduction
from the undecidable equivalence problem for unions of conjunctive SQL queries [14]. Our
calculus is not refutation complete in general in the presence of maps because of the possibility
of nontermination, as shown in the example below.

Example 2.2. Suppose x is an integer variable, and s is an integer bag variable and consider
just the constraint set {m(z,s) = 1, s &= m(f,s)} where f is again the successor function. The
set is unsatisfiable in the theory of finite bags. However, this is not provable in our calculus
as it allows the repeated application of rules Map Up and A-Prop, which add fresh elements
z+lz+2,2+3,...t0s.

Another source of refutation incompleteness is the presence of constraints with the cross
product operator ®, which causes the generation of nonlinear constraints for the arithmetic
subsolver, making the entailment checks in rules such as A-Conr and B-A-ProP undecidable.

However, in the absence of m and ®, the calculus is both refutation and solution sound, as
well as terminating. The soundness properties are a consequence of the fact that each derivation
rule preserves models, as specified in the following lemma.

Lemma 2.2. For all applications of a rule from the calculus, the premise configuration is
satisfiable in Ttap if and only if one of the conclusion configurations is satisfiable in Trap.

The proof of this lemma provides actually a stronger result than stated in the right-to-
left implication above: for each of the conclusion configurations C’, every model of T, that
satisfies C” satisfies the premise configuration as well. This implies that any model that satisfies
a saturated leaf of a derivation tree satisfies the root configuration as well.

455

Verifying SQL queries Mohamed et al.

Proposition 2.3 (Refutation Soundness). For every closed derivation tree with root node C,
configuration C is Ttap-unsatisfiable.

The proposition above implies that deriving a closed tree with a root (A, B, E) is sufficient to
prove the unsatisfiability in T, of the constraints A U B U E. The proof of the proposition is
a routine proof by induction on the structure of the derivation tree.

Solution soundness has a more interesting proof since it relies on the construction of a
satisfying interpretation for a saturated leaf of a derivation tree, which is a witness to the
satisfiability of the root configuration. We describe next at a high level how to construct an
interpretation Z for a saturated configuration C' = (A,B,E). More precisely, we construct a
valuation T of the variables and terms in C' that agrees with the semantics of the theory symbols
and satisfies AU B UE.

Once again, to simplify the exposition, we assume, with loss of generality, that any element
sort € in the problem can be interpreted as an infinite set. The actual implementation uses cvcb’s
theory combination mechanism to allow also sorts denoting finite sets, under mild restrictions
on the theories involved [22].

Model Construction Steps

1. Sorts: The meaning of the sort constructors Bag, Tuple, and Int is fixed by the theory.
The element sort ¢ is interpreted as an infinite set. As a concrete representation of bags,
and hence of tables, consistent with the theory, we choose sets of pairs (e,n), where e is
an element of the bag in question, and n is its (positive) multiplicity.

2. Yap: Trap enforces the interpretation of all Yrp-symbols. Saturation guarantees that
equivalent bag/tuple terms will be interpreted by Z as the same bag/tuple.

3. Integer variables: Saturation guarantees that there is some model of Tya that satisfies
A. We define 7 to interpret integer variables according to this model.

4. Variables of sort e: The calculus effectively partitions them into equivalent classes (where
x is in the same class as y iff x &~ y is entailed by B). Each class is assigned a distinct
element from Z(e), which is possible since it is infinite.

5. Bag variables: 7 interprets each bag variable s as the set
Z(s) = {(Z(e),n) | m(e,s) € T(B"), Z(m(e,s)) =n >0}

A well-foundedness argument on Z’s construction guarantees that the equation above is
well defined. Note that Z(s) is the empty bag iff there is no term m(e, s) in 7(B*) that
satisfies the conditions in the comprehension above.

Example 2.3. From Example 2.1, the set of constraints {y £ 7(f, s),y ~ x + 1} is satisfiable.
In this example the element sort is Int, interpreted as the integers. Similar to Example 2.1,
the terms m(y, 7(f,s)),w, m(w, s) are generated during solving. After saturation, and for sim-
plicity, suppose we end up with the following sets of equivalence classes for the terms involved:
{m(y,n(f,s)), m(z,s)}, {z,w}, {y,z+1}, {s}, {7(f,s)}. The theory of arithmetic assigns con-
sistent concrete values to the first three equivalence classes, say 1, 10, 11, respectively. In Step
5, s is interpreted as the set {(Z(x),Z(m(x,s))), (Z(w),Z(m(w, s)))} = {(10,1)}, and similarly
T(r(f.) = {(Z(y), Z(mly, 7(f.)} = {11, 1)},

6The full model construction and its correctness are discussed in detail in the longer version of this paper [18].

456

Verifying SQL queries Mohamed et al.

(1, Tm) EsES* (Y1, yn) ELES*
S in1j1"‘ipjp te T(S) Tiy = Yjyy--- y L, ~ Yip €s”

JoiNn Up

S:=S,(T1, -, Ty Y1y Yn) E 8Dy, T
<xla ey Tmy Y1, 7yn> Es Py g1 ipdp teS*
JoiN DowN
S:= Sa <l‘17...,$m> E 57<y17"'ayn> E taxil N Yy Tiy, B Y5,
eEseS* o(p,s) € T(S)
FILTER UP

E:=Eple) S:=S,eE0(ps) [E:=E-ple) S:=Seia(ps)

eESseS* w(f,s) € T(S) eg W

Map up S:=S, f(e) E 7(f,s)
. GE’IT(f,S)ES* weWw . eEU(pvs)ES*
AP DOWN ——— Efw)~e S—Swes ILTER DOWN —=—— Eple) S—=Sces

Figure 6: Set filter and map rules. w is a fresh variable unique per e, f, s.

Proposition 2.4 (Solution Soundness). For every derivation tree with root node Cy and a
saturated leaf C, configuration Cy is satisfiable in Trap-

While the calculus is not terminating in general, we can show that all derivations are finite
in restricted cases.

Proposition 2.5 (Termination). Let C' be a configuration containing no product, join, or map
terms. All derivation trees with root C' are finite.

Under the restrictions in the proposition above, the rules of the calculus will never generate
nonlinear arithmetic constraints. This means that for input problems that also have no such
constraints, any derivation strategy for the calculus yields a decision procedure.

3 A Theory of Finite Relations with Filter and Map

To reason about SQL queries under set semantics, we rely on the theory of finite relations Tgej,
whose signature and calculus are described in Meng et al. [17]. We extend the signature with
filter and map operators analogous to those in the theory of tables. We overload the symbols
E,C,U,M\,®,0,mx for set operations membership, subset, union, intersection, difference,
product, filter, map, and (inner) join,” respectively. We use rel.proj for relation projection.

A calculus to reason about constraints in Tgre can be defined over configurations of the form
(S,E), where S is a set of Tgre-constraints, and E is a set of element constraints similar to the
one defined in Section 2. We again assume we have a solver that can decide the satisfiability of
element constraints. The Tge-constraints are equational constraints of the form s ~ ¢ and s % ¢
and membership constraints of the form e E s and e £ s, where e, s,t are X,-terms. Similar

7This is analogous to the inner join operator for tables but differs from the relational join operator defined
in Meng et al. [17].

457

Verifying SQL queries Mohamed et al.

™

Figure 7: A cycle that contains a red edge with 7 label.

to bags, we also define the set W to be an infinite set of fresh variables specific for map rules.
The closure S* for the S component of a configuration is defined as:

S*={s~t|steT(S),SFwps~t}
U{s%t]|steT(S),SEw s~s Atat for some s %t €S}
U{eEs|eseT(S),SEwpexe Asa s for some e E s’ €S}

For space constraints, we refer the reader to the extended version of this paper [18] for a full
description of the extended signature and calculus. We provide in Figure 6 only our additional
rules: those for filter and map, which resemble the corresponding rules given in Figure 5 for
bags, and those for inner joins.

Calculus correctness. Bansal et al. [2] provide a sound, complete, and terminating calculus
for a theory of finite sets with cardinality. The calculus is extended to relations but without
cardinality by Meng et al. [17]. That extension is refutation- and solution-sound but not
terminating in general. While it is proven terminating over a fragment of the theory of relations,
that fragment excludes the relational product operator, which we are interested in here.

We have proved that the calculus by Meng et al. extended with the filter rules in Figure 6
is terminating for constraints built with the operators {=,J,M,\,®, 0} [18]. Termination is
lost with the addition of map rules, also in Figure 6. Example 2.2 works in this case too as a
witness.

However, termination can be recovered when the initial configuration satisfies a certain
acyclicity condition. To express this condition, we associate with each configuration C' = (S, E)
an undirected multi-graph G whose vertices are the relation terms of sort Set occurring in S,
and whose edges are labeled with an operator in {=,,M,\,®,, 0, 7}. Two vertices have an
edge in G if and only if they are in the same equivalence class or a membership rule can be
applied (either upward or downward) to C' such that one of the vertices occurs as a child of
the other vertex in the premises or conclusions of the rule. Furthermore, each edge between
vertices m(f,s) and s is colored red while the remaining edges are colored black.

Proposition 3.1. Let Cy = (So,Eo) be an initial configuration and let Gy be its associated
multi-graph. The calculus is terminating for Cy if there is no cycle in Gy with red edges, and
all cycles are located in a subgraph without map terms.

Figure 7 shows the graph for Example 2.2 which has a cycle with a red edge. Figure &
shows a graph with no red cycles. For the purposes of this paper, the acyclicity condition is
not a serious restriction because typical SQL queries translate to initial configurations whose
associated graph does not have cycles with red edges.®

8Examples of SQL queries that do have cycles with red edges are queries with recursive common table
expressions.

458

Verifying SQL queries Mohamed et al.

Figure 8: A graph with no cycles that contain red edges.

Symbol Arity SMTLIB Description
null Nullable(e) nullable.null Null constructor
some o — Nullable(c) nullable.some Some constructor
val Nullable(a) — o nullable.val Value selector
isNull Nullable(cr) — Bool nullable.is_null Is null tester
isSome Nullable(er) — Bool nullable.is_some Is some tester
lift (a1 X -+ X o = a) X

Nullable(e1) X - -+ X Nullable(ay,) — Nullable(c) nullable.lift Lifting operators

Figure 9: Signature for the theory of nullable sorts. lift is a variadic function symbol.

4 Supporting Nullable Sorts

SQL and relational databases allow tables with null values. To support them in SMT, one
could rely in principle on SMT solvers that accept user-defined algebraic datatypes [20], as
nullable types are a form of option types. That is, however, not enough since, to encode SQL
operations on nullable types, one also needs to lift all operators over a given sort to its nullable
version. Since this is extremely tedious and error-prone when done at the user level, we extended
the datatypes solver in cveb by adding built-in parametric Nullable sorts, along with selectors,
testers, and a family of (second-order) lifting operators. The signature of the corresponding
theory of nullable sorts is provided in Figure 9. The meaning of constructors null and some,
the selector val, and the testers isNull,isSome is standard; that of lift is:

e, o) = {null if x; :.null for some i € [1, k]

some(f(val(z1),...,val(zx))) otherwise

which is analogous to the semantics of eager evaluation in programming languages. This seman-
tics covers most SQL operations, except for OR and AND, as SQL adopts a three-valued logic for
nullable Booleans [11], interpreting, for instance, NULL OR TRUE as TRUE and NULL AND FALSE
as FALSE. We can support this short-circuiting semantics through an encoding from SQL to
SMT based on the if-then-else operator.

5 Evaluation of Benchmarks on Sets and Bags

We evaluated our cve5 implementation using a subset of the benchmarks [12] derived from
optimization rewrites of Apache calcite, an open source database management framework [10].
The benchmark set provides a database schema for all the benchmarks. Each benchmark
contains two queries over that schema which are intended to be equivalent under bag semantics,
in the sense that they should result in the same table for any instance of the schema. The total
number of available benchmarks is 232. We modified many queries that had syntax errors or
could not actually be parsed by calcite. We then excluded benchmarks with queries containing

459

Verifying SQL queries Mohamed et al.

constructs we currently do not support, such as ORDER BY clauses’ or aggregate functions, or
benchmarks converted to queries with aggregate functions by the calcite parser. That left us
with 88 usable benchmarks, that is, about 38% of all benchmarks. For the purposes of the
evaluation we developed a prototype translator from those benchmarks into SMT problems
over the theory of tables and of relations presented earlier, following SQL’s bag semantics
and set semantics, respectively. The translator uses different encodings for bag semantics and
set semantics. Fach SMT problem is unsatisfiable iff the SQL queries in the corresponding
benchmark are equivalent under the corresponding semantics.

We ran cveb on the translated benchmarks on a computer with 128GB RAM and with a
12th Gen Intel(R) Core(TM) i9-12950HX processor. We compared our results with those of
SQLSolver and SPES analyzers — which can both process the calcite benchmarks directly. The
results are shown in Figure 10a. The first three lines show the results for the bags semantics
encoding (b) while the fourth line shows the results for the set semantics encoding (s). The
column headers #, =, and uk stand for inequivalent, equivalent, and unknown respectively.
Unknown for SPES means it returns “not proven,” whereas for cvc5 it means that it timed out
after 10 seconds. SQLSolver solves all benchmarks efficiently within few seconds. However,
it incorrectly claims that the two queries in one benchmark, testPullNull, are equivalent,
despite the fact that they return tables which differ by the order of their columns. The SQL-
Solver developers acknowledged this issue as an error after we reported it to them, and they
fixed it in a later version. SPES too misclassified benchmark testPullNull as well as another
one (testAddRedundantSemiJoinRule) where the two queries are equivalent only under set se-
mantics. The SPES authors acknowledged this as an error in their code. The tool is supposed
to answer unknown for the second benchmark, as the two queries have different structures, a
case that SPES does not support. cvch gives the correct answer for these two benchmarks.
In each case, it provides counterexamples in the form of a small database over which the two
SQL queries differ, something that we were able to verify independently using the PostgreSQL
database server [13]. Under set semantics, cveh found 83 out of 88 benchmarks to contain
equivalent queries, found 1 to contain inequivalent queries (testPullNull), and timed out on
4 benchmarks. Under bag semantics, cveb proved fewer benchmarks than both SPES and SQL-
Solver. However, it found the benchmark whose queries are inequivalent under bag semantics
but equivalent under set semantics.

Since the calcite benchmark set is heavily skewed towards equivalent queries, we mutated
each of the 88 benchmarks to make the mutated queries inequivalent. The mutation was
performed manually but blindly, to avoid any bias towards the tools being compared. For the
same reason, we excluded the two original benchmarks that SPES misclassifies. The results of
running the three tools on the mutated benchmarks are shown in Figure 10b. SQLSolver was
able to solve all of them correctly. As expected, SPES returned unknown on all of them since
it cannot verify that two queries are inequivalent.

Note that cved’s performance improves with the mutated benchmarks because many of them
use non-injective map functions, and it is easier to find countermodels for such benchmarks
than it is to prove equivalence. Consistent with that, we observe that cves times out for more
benchmarks under set semantics than for bag semantics. We conjecture that this is because
more queries are equivalent under set semantics than they are under bag semantics.

Looking at cvcb’s overall results, more benchmarks were proven equivalent by cve5 under
set semantics than bag semantics. How to improve performance under bag semantics requires

9Both SPES and SQLSolver provide partial support for ORDER BY. They classify two input queries with ORDER
BY clauses as equivalent if they can prove their respective subqueries without the ORDER BY clause equivalent.
Otherwise, they return unknown.

460

Verifying SQL queries Mohamed et al.

% = uk Total # = uk Total
SQLSolver (b) 1 87 88 SQLSolver (b) 86 86
SPES (b) 54 34 88 SPES (b) 86 86
cveh (b) 2 42 44 88 cveh (b) 81 5 86
cveh (s) 1 8 4 88 cveh (s) 67 9 10 86

(a) (b)

Figure 10: Left table is the original benchmarks, right table is the mutated one. SPES can only
answer equivalent or unknown.

further investigation. However, we find it interesting and useful for the overall development of
SQL analyzers that cvch was able to expose a couple of bugs in the compared tools.

6 Conclusion and Future Work

We showed how to reason about SQL queries automatically using a number of theories in SMT
solvers. We introduced a theory of finite tables to support SQL’s bag semantics. We extended
a theory of relations to support SQL’s set semantics. We handled null values by extending a
theory of algebraic datatypes with nullable sorts and a generalized lifting operator. We also
showed how to translate SQL queries without aggregation into these theories. Our comparative
evaluation has shown that our implementation is not yet fully competitive performance-wise
with that of specialized SQL analyzers, particularly on equivalent queries with non-injective
mapping functions. We plan to address this in future work.

We are experimenting with adding support for fold functionals in order to encode and handle
SQL queries with aggregation operators. Another direction for future work is adding filter and
map operators to a theory of sequences [21] to reason about SQL queries with order-by clauses,
which current tools support only in part.

Acknowledgements This work was supported in part by a gift from Amazon Web Services.
We are grateful to Qi Zhou and Joy Arulraj, the authors of SPES, for their help, detailed
answers to our questions, and for sharing the source code and benchmarks of SPES, which we
used in this paper. We are also grateful to Haoran Ding, the first author of SQLSolver, for his
prompt answers to our questions and his clarifications on some aspects of the tool. Finally, we
thank Abdalrhman Mohamed and the anonymous reviewers for their feedback and suggestions
for improving the paper.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edn. (1995), https://dl.acm.org/doi/10.5555/551350

[2] Bansal, K., Barrett, C.W., Reynolds, A., Tinelli, C.: Reasoning with finite sets and cardinality con-
straints in SMT. Log. Methods Comput. Sci. 14(4) (2018), https://doi.org/10.23638 /LMCS-14(4:
12)2018

[3] Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A.,
Mohamed, M., Niemetz, A., Notzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y.,

461

https://dl.acm.org/doi/10.5555/551350
https://doi.org/10.23638/LMCS-14(4:12)2018
https://doi.org/10.23638/LMCS-14(4:12)2018

Verifying SQL queries Mohamed et al.

(6]

[10]
[11]
[12]
[13)
[14]
[15]

[16]

(17]

18]

[19]

462

Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-strength SMT solver. In: TACAS (1).
Lecture Notes in Computer Science, vol. 13243, pp. 415-442. Springer (2022)

Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending SMT solvers
to higher-order logic. In: Fontaine, P. (ed.) Automated Deduction - CADE 27 - 27th Interna-
tional Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings. Lec-
ture Notes in Computer Science, vol. 11716, pp. 35-54. Springer (2019), https://doi.org/10.1007/
978-3-030-29436-6_3

Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data
bases. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing. pp.
77-90. STOC 77, Association for Computing Machinery, New York, NY, USA (1977), https:
//doi.org/10.1145/800105.803397

Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive queries. In: Proceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. pp.
59-70. PODS ’93, Association for Computing Machinery, New York, NY, USA (1993), https:
//doi.org/10.1145/153850.153856

Chu, S., Wang, C., Weitz, K., Cheung, A.: Cosette: An automated prover for SQL. In: CIDR 2017,
8th Biennial Conference on Innovative Data Systems Research, Chaminade, CA, USA, January
8-11, 2017, Online Proceedings (2017), http://cidrdb.org/cidr2017/papers/p51-chu-cidrl7.pdf
Cohen, S.: Equivalence of queries combining set and bag-set semantics. In: Vansummeren, S.
(ed.) Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 26-28, 2006, Chicago, Illinois, USA. pp. 70-79. ACM (2006).
https://doi.org/10.1145/1142351.1142362

Ding, H., Wang, Z., Yang, Y., Zhang, D., Xu, Z., Chen, H., Piskac, R., Li, J.: Proving query
equivalence using linear integer arithmetic. Proc. ACM Manag. Data 1(4) (dec 2023), https://doi.
org/10.1145/3626768

Foundation, A.S.: Apache calcite (2014), https://calcite.apache.org/docs/, accessed on Feb 25,
2024

Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Prentice
Hall Press, USA, 2 edn. (2008)

Group, G.T.D.: Calcite benchmarks (2020), https://github.com/georgia-tech-db/spes/blob/
main/testData/calcite_tests.json, accessed on Feb 25, 2024

Group, T.P.G.D.: Postgresql (2024), https://www.postgresql.org/, accessed on Feb 25, 2024
Toannidis, Y.E., Ramakrishnan, R.: Containment of conjunctive queries: beyond relations as sets.
ACM Trans. Database Syst. 20(3), 288-324 (sep 1995), https://doi.org/10.1145/211414.211419
Levatich, M., Bjgrner, N., Piskac, R., Shoham, S.: Solving LIA* using approximations. In: Beyer,
D., Zufferey, D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp. 360-378.
Springer International Publishing, Cham (2020)

Logozzo, F., Peled, D.A., Zuck, L.D.: Decision procedures for multisets with cardinality con-
straints. In: VMCALI, Lecture Notes in Computer Science, vol. 4905, pp. 218-232. Springer Berlin
/ Heidelberg, Germany (2008)

Meng, B., Reynolds, A., Tinelli, C., Barrett, C.W.: Relational constraint solving in SMT. In:
de Moura, L. (ed.) Automated Deduction - CADE 26 - 26th International Conference on Auto-
mated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings. Lecture Notes in Com-
puter Science, vol. 10395, pp. 148-165. Springer (2017). https://doi.org/10.1007/978-3-319-63046-
5_10, https://doi.org/10.1007/978-3-319-63046-5-10

Mohamed, M., Reynolds, A., Tinelli, C., Barrett, C.: Verifying SQL queries using theories of
tables and relations. CoRR abs/2405.03057 (2024), https://arxiv.org/abs/2405.03057
Reynolds, A., Tinelli, C., Goel, A., Krstic, S., Deters, M., Barrett, C.W.: Quantifier instantiation
techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June

https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/153850.153856
https://doi.org/10.1145/153850.153856
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
https://doi.org/10.1145/3626768
https://doi.org/10.1145/3626768
https://calcite.apache.org/docs/
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://www.postgresql.org/
https://doi.org/10.1145/211414.211419
https://doi.org/10.1007/978-3-319-63046-5_10
https://arxiv.org/abs/2405.03057

Verifying SQL queries Mohamed et al.

[20]

21]

22]

23]

24]

[25]

[26]

9-14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp. 377-391. Springer
(2013), https://doi.org/10.1007/978-3-642-38574-2_26

Reynolds, A., Viswanathan, A., Barbosa, H., Tinelli, C., Barrett, C.W.: Datatypes with shared
selectors. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning - 9th Interna-
tional Joint Conference, IJCAR, 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10900, pp.
591-608. Springer (2018), https://doi.org/10.1007/978-3-319-94205-6_39

Sheng, Y., Notzli, A., Reynolds, A., Zohar, Y., Dill, D., Grieskamp, W., Park, J., Qadeer, S.,
Barrett, C., Tinelli, C.: Reasoning about vectors using an smt theory of sequences. In: Blanchette,
J., Kovécs, L., Pattinson, D. (eds.) Automated Reasoning. pp. 125-143. Springer International
Publishing, Cham (2022)

Sheng, Y., Zohar, Y., Ringeissen, C., Lange, J., Fontaine, P., Barrett, C.W.: Politeness for the
theory of algebraic datatypes. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Rea-
soning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 12166, pp. 238-255. Springer (2020),
https://doi.org/10.1007/978-3-030-51074-9_14

Veanes, M., Grigorenko, P., de Halleux, P., Tillmann, N.: Symbolic query exploration. In: Formal
Methods and Software Engineering, pp. 49—68. Lecture Notes in Computer Science, Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) Automated Deduction—
CADE-18. pp. 363-376. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

Zhou, Q., Arulraj, J., Navathe, S., Harris, W., Xu, D.: Automated verification of query equivalence
using satisfiability modulo theories. Proceedings of the VLDB Endowment 12(11), 1276-1288
(2019)

Zhou, Q., Arulraj, J., Navathe, S.B., Harris, W., Wu, J.: A symbolic approach to proving query
equivalence under bag semantics. CoRR abs/2004.00481 (2020), https://arxiv.org/abs/2004.
00481

463

https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-319-94205-6_39
https://doi.org/10.1007/978-3-030-51074-9_14
https://arxiv.org/abs/2004.00481
https://arxiv.org/abs/2004.00481

	Introduction
	Related work
	Formal Preliminaries

	Theory of Tables
	Calculus
	Calculus Correctness

	A Theory of Finite Relations with Filter and Map
	Supporting Nullable Sorts
	Evaluation of Benchmarks on Sets and Bags
	Conclusion and Future Work

