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Abstract 
An organism’s transcriptome is the set of all transcripts within a cell at a certain time. 

We often analyze the transcriptome by quantifying gene expression and performing 
subsequent analyses such as a differential expression or a network analysis. Such analysis 
helps us in understanding and interpreting the functional elements of the genome. Many 
challenges limit the accuracy and ability to map all the RNA-Seq correctly into its 
genome sequence. Some of these challenges are exemplified when mapping sequences 
fall at exon junctions, sequences containing polymorphisms, multiple insertions or 
deletions, and reads falling partially or wholly within introns. One of the most significant 
problems is the loss of data occurring from the inability to map sequences when they 
align to multiple genomic locations, sometimes called ambiguous sequence mappings. In 
this paper, we present a novel method to increase the accuracy of gene expression 
estimation by relying on a statistical approach to increase the accuracy of mapping the 
ambiguous reads to their proper locations within the genome. This approach allows us to 
better identify significantly expressed genomic locations so we can accurately map 
ambiguous reads to their most likely accurate genomic locations and to define more 
precisely which genes are expressed throughout the genome. Due to its statical nature the 
approach can be easily combined with other existing mapping tools and mechanisms as 
well. 

1 Introduction 
RNA-Seq is a technique that utilizes next-generation sequencing technologies to study transcriptomes 
at the nucleotide level. RNA-Seq is known for its precision in measuring transcripts levels and their 
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identify various isoforms, yet it faces some challenges that hinder it from being the technique of choice 
for gene expression profiling. One of the main challenges appears when attempting to map RNA 
sequences to a reference genome; high percentages of short sequence reads are often assigned to 
multiple genomic locations. A sequence mapping is said to be “ambiguous” when the read sequence is 
mapped to multiple genomic locations within a genome. One approach to handling these “ambiguous 
mappings” has been to discard them [2,26]. This results in a loss of data, which can sometimes be as 
large as half of the sequenced data and also affects precise breakpoint prediction [23]. 

 
Another approach assigns them randomly to one of the locations from a set of best assignments 

using mapping tools like MAQ [12] -MAQ has been superseded by BWA for sequence aligment- or 
BWA [22]. Another approach “rescues” multi-reads through estimating an initial gene expression 
through allocating unique reads which are used to partially allocate the ambiguous reads and then a 
final gene expression is acquired through re-estimating the gene expression after the allocation of the 
multi-reads [3, 4, 15]. All of these approaches will result in a significant loss of the original data and 
other problems that might occur such as an overestimation of homoeolog co-regulation and the incorrect 
inference of subgenome asymmetry in network topology these types of problems can hinder our 
understanding of duplicate gene expression. These problems can be reduced by modifying the factors 
influencing the ambiguity sequencing and resequencing strategy and the fundamental resources[24]. 
 

Tools like Eland [14], SOAP [11], MAQ [12], BWA[22], RMAP [13], Seqmap [16], and Bowtie 
[1] are usually used to perform initial mapping of sequence data to a corresponding reference genome. 
Nevertheless, these tools do not fully address the ambiguous mappings of the sequence reads. This is 
an important problem since those ambiguous reads often comprise a large portion of the genomic 
sequences generated. Newer tools like RSEM[27], Salmon[28], and FUDA[29] provide a better 
estimation but are not suitable for all situations.  

 
Sequence-based transcriptome analysis, specifically the high throughput sequencing of cDNA 

known as RNA-Seq, has emerged as an alternative to microarray gene expression profiling [10] which 
had long been the most widely used method for transcriptome analysis. The reason for RNA-Seq’s 
emergence over microarrays was due to several reasons and is mainly motived by the limitations of 
microarray studies, such as access and cost. Microarray experiments require the physical disruption of 
the cell to get access to gene expression patterns, and the complexity and limited amount of tissue 
samples to be obtained can be limiting factors to the quantity and quality of RNA that can be isolated 
from microarray experiments. Another limiting factor in microarray experiments in medical 
applications is that many clinical specimen sizes are small since they are usually obtained during early 
diagnoses. Degraded RNA is also an issue to be concerned about since it could result in the generation 
of false data. The degradation usually appears due to the numerous steps that are prone to errors in a 
microarray experiment. Therefore microarray experiments need to be replicated to eliminate such 
errors. Another important issue is that although many tools are available, microarray experiments still 
lack standard methodologies for collecting, analyzing, and validating the data [21].  

 
On the other hand, RNA-Seq provides many advantages over microarrays. RNA-Seq is less prone 

to errors due to the omission of the hybridization step used during the process of preparing microarrays 
samples [17, 18]. RNA-Seq studies are more suitable for discovery-based experiments, unlike 
microarray studies, which are pre-design-driven.  pre-design-driven means that what we know about 
the genome guides the design of the experiment and is already built into the microarrays. RNA-Seq 
does not require previous knowledge about the nature of the transcriptome because of its hypothesis-
free nature, and it also allows us to study species with poor or missing genomic annotations. RNA-Seq 
also permits the detection of lowly expressed genes, alternative splice variants, and novel transcripts. 
This is in contrast to microarray hybridization techniques, which can limit the accuracy of expression 
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measurements, especially when transcripts are present in low abundance [6]. Even though comparing 
results across arrays can help in identifying gene expressions among samples of interest. A single 
sample is usually not sufficient to provide reliable information about the expression levels for different 
transcripts [2, 7, 9]. This paper is a continuation of our work on identifying ambiguous sequences of 
transcriptomes [30]. 

2 Methods 
Our method exploits the use of ambiguous reads to provide us with a more accurate estimation of 

gene expression and better mapping of ambiguous reads to their most appropriate location within the 
genome. We start by assigning a weighted score for each position in the genome. This is done by finding 
the expression value for that position which represents the number of reads – including the ambiguous 
reads – that map to that exact single location within the genome. For each gene within the genome, the 
weights are averaged to provide us with an average weight score. Then we find if each gene is expressed 
by comparing the average weight score for that gene against a list of one hundred to one thousand 
random genes along with their average weight scores. If the statistical significance or the p-value of 
that gene is below a certain threshold for example below 0.1, 0.05, or 0.01 then that gene is considered 
expressed. Once we define which genes are expressed and which are not. We then revisit the mapping 
process but this time we assign the unique reads to their proper location and map the ambiguous reads 
to their most appropriate location which are the expressed genes regions within the genome. This is in 
contrast with the previous step where we mapped the ambiguous reads to all their probable locations. 
The second step provides us with a more accurate mapping of the ambiguous reads to their accurate 
location within the genome. We find that our estimation of gene expression provides us with more 
accurate results than previously used methods since we include the ambiguous reads in our estimation 
which are usually discarded or randomly mapped to one of the locations within the genome by the other 
methods.  

 
We start by aligning the RNA-Seq reads to their reference sequence using one of the known 

sequence mapping tools. We had choices between different short-read alignment tools like Bowtie [1] 
and MAQ [12]. MAQ provides higher sensitivity in mapping unique sequences than Bowtie while 
Bowtie is much faster than MAQ in the mapping process [1]. When comparing the benefits of gaining 
a little higher sensitivity using MAQ to a much higher speed using Bowtie, we found that using Bowtie 
is much more beneficial for the analysis we are doing here. This is because our approach requires 
identifying all the unique and ambiguous reads and their locations within the genome which is more 
time-consuming than just finding the unique reads. For this reason, we used Bowtie to extract and find 
all the possible mappings for each read. Another reason for choosing Bowtie is that its results can be 
easily imported into other tools like Tophat and Cufflinks. 

 
We used the following parameters: (-a) to report all the valid alignments. It is important to report 

all the valid alignments, and not only the best ones, which can be specified using the (--best) parameter 
or the unique ones which are usually specified by the (-m) parameter since we are interested in the reads 
that align to multiple locations. Specifying (--best) will only identify the alignments that have the least 
mismatches while using (-m  k) will suppress any multiple reads that exceed the value of k. This means 
that if the read has more than three possible mappings and –m was specified to be three, then the 
mappings associated with the read will not be reported. We specified that (-n  2) which allows alignment 
of reads with only two mismatches at the most. We used multithreading by specifying (–p  10) which 
allows for 10 threads. Finally, we used the (-S) option, which allows us to display our output in SAM 
format. We also used the --sam-nohead option to remove the extra headings provided by the SAM 
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format. Understanding the difference between these parameters is important since Bowtie does not by 
default report the ambiguous reads. 

 
We then calculate the expression value for each position in the genome. This is done by finding the 

number of reads that map to each single nucleotide location in the genome. To facilitate this task we 
needed to create a file and store the locations of each position in the read along with its count in 
ascending order. The counts represent the weights of all the reads that map to that location. This is not 
a trivial task since if the number of aligned reads for our data is large, sorting them could be a time-
consuming task. To prove the validity of our approach, we decided to use a small data set before 
incorporating our approach into a larger and more complicated data set. Figure .1 below shows the 
process of mapping reads to single and multiple locations based on the positive and negative strands. 

 

 
 

Figure.1 Flowchart for ambiguous sequence mapping 

 
We chose to run Bowtie on the Escherichia coli strain K-12 sub-strain MG165 [19]. Bowtie reported 

86.30 % of the reads to have at least one possible alignment location and 13.70% to have failed to align. 
Out of the 86.30%, only 32.60% aligned to a single unique location while 53.70% have multiple 
alignment locations. The number of ambiguous reads in this sample constitutes more than half of the 
mappable genome. Of course, this is not always the case, but the percentage presented here shows how 
significant the ambiguous read problem could be.   
 

Once we have all the reads sorted according to their positions, we assign a weighted score to each 
position within the genome where a certain read or reads maps. For calculating the weighted score we 
used two different approaches. The first approach assigns a score of one to every single location to 
which a read maps. For example, if ten reads maps to that certain location then the weighted score of 
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the location will be 10. The second approach is similar to the first approach but instead of assigning a 
score of one to each read that maps to a certain read location, it calculates the number of locations that 
each read maps to and assigns a fraction of that number as the score for that location. For example, if a 
read maps to 5 different locations then for each location a weighted score of 1/5 would be assigned to 
each of those different locations. This means that if 10 reads map to a single certain location then the 
weighted score of that location will be the sum of the individual weights for all those 10 reads. We 
decided to call the first approach the Individual-Count-Weight and the second approach the Partial-
Count-Weight.  
 

The steps below show the algorithm for evaluating the significance of gene expression while 
allowing the ambiguous reads to be included from the beginning and throughout the mapping process. 

 
1. Enumerate all the possible mappings for every read to their different positions within the 

genome and assign a weighted score to each position based on their read depth.  
1a. Individual-Count approach a weighted score equal to 1 for each read that maps to a 

single location.  
1b. Partial-Count approach a weighted score equal to 1/r where r is the number of 

locations to which a read maps in the genome.  
2.  Create a file and store the different weight scores based on the approach used. 

2a. For the Individual-Count approach, we store and sort the locations of every single 
read along with its score in ascending order.  

2b. For the Partial-Count approach, we store the ambiguous reads and their locations and 
divide the multiple reads that map to the same location as a single group.  

3.  Find the coordinates (start, end) for each gene within the reference genome. 
4.  Calculate the mean score for each gene in the reference genome 
 
𝑀𝑒𝑎𝑛, 𝜇 = 	∑ "!
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5. Select 100 random gene locations, xi, from the expression flat-file and calculate the average 

score for those 100 locations.  
 

6.  Compute standard deviation (σ) of all of the random locations as compared to the gene mean 
score x, along with their Z-score and p-value using the following equations. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜎 =
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+
		 , 𝑊ℎ𝑒𝑟𝑒	𝑁 = 100	                                                               (2) 
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,
																																																																																																																																									(3)   

 
7.  Find which genes are significantly expressed based on p-values below 0.1, 0.05 or 0.01. The 

p-value was calculated using the cumulative distribution formula presented in the equation 
below. 

 
𝑃 − 𝑣𝑎𝑙𝑢𝑒 = -

.
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The total weighted score for each individual gene is the sum of all the weights that map to each 
individual location. If there are no reads that map to a location then the read count is zero for that 
specific location. Once we establish a score total for a position in the genome, we need to find the 
expression value of genes by calculating the average score for each gene. We do that by summing the 
weights of each individual position in the gene and dividing them by the length of that gene. We repeat 
the process until we have a total score for every gene in the genome. 

 
To be able to establish the significance of the gene expression values calculated for each gene, we 

compare the score of each gene (termed the gene of interest) against the scores of several genes chosen 
at random. To do so we selected 100 random gene scores and found the average score for each of those 
genes. We also tested the possibility of choosing 1000 random locations and found that it rarely affects 
the accuracy of the results yet it increases the complexity and the computational running time of the 
program significantly. We then compute the standard deviation, the z-score, and p-value of the gene of 
interest with regards to the mean random gene value. The p-value calculated for each gene will give us 
information regarding which of the genes can be considered expressed at a significant level. 

3 Results and Discussion  
3.1 Defining significantly expressed genes 

  
Determining which genes are expressed has traditionally been a difficult problem with no clearly 

defined solution. The reason for that could be attributed to the fact that a certain gene could appear as 
being expressed when compared to a certain number of genes while it may not appear to be expressed 
when compared to another set. This explains why some studies decided to choose the top 10% of the 
mean gene values as their cutoff value for deciding which genes are expressed and which are not [8, 
20]. We believe that such an approach does not give us the most accurate results regarding which genes 
should be considered and which are not. To show that choosing the top 10% as a cut-off value does not 
provide us with the most accurate results. We took the top 10% of the mean gene values and compare 
them to the top 10% of the genes p-values. We show that both approaches yield different results and 
that taking the top 10% as a cut-off value will lead us into considering a number of genes as expressed 
when they really are not. We will do that by comparing the top 10% approach to choosing significantly 
expressed gene values that are less than a certain p-value like 0.1, 0.05, or 0.01. 

  
We start by choosing the top 10% as a cut-off value for both the mean gene values and the genes p-

values and tested them on both approaches that we developed previously. Using the Individual-Count-
Weight approach we found that out of the 454 genes that represent the top 10% of the mean gene values, 
350 genes intersect with the top 10% of the genes according to their p-values while 104 genes 
approximately 23% do not. When using the Partial-Count-Weight approach we found that out of the 
454 genes that represent the top 10% of the mean gene values, 362 intersect with 10% of the genes 
according to their p-values while 92 genes approximately 20% do not. 

 
When comparing both our Individual and Partial count approaches against the approach of choosing 

the top 10% of the mean values we noticed that the top 10% of the mean values do not always lead to 
the selection of the significantly expressed genes within the genome. Nevertheless, we also observed 
that during our inspection of the genes’ p-values that not all the genes that fall in the highest 10% 
according to their p-values have a level of significance below 0.1, 0.05, or 0.01. The reason for that 
could be attributed to the fact that certain genes appear as expressed when compared to a certain set of 
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genes with very low expression values. While those same genes could appear as unexpressed when 
compared to another set that has a very high expression value. Setting a certain percentage as a threshold 
will either allow for some genes that are unexpressed to be included or for some genes that are expressed 
to be excluded. That is why we believe that setting a percentage for a cut-off value to define gene 
expression does not present us with a decisive approach regarding the evaluation of gene expression.  

 
In addition, we noticed during the analysis of the genes’ expression values that there are a small 

number of genes that have extremely high expression values, which we believe are outliers. Those genes 
can cause the mean expression values and the standard deviation to be extremely large. When selecting 
the random locations, filtering out the top 2% of genes with the highest expression values will increase 
the number of significant genes that fall below the p=0.01 or 0.05 threshold by two-fold.   

 
Using the Individual-Count-Weight approach and the Partial-Count-Weight approach, we found that 

the number of genes that are highly expressed varies at different p-values. We can see that there is 
nearly a two-fold increase in the number of genes that are expressed after filtering out 2% of the top 
expressed random genes.   

 
Table.1 below shows the different numbers of genes that are expressed at different p-values. From 

the information in the table below we can see that the number of genes that are expressed at different 
p-values is less than the 454 genes represented by the top 10% of the mean genes. 
 

Number of random genes  Before filtering 2%  After filtering 2% 

Individual-Count-Weight at 0.01 94 198 

Individual-Count-Weight at 0.05 112 224 

Partial-Count-Weight at 0.01 106 199 

Partial-Count-Weight at 0.05 126 239 

Table.1 The number of genes that are expressed at different p-values. 

3.2 Remapping the ambiguous reads for the expressed genes 
Once we define which genes are expressed within the genome we revisit our mapping process. This 

time we run Bowtie with a different setting we specify (-m) = 1 to report only reads that have only one 
reported alignment which will give us the reads with the unique mappings only. We then find the 
ambiguous reads that map to an expressed gene location. If some of the ambiguous reads map to more 
than one expressed gene location then it is assigned to those locations and its weight will be equal to a 
fraction of the number of locations that the reads map to. The benefit of this revisiting approach is that 
it is more likely to give us a more accurate mapping of the ambiguous reads by using the estimated 
expression of each gene that was identified in the previous step. 

4 Conclusions 
We devised an approach to provide a more accurate estimation of expressed genes by providing a 
statistical solution to the ambiguous mapping problem that would increase the accuracy of the reads 
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that map to multiple places. We found that considering the top 10% percent of the genes mean values 
as being expressed does not reflect the genes whose expression is statistically significant. It also 
contributes to a solution to the ambiguous mapping problem by allowing the multiple reads to be 
included in the mapping of the reads from the beginning of the process. We also found that the number 
of genes that are highly expressed nearly doubles when filtering out the top 2% of the randomly chosen 
genes. This indicates that there is a certain percentage of genes with mean expression values that are 
extremely high that could statistically affect the decision to accept certain genes as being expressed or 
not. Finally, there is no significant difference between the Individual-Count and the Partial-Count 
approach when it comes to the number of expressed genes for both p-values at 0.01 and 0.05. This 
indicates that the accuracy gained through placing partial weights when mapping the multiple reads 
does not provide us with a more accurate expression of the reads. Future work includes trying to solve 
the problem of working with larger sets of data. Working with larger data sets presents a major challenge 
since it increases the computational complexity of our approach. The complexity increases drastically 
during the mapping step because we need to enumerate all the possible locations for the mapping step 
of each ambiguous read and then we need to store the expression values and changes associated with 
those values for each individual location within the genome during the mapping step. One possible 
solution to this problem would be to sort all the reads before the mapping starts which would decrease 
the complexity of the mapping step of the approach but would add more time due to the addition of the 
sorting step to the approach. This approach can be combined with machine learning algorithms to select 
features/genes [25, 31, 32, 33] or genes that mostly affect the ambiguous mapping process to reduce the 
complexity of mapping the reads into many different locations. The approach we present here is meant 
to utilize the data that is usually excluded by many alignment tools to provide a more accurate gene 
expression and can be easily combined with other tools and algorithms to provide a more accurate 
mapping of the ambiguous sequences. The standard approach to verify the sequences of full-length 
transcripts is through laboratory-based studies through utilizing statical inferences genome alignment 
tools can provide more accurate mapping regarding ambiguous reads which are usually too tightly or 
loosely assigned if not discarded at all resulting in overestimation or underestimation of transcript 
expression. 

References 

[1] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, p. R25, Mar. 2009. 

[2] J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, “RNA-seq: An assessment of technical 
reproducibility and comparison with gene expression arrays,” Genome Res., vol. 18, no. 9, pp. 1509–1517, 
Sep. 2008. 

[3] N. Cloonan, A. R. R. Forrest, G. Kolle, B. B. A. Gardiner, G. J. Faulkner, M. K. Brown, D. F. Taylor, A. L. 
Steptoe, S. Wani, G. Bethel, A. J. Robertson, A. C. Perkins, S. J. Bruce, C. C. Lee, S. S. Ranade, H. E. 
Peckham, J. M. Manning, K. J. McKernan, and S. M. Grimmond, “Stem cell transcriptome profiling via 
massive-scale mRNA sequencing,” Nat Meth, vol. 5, no. 7, pp. 613–619, Jul. 2008. 

[4] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying 
mammalian transcriptomes by RNA-Seq,” Nat. Methods, vol. 5, no. 7, pp. 621–628, Jul. 2008. 

[5] M. Taub, D. Lipson, and T. P. Speed, “Methods for Allocating Ambiguous Short-reads,” Commun. Inf. 
Syst., vol. 10, no. 2, pp. 69–82, 2010. 

A Novel Approach for Mapping Ambiguous Sequences of Transcriptomes T. Aldwair et al.

83



[6] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “affy—analysis of Affymetrix GeneChip data at the 
probe level,” Bioinformatics, vol. 20, no. 3, pp. 307–315, Feb. 2004. 

[7] D. B. Allison, X. Cui, G. P. Page, and M. Sabripour, “Microarray data analysis: from disarray to 
consolidation and consensus,” Nat. Rev. Genet., vol. 7, no. 1, pp. 55–65, Jan. 2006. 

[8] O. Wurtzel, R. Sapra, F. Chen, Y. Zhu, B. A. Simmons, and R. Sorek, “A single-base resolution map of an 
archaeal transcriptome,” Genome Res., p. gr.100396.109, Nov. 2009. 

[9] N. A. Twine, K. Janitz, M. R. Wilkins, and M. Janitz, “Whole Transcriptome Sequencing Reveals Gene 
Expression and Splicing Differences in Brain Regions Affected by Alzheimer’s Disease,” PLoS ONE, vol. 
6, no. 1, p. e16266, Jan. 2011. 

[10] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nat Rev Genet, 
vol. 10, no. 1, pp. 57–63, Jan. 2009. 

[11] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide alignment program,” 
Bioinformatics, vol. 24, no. 5, pp. 713–714, Mar. 2008. 

[12] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads and calling variants using mapping 
quality scores,” Genome Res., vol. 18, no. 11, pp. 1851–1858, Nov. 2008. 

[13] A. D. Smith, Z. Xuan, and M. Q. Zhang, “Using quality scores and longer reads improves accuracy of 
Solexa read mapping,” BMC Bioinformatics, vol. 9, p. 128, 2008. 

[14] D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. 
Evers, C. L. Barnes, H. R. Bignell, “Accurate whole human genome sequencing using reversible terminator 
chemistry,” Nature, vol. 456, no. 7218, pp. 53–59, Nov. 2008. 

[15] G. J. Faulkner, A. R. R. Forrest, A. M. Chalk, K. Schroder, Y. Hayashizaki, P. Carninci, D. A. Hume, and S. 
M. Grimmond, “A rescue strategy for multimapping short sequence tags refines surveys of transcriptional 
activity by CAGE,” Genomics, vol. 91, no. 3, pp. 281–288, Mar. 2008. 

[16] H. Jiang and W. H. Wong, “SeqMap: mapping massive amount of oligonucleotides to the genome,” 
Bioinformatics, vol. 24, no. 20, pp. 2395–2396, Oct. 2008. 

[17] T. Casneuf, Y. V. de Peer, and W. Huber, “In situ analysis of cross-hybridisation on microarrays and the 
inference of expression correlation,” BMC Bioinformatics, vol. 8, no. 1, p. 461, Nov. 2007. 

[18] M. J. Okoniewski and C. J. Miller, “Hybridization interactions between probesets in short oligo microarrays 
lead to spurious correlations,” BMC Bioinformatics, vol. 7, p. 276, 2006. 

[19] Taxonomy browser (Escherichia coli str. K-12 substr. MG1655). [Online]. Available: 
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=511145. [Accessed: 25-Nov-
2021]. 

[20] R. Kumar, M. L. Lawrence, J. Watt, A. M. Cooksey, S. C. Burgess, and B. Nanduri, “RNA-Seq Based 
Transcriptional Map of Bovine Respiratory Disease Pathogen ‘Histophilus somni 2336,’” PLoS ONE, vol. 7, 
no. 1, p. e29435, Jan. 2012. 

[21] G. Russo, C. Zegar, and A. Giordano, “Advantages and limitations of microarray technology in human 
cancer,” Oncogene, vol. 22, no. 42, pp. 6497–6507, Sep. 2003. 

A Novel Approach for Mapping Ambiguous Sequences of Transcriptomes T. Aldwair et al.

84



[22] H. Li, R. Durbin, "Fast and accurate short read alignment with Burrows–Wheeler transform", 
Bioinformatics, Volume 25, Issue 14, Pages 1754–1760, 15 July 2009.  
https://doi.org/10.1093/bioinformatics/btp324. 

[23] T. Gong, V. M. Hayes, E. K. F Chan, "Detection of somatic structural variants from short-read next-
generation sequencing data", Briefings in Bioinformatics, Volume 22, Issue 3, May 2021. 
https://doi.org/10.1093/bib/bbaa056 

[24] G. Hu, C. E. Grover, M. A. Arick, II, M. Liu, D. G. Peterson, J. F. Wendel, " Homoeologous gene 
expression and co-expression network analyses and evolutionary inference in allopolyploids", Briefings in 
Bioinformatics, Volume 22, Issue 2, Pages 1819–1835, Mar. 2021. https://doi.org/10.1093/bib/bbaa035 

[25]  T. Aldwairi,  D. Perera, M. A. Novotny, "Measuring the Impact of Accurate Feature Selection on the 
Performance of RBM in Comparison to State of the Art Machine Learning Algorithms". Electronics, 2020, 
9, 1167. https://doi.org/10.3390/electronics9071167  

[26]  L. C. Lim , Y. Y. Lim, and Y. S. Choong. "Data curation to improve the pattern recognition performance of 
B-cell epitope prediction by support vector machine." Pure and Applied Chemistry, 2021. 
https://doi.org/10.1515/pac-2020-1107 

[27] B. Li, C. N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a 
reference genome". BMC Bioinformatics 12, 323, 2011. https://doi.org/10.1186/1471-2105-12-323 

[28] R. Patro, G. Duggal, M. Love, et al. "Salmon provides fast and bias-aware quantification of transcript 
expression". Nat Methods 14, 417–419, 2017. https://doi.org/10.1038/nmeth.4197 

[29] M. Chung, R. S. Adkins, J. S. A. Mattick, K. R. Bradwell, et al. "FADU: a quantification tool for 
prokaryotic transcriptomic analyses." Msystems 6, no. 1, 2021. https://doi.org/10.1128/mSystems.00917-20  

[30] T. Aldwairi, B. Nanduri, M. Ramkumar, D. Gautam, M. Johnson, A. D. Perkins. "Statistical Methods for 
Ambiguous Sequence Mappings". In Proceedings of the International Conference on Bioinformatics, 
Computational Biology and Biomedical Informatics (BCB'13), Association for Computing Machinery, New 
York, NY, USA, 674–675, 2013. DOI:https://doi.org/10.1145/2506583.2506678 

[31] T. Aldwairi, D. Perera, M. A. Novotny, “An Investigation of the Role of Feature Selection on the 
Classification Performance of Machine Learning Algorithms”. In Proceedings of the 33rd International 
Conference on Computers and Their Applications (CATA), Las Vegas, Nevada, Mar. 2018. 

[32] V. Dixit et al., "Training a Quantum Annealing Based Restricted Boltzmann Machine on Cybersecurity 
Data", IEEE Transactions on Emerging Topics in Computational Intelligence, doi: 
10.1109/TETCI.2021.3074916. 

[33] T. Aldwairi, D.J. Chevalier, A. D. Perkins, Exploring the Effect of Climate Factors on SNPs within FHA 
Domain Genes in Eurasian Arabidopsis Ecotypes. Agriculture 2021, 11, 166. 
https://doi.org/10.3390/agriculture11020166 

 
 
 

A Novel Approach for Mapping Ambiguous Sequences of Transcriptomes T. Aldwair et al.

85


