
EPiC Series in Computing

Volume 61, 2019, Pages 211–219

ARCH19. 6th International Workshop on Applied
Verification of Continuous and Hybrid Systems

Under the Hood of a Stand-Alone Lagrangian

Reachability Tool

S. Gruenbacher1, J. Cyranka2, M.A. Islam3, M. Tschaikowski1, S.A. Smolka4,
and R. Grosu1

1 Technische Universität Wien, Vienna, Austria
{sophie.gruenbacher,max.tschaikowski,radu.grosu}@tuwien.ac.at

2 University California at San Diego, San Diego, CA, USA
JCyranka@gmail.com

3 Texas Tech University, Lubbock, TX, USA
ariful.islam@ttu.edu

4 Stony Brook University, Stony Brook, NY, USA
{sas@cs.stonybrook.edu}

Abstract

Tool presentation: We present work in progress on a stand-alone implementation of
Lagrangian reachability, a recently introduced over-approximation technique for nonlinear
continuous systems. Unlike the previous prototype, the current implementation does not
depend on the over-approximation tool CAPD, and invokes an improved Lohner’s QR
method to tame the infamous wrapping effect.

1 Introduction

Nonlinear ordinary differential equations (ODEs) are ubiquitous in the formal modeling of
cyber-physical and biological systems [15, 18, 28, 8]. Unfortunately, exact solutions of ODEs
are limited to linear systems. Thus, the verification of safety-critical nonlinear systems requires
one to compute an over-approximation of their reachable states, in as tight a fashion as possible.

This work continues the line of research on Lagrangian Reachtube analysis (LRT) [11, 12], a
formal over-approximation approach for nonlinear continuous ODEs, based on their associated
variational equations [13, 14, 19, 9]. Roughly speaking, variational equations determine tangents
along a given family of nonlinear ODEs solutions. The underlying information, in particular
the Cauchy-Green stretching factor (SF), is then used to construct a reachtube that tightly
over-approximates the set of reachable states at each point in time.

Our main goal is to make LRT a stand-alone tool that scales to large systems of nonlinear
ODEs, such as the ones associated with deep (recurrent) neural networks or our deep neural
regulatory networks [20]. To this end, we first aimed to remove the dependence of the LRT
tool we presented in [11, 12], on the verification tool CAPD [7, 29, 30]. This required us to
replace the CAPD routines with verified integration schemes [22, 24, 4], an approach also taken
by other tools, including CAPD, CORA [6] and Flow* [10]. Additionally, we take advantage of

G. Frehse and M. Althoff (eds.), ARCH19 (EPiC Series in Computing, vol. 61), pp. 211–219



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

Figure 1: (Left) Visualization of one step of the Lagrangian Reachtube (LRT). The dashed
arrows reflect the solution flow χ of Eq. (1)(left). In this figure, δ0 = ηξ0 and δ1 = ηξ1. (Right)
Brusselator snapshot of the wrapping deficiency of Line 3 in Algorithm 1.

an improved Lohner’s QR method [21, 24] to account for the infamous wrapping effect, which
is intrinsically connected to interval arithmetic [27]. For ease of presentation, we discuss our
approach in the context of the Euler method, the simplest integration scheme available. Our
prototype, however, supports also higher-order Runge-Kutta schemes.

This paper presents work in progress. The performance of our current implementation is
still below that of one of our previous LRT tools on the benchmarks in [11, 12]. The reasons
for the lower performance and various ways of improving it are discussed in Section 5.

Notation. We denote by I the identity matrix in Rn×n, and by ∂x the partial derivative
with respect to variable x. We denote by ‖ ·‖2 the Euclidean norm, and by ‖ ·‖∞ the maximum
norm. A similar notation is used for the induced operator norms. Following standard notation,
the symbol � 0 stands for positive definiteness. For a given square matrix M � 0, let BM (x, δ)

be the closed ball with center x and radius δ > 0 with respect to the metric ‖x‖M :=
√
xTMx.

The notation [x] is used for a box in Rn, i.e., a product of compact intervals. We denote by
mid([x]) and rad([x]) the midpoint and the radius of [x], respectively. We call an n×n matrix
[F ] an interval matrix, if for all 1 ≤ i, j ≤ n, the entries [F ](i, j) of [F ] are intervals.

2 Preliminaries

We study a system of nonlinear ODEs in unknown x∈Rn, as given in Eq. 1(left), with the
corresponding system of variational equations in unknown ξ ∈Rn, as given in Eq. 1(right),
where the field f :Rn→Rn is assumed to be a sufficiently smooth, time-invariant function (at
least twice continuously differentiable):

∂tx = f(x), x0 = x(t0) and ∂tξ = (∂xf)(x) · ξ, ξ0 = ξ(t0). (1)

Since time dependence can be incorporated by adding the auxiliary variable ∂tx0 = 1 to the
system, our discussion naturally extends to time-varying systems of the form ∂tx = f(t, x).

The approach presented in this paper is based on our recent work on Lagrangian reachability
(LRT), where the main idea is to use the Variational Eq. (1)(right), for obtaining a tight over-
approximation [11, 12]. More specifically, let χt1

t0 be the solution flow induced by Eq. (1)(left),

i.e., χt1
t0(x0) = x(t1) when ∂tx = f(x) and x(t0) = x0. The gradient of the solution flow with

respect to initial conditions, known as the sensitivity matrix [13, 14], is defined by the function
x 7→ (∂xχ

t1
t0)(x) and satisfies, for ξ0 ∈ Rn and small η ∈ R, the relation:

χt1
t0(x0 + ηξ0) = χt1

t0(x0) + η · (∂xχt1
t0)(x0) · ξ0 +O(η2). (2)

212



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

The above equation allows one to approximate χt1
t0(x0 + ηξ0) using χt1

t0(x0) and (∂xχ
t1
t0)(x0),

when η is small. Moreover, the sensitivity matrix (∂xχ
t1
t0)(x0) can be related to the variational

equations via (∂xχ
t1
t0)(x0)·ξ0 = ξ(t1), provided that ξ satisfies ∂tξ = (∂xf)(x)·ξ, with ξ(t0) = ξ0,

and that x obeys ∂tx = f(x) for x(t0) = x0 (see Chapter V, Theorem 3.1 in [16]). This
motivates us to consider the gradient of the flow matrix (called simply the gradient) F (t, x0)
that is given by the variational matrix equation ∂tF (t, x0) = (∂xf)(x(t)) · F (t, x0). This is
because F (t1, x0) · ξ0 = ξ(t1), when ∂tξ = (∂xf)(x) · ξ for ξ(t0) = ξ0 and ∂tx = f(x) for
x(t0) = x0. Note that the two equations in (1) in particular imply that F (t1, x0) = (∂xχ

t1
t0)(x0)

holds.1

Next, we formally relate the over-approximation of (1) to its variational equations. To this
end, we fix two matrices M0,M1 � 0 and consider as the initial region BM0(x0, δ0), i.e., the ball
in metric space M0 centered at x0 with radius δ0. Moreover, we chose y0 to be a point on the
surface of BM0

(x0, δ0) and set x′0 =χt1
t0(x0) and y′0 =χt1

t0(y0). Let δ1 be the distance between y′0
and x′0 in the metric space defined by matrix M1, as shown in Figure 1(left).

The Cauchy Green stretching factor (SF) Λ measures the deformation of the ball BM0
(x0, δ0)

into the ball BM1(x′0, δ1), i.e., Λ = δ1/δ0. One can thus use the SF to bound the infinite set of
reachable states at time t1 with the ball-overestimate BM1(χt1

t0(x0), δ1) in an appropriate metric
M1 � 0, which may differ from M0 � 0. If M1 =M0 we refer to the computed SF as M0-SF or
M1-SF. Instead, if M0 6= M1, we refer to the computed SF as M0,1-SF.

The correctness of the LRT approach is rooted in the following theorem.

Theorem 1 (Thm. 1 in [12]). Let t0≤ t1 be time points, and χt1
t0(x) be the solution at t1 of the

Cauchy problem (1), with initial condition (t0, x). Let M0,M1 ∈ Rn×n with M0,M1� 0, and let
AT

0 A0 = M0, AT
1 A1 = M1 be their respective decompositions. Let the ball in the M0-norm with

center x0 and radius δ0, B = BM0
(x0, δ0) ⊆ Rn, be a set of initial states for Eq. (1). Assume

that there exists a compact enclosure [F ] ⊆ Rn×n for the gradients F such that:

(∂xχ
t1
t0)(x) ∈ [F ], ∀x ∈ B. (3)

Suppose Λ> 0 is an upper bound of the whole set of M0,1 SFs [11], that is:

Λ ≥
√
λmax

(
(AT

0 )−1FTM1FA
−1
0

)
= ‖A1FA

−1
0 ‖2, ∀F ∈ [F ], (4)

where λmax represents the maximum eigenvalue. Then,

χt1
t0(x) ∈ BM1(χt1

t0(x0),Λ · δ0), (5)

meaning that the reachable states at time t1 are contained in the ball BM1
(χt1

t0(x0),Λ · δ0).

In order to obtain a tight over-approximation, we wish to minimize Λ, the upper bound for
the M0,1-SF given in Theorem 1. Since finding the minimal value across all F ∈ [F ] is a difficult
task, we use the following heuristics. Given that the set [F ] is represented by an interval matrix
in our algorithm, we pick the M1 that minimizes the M1-SF with respect to mid ([F ]), where
mid ([F ]) is the value of F at the center of [F ]. In [12], the following formula for such an M1,
conveniently denoted by M̂1, has been obtained.

Theorem 2 (Thm. 2 in [12]). Let (gradient) F ∈ Rn×n have full rank and Â1, M̂1 be such that

Â1(F ) = V (F )−1 and M̂1(F ) = Â1(F )T Â1(F ), (6)

1Proof sketch: ∂t(∂xχt
t0

)(x) = ∂x(∂tχt
t0

)(x) = ∂x(f(χt
t0

))(x) = (∂xf)(χt
t0

(x)) · (∂xχt
t0

)(x).

213



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

Algorithm 1 Lagrangian Reachability Algorithm [11, 12].

Require: Reals CM , η > 0, horizon T > 0, maximal step h > 0, time t0 ≥ 0, set BM0(x0, δ0)
1: set δ ← δ0, δx ← 0, b← 0, [F0]← {I}
2: while t0 < T do
3: compute over-approximation [X ] of BM0

(x0, δ0) in Cartesian coordinates
4: set t1 ← t0 + 2h
5: repeat
6: set t1 ← t0 + 1

2 (t1 − t0)

7: compute over-approximation [F∗1 ] of
(
∂xχ

t1
t0

)
([X ])

8: until λ < η, where λ estimates ‖[F∗1 ]− [F0]‖2
9: compute tighter over-approximation [F1] of

(
∂xχ

t1
t0

)
([X ]) for final t1

10: compute Λ0 as a bound of the M0-SF
11: compute optimal metric M̂1(F ) = Â1(F )T Â1(F ) for F = mid ([F1]) (Thm. 2) and Λ1

as a bound of the M1-SF
12: if Λ0 > CM · Λ1 then
13: set Λ to a bound of the M0,1-SF (Thm. 1)

14: set M1 ← M̂1, b← 1, [F0]← {I}
15: else
16: set M1 ←M0, Λ← Λ0, [F0]← [F1]
17: end if
18: compute over-approximation [x1] of χt1

t0(x0) and set x1 ← mid([x1]), δx1
← rad ([x1])

19: set δx ← δx + δx1

20: set δ1 ← Λ · δ + δx (this specifies BM1(x1, δ1) in full)
21: if b = 1 then
22: set δ ← δ1, δx ← 0, b← 0 (only if the norm is changed)
23: end if
24: set (M0, x0, δ0, t0)← (M1, x1, δ1, t1) (prepare for next iteration)
25: end while

where matrices V (F ) and Â1(F )−1 contain the normalized eigenvectors of F . Then:

min
A1∈Rn×n

A1 is invertible

Λ(A1, F ) = Λ(Â1, F ),

where the M1-SF is given by Λ(A1, F ) =
√
λmax

(
(AT

1 )−1FTM1FA
−1
1

)
=
∥∥A1FA

−1
1

∥∥
2
. In

other words, the symmetric positive-definite matrix M̂1 = ÂT
1 Â1 minimizes the M1-SF.

3 Lagrangian Reachability Algorithm

Algorithm 1 summarizes the overall approach. Following [11, 12], the choice of the current step
size t1− t0 is adaptive and based on infinitesimal strain theory (IST). Specifically, the time-step
is successively halved until the displacement gradient is sufficiently small. This is to help ensure
that the over-approximation at the next time step is tight. The algorithm does not specify how
the over-approximation of [X ] and [F ] is accomplished. This is discussed below.

214



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

By invoking low-order schemes, we aim to improve the scalability of [11, 12]. Previously, we
appealed to the CAPD verification tool [7, 29, 30], which utilizes high-order Taylor numerical
schemes. To simplify the presentation, we next discuss only the Euler’s method. The wrapping
effect is addressed by an improved version of the Lohner’s QR method [21, 24] and a careful
choice of the next norm during the computation of the SF.

Computation of [X ] in Algorithm 1. The dynamical system specified by Eq. (1) is defined
with respect to Cartesian coordinates (CC). In contrast, the over-approximation of the reachable
states BM0

(x0, δ0) from the previous ball BMi
(xi, δi) in one integration step is given in norm

M0. To work in CC, we first estimate BM0
(x0, δ0) by a rectangle [X ], as shown in line 3 of

Algorithm 1 and Figure 1(right). To this end, we first compute a rectangle [XM0
] enclosing the

ball BM0(x0, δ0) in the A−10 coordinate system, where M0 = AT
0 ·A0. Afterwards, we transform

[XM0 ] to CC (the orange box) to finally obtain [X ] (the enclosing red box of [11, 12]).

Computation of [F ] in Algorithm 1. Let φ
ti+1

ti be the solution flow induced by the variational

matrix equations, i.e., φ
ti+1

ti (Fi, xi) = Fi+1 when ∂tF = (∂xf)(x) ·F , F (ti) = Fi and x(ti) = xi.
Given an interval matrix [Fi] ⊆ Rn×n, our goal is to compute the interval matrix [Fi+1] such

that φ
ti+1

ti ([Fi], [Xi]) ⊆ [Fi+1]. Due to the linearity of the variational equations, it holds that

φ
ti+1

ti ([Fi], [Xi]) ⊆ φt0+hi
t0 (I, [Xi]) · [Fi] with hi := ti+1 − ti [30]. This breaks down to finding an

enclosure [Ji+1] such that φt0+hi
t0 (I, [Xi]) ⊆ [Ji+1]. Using the first order enclosure method [24],

we compute rough enclosures [X̃i] and [J̃i] that satisfy:[
[Xi] + [0, hi] · f([X̃i])

]
⊆ [X̃i] with χ

ti+1

ti ([Xi]) ⊆ [X̃i],[
I + [0, hi] · ∂xf([X̃i]) · [J̃i]

]
⊆ [J̃i] with φt0+hi

t0 (I, [Xi]) ⊆ [J̃i].

As proposed in [30], we compute [J̃i] by setting each element of the matrix to the interval
[±max(el[0,hi])] and refine this enclosure by using the variational matrix equations related
to (1), where l denotes the logarithmic Euclidean norm of ∂xf([X̃i]). Afterwards, the tight
enclosure [Ji+1] is obtained by exploiting the relation:

[Ji+1] ⊆ I + hi∂xf([Xi]) · I +
h2i
2
∂t

(
(∂xf)(x(t)) · F (t, x)

)(
[X̃i], I

)
· [J̃i]︸ ︷︷ ︸

local truncation error

,

which underlies Euler’s method. By recalling that ∂tF (t, x0) = (∂xf)(x(t)) · F (t, x0), it holds
that F (t+ hi, x0) = F (hi, x(t)) · F (t, x0), as has been observed in [30]. Hence:

[Fi+1] = [Ji+1] · [Fi]. (7)

To allow for tight estimation, we do not evaluate the right-hand side of (7) using interval
arithmetics. Instead, we pick a point matrix F̂i ∈ [F ], set [∆Fi] := [Fi]− F̂i and write (7) as:

[∆Fi+1] = [Ji+1] · [∆Fi] + [∆Zi+1] (8)

where we set:

[Zi+1] = [Ji+1] · F̂i − F̂i+1, F̂i+1 = mid([Zi+1]), [∆Zi+1] = [Zi+1]− F̂i+1.

To combat the wrapping effect, we use the Lohner’s QR factorization method, where in each
step a new basis Qi for [∆Fi] is chosen such that [∆Fi] = Qi · [∆FQi

i ] and that:

[∆FQi+1

i+1 ] =
(
[Q−1i+1][Ji+1][Qi]

)
[∆FQi

i ] + [Q−1i+1][∆Zi+1].

215



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

Figure 2: Overall architecture of our new stand-alone LRT tool. GradComp stands for Gradient
Computation, and EigComp stands for Eigenvalue Computation.

At the first step, we set Q0 := I and F̂0 = mid([F0]), thus ensuring [∆FQ0

0 ] = [∆F0] =
0. In each step thereafter, the new coordinate system Qi+1 is chosen starting with Ui+1 =
mid ([Ji+1][Qi]). Following [24], the columns of Ui+1 are rearranged by a permutation matrix
Pi+1 such that the first column of Ũi+1(= Ui+1 · Pi+1) corresponds to the longest edge of

Ui+1 ·[∆FQi

i ], the second column to the second longest, and so on. To obtain the new coordinate
system Qi+1 we set it to the orthogonal matrix of the QR-factorization of Ũi+1. For a more
detailed discussion of the steps discussed above, please refer to [24] and [30].

Putting everything together. We are now in a position to explain Algorithm 1 in detail.
More specifically, [xi+1] in line 18 is computed by applying Runge-Kutta of second order (RK2)
to f ; instead, [F∗1 ] in line 7 is computed by applying RK2 to the variational matrix equations,
without taking the local truncation error into account. This is faster than using Lohner’s
method. Moreover, the absence of a rigorous bound is not critical because [F∗1 ] is only used
to set the next timestep. Instead, [F1] in line 9 is obtained by applying Euler’s and Lohner’s
method to the variational matrix equations. Since [F1] is stored as an interval matrix, the
estimation of Λ0,Λ1 and Λ as the bounds for the M0-, M1- and M0,1-SF in the lines 10, 11
and 14, respectively, amounts to the estimation of the largest eigenvalue; see also Theorem 1.
To this end, we rely on the interval matrix algorithms of IBEX [2] and Eigen [1].

4 Tool Architecture
The LRT tool implements Algorithm 1 which is based on the fundamental research we pre-
sented in [11, 12]. We ensure soundness of LRT by performing all computations in interval
arithmetic [23], where a real-valued variable x is represented as an interval [x, x̄] such that
x ≥ x and x ≤ x̄. The architecture of the stand-alone LRT is illustrated in Figure 2. Below we
discuss each of its major components, which gives a complementary view of Algorithm 1:

• Parser: The system dynamics and the initial condition are defined in two separate text
files. Currently, we are using IBEX’s built-in functionality to parse the systems dynamics,
and we implemented our own parser for the initial conditions.

• SF computation: The SF Λ in Figure 1 is computed based on the Cauchy-Green interval
matrix, which depends on the gradient of the solution flow starting at BM0

(x0, δ0). Hence,
we need to compute a compact, conservative interval gradient matrix [F1] such that:

216



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

∀x ∈ BM0(x0, δ0) it holds that (∂xχ
t1
t0)(x) ∈ [F1]

• Eigenvalue computation for [F1]: Given [F1], the next step of LRT is to compute
the maximum eigenvalue of the Cauchy-Green (CG) interval matrix CG = [F1]T · [F1],
which is a symmetric positive-definite interval matrix (tensor).2 To compute an upper
bound of the maximal eigenvalue of all symmetric matrices in some interval bounds, we
implemented several algorithms from [17, 26, 25] and use the tightest result available.

• External Packages: For interval arithmetic and linear algebra operations, we use
IBEX [2] C++ library and Eigen [1] C++ library, respectively.

5 Conclusion

The main motivation of our current work was to scale up (C)LRT to high-dimensional systems,
for example, deep neural networks and the deep neural regulatory networks we have introduced
in [20]. To this end, we considered the use of lower-order integration schemes, such as the
advanced Runge-Kutta methods recently presented in [3], for the numerical computation of the
(interval) sensitivity matrix [F ]. The main reason behind this consideration is that computing
the truncation order for high-dimensional systems is computationally prohibitive [3].

Other tools such as CAPD [7], which we used in [11, 12], also employ a variant of the
C1-Lohner method to integrate the variational matrix equations of a given set of ODEs for
obtaining [F ]. CAPD, however, uses higher-order integration schemes based on the Taylor
expansion, whereas we desire to keep the order low. Moreover, CAPD only uses the C1-Lohner
method to combat the wrapping effect, while we combine it with a change of norm.

We conducted a preliminary evaluation of our stand-alone LRT tool on the benchmark mod-
els from [11, 12]. We were able to recover the tight over-approximation of the 2-dimensional
Brusselator, the 2-dimensional Mitchell-Schaeffer cardiac-cell model, and the 12-dimensional
Polynomial System. The other models from [12], however, led to blowups in the over-
approximation. CAPD [7], CORA [5] and Flow* [10] also seem to suffer from similar blowups if
restricted to low-order schemes (or Taylor models). Hence, we will need to increase this order.

We will also explore three ways of improving performance. First, we will seek to reduce
the wrapping deficiency of line 3 in Algorithm 1. This can be achieved by working in the Mi

norm with both [Fi] and BMi
(xi, δi), or by working in the Cartesian norm and employing a QR

decomposition to support the use of the orange box shown in Figure 1(right), instead of the red
box. Second, we wish to obtain a better Cauchy Green SF. As per Theorem 2, the tightness
of the SF depends on the choice of metric Mi, which in turn depends on the eigenvalues of
the particular Fi chosen out of [Fi]. Since the Fi’s can significantly differ, we would like to
explore genetic- or gradient-based techniques for their optimal choice. Third, we will improve
the efficiency of the stand-alone LRT tool by tailoring it to specific classes of ODEs, in particular
the ones corresponding to deep neural regulatory networks [20].

Acknowledgements. Sophie Gruenbacher is funded by FWF project W1255-N23. Max
Tschaikowski is supported by a Lise Meitner Fellowship funded by the Austrian Science Fund
(FWF) under grant number M-2393-N32 (COCO).

2In fact we compute maximum eigenvalue of the CG matrix with the norm change: (AT
0 )−1[FT

1 ]M1[F1]A−1
0 .

217



Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

References

[1] Eigen Linear Algebra Library. http://eigen.tuxfamily.org. Copyright: Mozilla Public License
Version 2.0.

[2] IBEX Interval Library. http://ibex-lib.org. Copyright: GNU Lesser General Public License.

[3] J. Alexandre dit Sandretto and A. Chapoutot. Validated explicit and implicit Runge-Kutta meth-
ods. Reliable Computing (Electronic Edition), 22, July 2016.

[4] M. Althoff. Reachability analysis of nonlinear systems using conservative polynomialization and
non-convex sets. In International Conference on Hybrid Systems: Computation and Control, pages
173–182, 2013.

[5] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

[6] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, pages 145–173, 2018.

[7] M. Capiński, J. Cyranka, Z. Galias, T. Kapela, M. Mrozek, P. Pilarczyk, D. Wilczak, P. Zgliczyński,
and M. Zelawski. CAPD - computer assisted proofs in dynamics, a package for rigorous numerics,
http://capd.ii.edu.pl/. Technical report, Jagiellonian University, Kraków, 2016.

[8] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Maximal aggregation of polynomial
dynamical systems. Proceedings of the National Academy of Sciences, 114(38):10029 – 10034, 2017.

[9] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Guaranteed error bounds on approx-
imate model abstractions through reachability analysis. In International Conference on Quanti-
tative Evaluation of SysTems, pages 104–121, 2018.

[10] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In CAV’13, the 25th International Conference on Computer Aided Verification, pages
258–263, Saint Petersburg, Russia, July 2013. Springer.

[11] J. Cyranka, M. A. Islam, G. Byrne, P. Jones, S. A. Smolka, and R. Grosu. Lagrangian reachabililty.
In R. Majumdar and V. Kunčak, editors, CAV’17, the 29th International Conference on Computer-
Aided Verification, pages 379–400, Heidelberg, Germany, July 2017. Springer.

[12] J. Cyranka, M. A. Islam, S. A. Smolka, S. Gao, and R. Grosu. Tight Continuous-Time Reachtubes
for Lagrangian Reachability. In CDC’18, the 57th IEEE Conference on Decision and Control, pages
6854–6861, Miami Beach, FL, USA, December 2018. IEEE.

[13] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In CAV’10,
the 22nd International Conference on Computer Aided Verification, pages 167–170, Edinburgh,
UK, July 2010. Springer.

[14] A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In International Work-
shop on Hybrid Systems: Computation and Control, pages 174–189. Springer, 2007.

[15] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In CAV’11, the 23rd
International Conference on Computer Aided Verification, pages 379–395, Snowbird, Utah, USA,
July 2011. Springer.

[16] P. Hartman. Ordinary Differential Equations. SIAM, 1982.

[17] M. Hladik, D. Daney, and E. Tsigaridas. Bounds on real eigenvalues and singular values of interval
matrices. SIAM Journal on Matrix Analysis and Applications, 31(4):2116–2129, 2010.

[18] M. A. Islam, A. Murthy, A. Girard, S. A. Smolka, and R. Grosu. Compositionality results for
cardiac cell dynamics. In International Conference on Hybrid Systems: Computation and Control,
pages 243–252, 2014.

[19] R. Lal and P. Prabhakar. Bounded error flowpipe computation of parameterized linear systems.
In Proceedings of the 12th International Conference on Embedded Software, pages 237–246, 2015.

218

http://eigen.tuxfamily.org
http://ibex-lib.org


Under the Hood of a Stand-Alone LRT Tool Gruenbacher, Cyranka, Islam, Tschaikowski, Smolka, Grosu

[20] M. Lechner, R. Hasani, M. Zimmer, T. Henzinger, and R. Grosu. Designing worm-inspired neural
networks for interpretable robotic control. In ICRA’19, the 2019 IEEE International Conference
on Robotics and Automation, Montreal, Canada, May 2019. IEEE.

[21] R. Lohner. Computation of guaranteed enclosures for the solutions of ordinary initial and boundary
value problems, chapter Computational Ordinary Differential Equations. Clarendon Press, Oxford,
1992.

[22] M. Martel and O. Bouissou. GRKLib: a Guaranteed Runge Kutta Library. In 2006 12th GAMM-
IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated
Numerics (SCAN), volume 00, page 8, 2006.

[23] R. E. Moore. Interval analysis. Series in automatic computation. Englewood Cliff: NJ Prentice-
Hall, 1966.

[24] N. Nedialkov, K. Jackson, and G. Corliss. Validated solutions of initial value problems for ordinary
differential equations. Applied Mathematics and Computation, 105(1):21 – 68, 1999.

[25] J. Rohn. Bounds on eigenvalues of interval matrices. ZAMMZ.Angew.Math.Mech., 78:1049–1050,
1998.

[26] S. M. Rump. Computational error bounds for multiple or nearly multiple eigenvalues. Linear
Algebra and its Applications, 324(1):209 – 226, 2001. Linear Algebra in Self-Validating Methods.

[27] J. K. Scott and P. I. Barton. Bounds on the reachable sets of nonlinear control systems. Automatica,
49(1):93 – 100, 2013.

[28] M. Tschaikowski and M. Tribastone. Approximate reduction of heterogenous nonlinear models
with differential hulls. IEEE Trans. Automat. Contr., 61(4):1099–1104, 2016.

[29] D. Wilczak and P. Zgliczyński. Cr-Lohner algorithm. Schedae Informaticae, 2011(Volume 20),
2012.

[30] P. Zgliczynski. C1 Lohner Algorithm. Foundations of Computational Mathematics, 2(4):429–465,
2002.

219


	Introduction
	Preliminaries
	Lagrangian Reachability Algorithm
	Tool Architecture
	Conclusion

