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Abstract

The computational bottleneck in model-checking applications is the blow-up involved in
the translation of systems to their mathematical model. This blow up is especially painful
in systems with variables over an infinite domain, and in composite systems described by
means of their underlying components. We introduce and study linear temporal logic with
arithmetic (LTLA, for short), where formulas include variables that take values in Z, and in
which linear arithmetic over these values is supported. We develop an automata-theoretic
approach for reasoning about LTLA formulas and use it in order to solve, in PSPACE, the
satisfiability problem for the existential fragment of LTLA and the model-checking problem
for its universal fragment. We show that these results are tight, as a single universally-
quantified variable makes the satisfiability problem for LTLA undecidable.

In addition to reasoning about systems with variables over Z, we suggest applications
of LTLA in reasoning about hierarchical systems, which consist of subsystems that can
call each other in a hierarchical manner. We use the values in Z in order to describe
the nesting depth of components in the system. A naive model-checking algorithm for
hierarchical systems flattens them, which involves an exponential blow up. We suggest a
model-checking algorithm that avoids the flattening and avoids a blow up in the number
of components.

1 Introduction

In model checking, we verify that a system meets its specification by translating the system to
a mathematical model, translating the specification to a temporal-logic formula, and checking
that the model satisfies the formula [16]. The computational bottleneck in model-checking
applications is the blow-up involved in the translation of the system to its mathematical model.
There are several sources to this blow-up. One source are systems with a finite control that
handles data from an infinite or unbounded domain. This includes, for example, software with
integer parameters [11], datalog systems with an infinite data domain [47, 10], or FIFO-channel
systems [7, 12]. Another source is the succinct high-level description of the system, typically
by means of its underlying components [26].

Our work here is related to both challenges: we introduce and study linear temporal logic
with arithmetic (LTLA, for short), where formulas include variables that take values in Z, and
in which linear arithmetic over these values is supported, and we suggest applications of LTLA
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in reasoning about hierarchical systems, where the values in Z describe the nesting depth of
components in a composite system. Before we describe our contribution in detail, let us survey
briefly existing related work.

Reasoning about systems with a finite control that handles data from an infinite domain
requires an extension of specification formalisms to the setting of infinite alphabets, and a
development of decision procedures for them. Initial work on languages over infinite alphabets
study register automata [42, 32, 38, 33, 36], where a finite set of registers is used to store letters
from the infinite alphabet; pebble automata [38, 45], where pebbles are placed on the input
word in a stack-like manner, and letters on which pebbles are placed can be tested for equality.
Such tests are the key feature also in the newer formalism of data automata [9, 8], where a
finite auxiliary alphabet is used to mark positions in which letters from the infinite alphabet
can be tested for equality. Finally, [29, 30, 28, 44] handle infinite alphabets by augmenting the
specification formalism with variables over the infinite domain and with guards that refer to
these variables.

More relevant to our work are formalisms where the infinite domain is a set of ordered
numbers, and arithmetic operations are allowed. As surveyed in [20], many extensions of
LTL [39] are based on its augmentation with Presburger arithmetic, namely the first-order
theory of the natural numbers with addition. While Presburger arithmetic is decidable, its
combination with automata and logic adds to the picture cycles and fixed-points and makes
the general setting undecidable. The quest for decidable extensions of LTL that are useful in
real applications include Presburger LTL with integer periodicity constraints [22, 21], where
arithmetic is done modulo some number, difference logic, where the way in which variables are
compared with each other is restricted [23], and LTL with quantifier-free Presburger arithmetic
[23]. Additional related formalisms are LTL with constraint systems [18, 17], where the logic
includes rational structures, multiple counters automata [18] and capacitated automata [35],
where transitions can be taken only if guards referring to traversals so far are satisfied, and
queue-content decision diagrams, which are used to represent queue content of FIFO-channel
systems [7, 12]. A different direction is to add arithmetic on top of formalisms that handle
general infinite domains. In [14], the authors add to register automata linear arithmetic over
the rationals. That is, the infinite alphabet is Q. The emphasize in [14] is on quantitative
properties. Thus, as in weighted automata on finite alphabets [25], the automaton maps an
input word to a value in Q. The transition to the quantitative setting has a computational
price, and indeed the main contribution in [14], as well as in other work on weighted automata
[2, 24], is to find decidable and tractable fragments (deterministic, copyless, etc.).

As for reasoning about composite systems, their exponential succinctness has led to extensive
research on compositional model checking, where the goal is to reason about a system by
reasoning about its underlying components and without constructing an equivalent flat system
(c.f., [19, 40]). In particular, researchers have studied hierarchical systems, in which some of the
states of the system are boxes, which correspond to nested sub-systems. The naive approach
to model checking such systems is to “flatten” them by repeatedly substituting references to
sub-systems by copies of these sub-systems. This, however, results in a flat system that is
exponential in the description of the hierarchical system. In [4], it is shown that for LTL model
checking, one can avoid this blow-up altogether, whereas for CTL, one can trade it for an
exponential blow-up in the (often much smaller) size of the formula and the maximal number
of exits of sub-structures. Likewise, it is shown in [5] that hierarchical parity games can be
solved in PSPACE, also leading to a PSPACE model-checking algorithm for the µ-calculus. In
other words, while hierarchical system are exponentially more succinct than flat ones [3], in
many cases the complexity of the model-checking problem is not exponentially higher in the
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hierarchical setting.
Our main contribution is an introduction of LTL with arithmetic (LTLA, for short), which

augments LTL with variables over Z and arithmetic on these variables. As far as we have
searched, LTLA is different from fragments of Presburger arithmetic that have been studied.
LTLA continues the “variable approach” of [29, 30, 44] and can be viewed as an extension of
variable LTL studied there, to a logic in which the infinite alphabet is Z, and linear arithmetic
over the variables and values is supported. The extension makes LTLA much stronger than
variable LTL and makes the related decision problems much more challenging. The semantics
of LTLA formulas is defined with respect to computations in (2AP ×Z)ω, for a finite set AP of
atomic propositions. Thus, each position describes an assignment to the atomic propositions
in AP as well as a value in Z. 1 The syntax of LTLA includes the atomic term ?, which gets
the Z value of the current position. For example, the LTLA formula G((? ≥ −5) ∧ (? ≤ 5))
states that all the values in the computation are in the [−5, 5] range. We consider two variants
of LTLA: existential LTLA (∃LTLA) and universal LTLA (∀LTLA). In ∃LTLA, variables that
appear in the formula are existentially quantified. For example, a computation satisfies the
∃LTLA formula ∃x; G(up→ (? = x)∧X(? ≥ x)) if there is a number m ∈ Z such that in every
position in which up holds, the value is m and it cannot be decreased in the next position.
Then, a computation satisfies ∀x; G((? = x) → (inc ∧ X(? = x + 1)) ∨ (reset ∧ X(? = 0)))
if all positions are labeled by inc, in which case the value in its successors is increased by 1,
or by reset , in which case the value is reset to 0. As has been the case with other variants
of Presburger LTL and logics with quantified data variables [20, 44], the satisfiability problem
for ∀LTLA is undecidable. In fact, a single universally quantified variable is sufficient in order
to obtain undecidability, which also explains why we do not consider variants of LTLA with
alternating quantifiers. We still study ∀LTLA, as its model checking involves reasoning about
dual, namely ∃LTLA, formulas, for which we develop an automata-theoretic framework. Also,
while the logics in [29, 30, 44] allow reset of variables along the computation, giving them the
flavor of register automata, quantified variables in LTLA have a fixed value throughout the
run. On the other hand, LTLA allows comparing values not only between the input and the
variables, but also between simple arithmetic expressions on the value of the input and the
values stored in the variables.

We define nondeterministic Büchi word automata with arithmetic (NBWA, for short), which
define languages over alphabets of the form Σ× Z, for some finite set Σ. The transitions of an
NBWA are labeled by both letters from Σ and guards involving values and variables over Z. We
show how by translating LTLA formulas to NBWAs, we can solve the satisfiability problem for
∃LTLA and the model-checking problem for ∀LTLA. The translation adds to the translation of
LTL to NBW [46] a reference to the guards in the LTLA formula, which induces guards on the
transitions of the NBWA. While the nonemptiness problem for traditional NBWs reduces to
reachability, the nonemptiness problem for NBWAs reduces to a solution of a set of inequalities
over the variables of the NBWA. We use results on integer linear programming (ILP) [48, 41, 34]
in order to show that the problem is NP-complete and to point to NLOGSPACE fragments.
By analyzing the different components of the NBWAs that correspond to LTLA formulas, in
particular the guards that appear in the NBWA, we obtain a PSPACE upper bound for both
the satisfiability and model-checking problems, which are thus not harder than these for LTL.
In particular, the complexity in terms of the system is NLOGSPACE. The PSPACE upper
bound applies even when the values in Z that appear in the formulas or the system are given

1We could handle also systems in which states are labeled by an assignment to the atomic propositions and
a vector in Z∗. We chose to study the case of a single value in Z as it includes the main challenge, namely the
need to cope with the infinite domain of Z, and it is present in our primary application, of hierarchical systems.
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in binary.
We continue and present applications of LTLA in reasoning about hierarchical systems.

There, we use the values in Z to refer to the depth of the computation in the system. For
example, the ∀LTLA formula ∀x; G((return ∧ (? = x)) → X(? = x− 1)) states that whenever
the control of the system is in a return state, the nesting depth should be reduced by 1.
As mentioned above, an algorithm for LTL model checking that avoids a flattening of the
hierarchical system is described in [4]. The algorithm is based on an iterative compression
of subsystems to small gadgets that maintain essential reachability information [27]. A naive
application of this approach in the case of ∀LTLA model checking is infeasible. Indeed, while
the different calls to a subsystem share the same AP labelling, they may differ in their nesting
depth. Consequently, each nesting depth requires a different gadget, resulting in a blow-up
that depends on the nesting depth. An attempt to overcome this difficulty by defining gadgets
with guards results in gadgets whose size depend on the subsystem. We show that for ∀LTLA
formulas in which guards cannot relate to more than one variable, we can replace subsystems by
gadgets with no guards whose number is exponential in the formula, keeping the model-checking
complexity of LTL model checking.

In Section 6 we discuss an extension of our contribution to the synthesis of hierarchical
systems, to the branching-time formalism, and to recursive systems.

2 Preliminaries

2.1 Adding Arithmetics to LTL

For a set X of variables, an assignment f : X → Z, and a value c ∈ N, we say that f is
bounded by c if −c ≤ f(x) ≤ c for all x ∈ X. The set of terms over X, denoted ΘX , is defined
inductively as follows.

• m, x, and ?, for m ∈ Z, x ∈ X, and the symbol ?.

• t1 + t2 and t1 − t2 for t1, t2 ∈ ΘX .

For a number k ∈ Z and an assignment f : X → Z, let fk : X ∪ {?} → Z be an extension of f
where for all x ∈ X, we have fk(x) = f(x), and for the symbol ? we have fk(?) = k. Given k
and f , we can extend fk to terms over X in the expected way; that is, fk : ΘX → Z is such
that fk(m) = m, fk(t1 + t2) = fk(t1) + fk(t2), and fk(t1 − t2) = fk(t1) − fk(t2). Similarly,
given f : X → Z, we can extend it to f? : ΘX → ΘX by replacing every composed term with
its evaluation, and leaving the symbol ?.

The set of guards over X, denoted GX , is defined inductively as follows.

• t1 ≤ t2, for t1, t2 ∈ ΘX

• ¬γ1 and γ1 ∧ γ2, for γ1, γ2 ∈ GX .

Guards of the form t1 ≤ t2 are termed atomic guards, and we denote the set of atomic guards
in GX by GAX . A guard γ ∈ GX is simple if all its atomic guards contain at most one variable in
X. Thus, different variables in X cannot be related.

For k ∈ Z, an assignment f : X → Z, and a guard γ ∈ GX , we define when k satisfies γ
under f , denoted k |=f γ, by induction on the structure of γ as follows.

• For atomic guards (t1 ≤ t2) ∈ GAX , we have that k |=f (t1 ≤ t2) if fk(t1) ≤ fk(t2).
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• For guards γ1, γ2 ∈ GX , we have that k |=f ¬γ if k 6|=f γ, and k |=f γ1 ∧ γ2 if k |=f γ1
and k |=f γ2.

Note that satisfaction of guards γ ∈ G∅ is independent of an assignment. Therefore, we write
k |= γ (that is, with no f). Using the operators ∧ and ¬, and keeping in mind that the terms are
defined over the whole numbers, we can generate from t1 ≤ t2 also the atomic guards t1 > t2,
t1 < t2, t1 ≥ t2, and t1 = t2, where t1, t2 ∈ ΘX .

We consider systems with Boolean variables as well as variables over Z. Formally, a system
is K = 〈AP,W,R,W0, l, v〉, where AP is a set of atomic propositions, W is finite a set of
states, R ⊆ W ×W is a transition relation, W0 is a set of initial states, and l : W → 2AP and
v : W → Z are labeling functions. Note that such system is an extension of Kripke structures
to structures in which states are labeled also with numbers. A path in K is an infinite sequence
of states w0, w1, . . . , where w0 ∈ W0 and for every i ≥ 0, we have that 〈wi, wi+1〉 ∈ R. A
computation of K is then a word 〈σ0, k0〉, 〈σ1, k1〉, · · · ∈ (2AP × Z)ω such that there is a path
w0, w1, . . . in K such that for all i ≥ 0, we have that l(wi) = σi and v(wi) = ki. We define the
size of a system K = 〈AP,W,R,W0, l, v〉, denoted |K|, as |W |+ |R|.

We specify properties of systems by LTL with arithmetics (LTLA, for short), which extends
LTL by a reference to the values in Z. An open LTLA formula ϕ over a set AP of atomic
propositions and a set X of variables is defined inductively as follows.

• true, false, p, for p ∈ AP , and γ, for γ ∈ GX .

• ¬ϕ1, ϕ1 ∧ ϕ2, Xϕ1, and ϕ1Uϕ2, for open LTLA formulas ϕ1 and ϕ2.

An LTLA formula is simple if all the guards in it are simple. Let var(ϕ) ⊆ X be the set of
variables appearing in an open LTLA formula ϕ. When var(ϕ) = ∅, we say that ϕ is variable
free. Consider an open LTLA formula ϕ over X and an assignment f : X → Z. We denote by ϕf
the variable-free formula obtained from ϕ by replacing every term t ∈ ΘX by f?(t). For example,
if ϕ = G(p→ (? = x1) ∧X(? ≥ x1)) and f(x1) = 5, then ϕf = G(p→ (? = 5) ∧X(? ≥ 5)).

The semantics of variable-free LTLA formulas is defined with respect to computations of
systems. Consider a computation π = 〈σ0, k0〉, 〈σ1, k1〉, · · · ∈ (2AP ×Z)ω. We refer to σi as the
proposition component of the i-th position, and refer to ki as its value. For a computation π,
a variable free LTLA formula ϕ, and a position i ≥ 0, we use (π, i) |= ϕ to indicate that ϕ is
satisfied in the i-th position of ϕ. The relation |= is inductively defined, for all computations π
and positions i ≥ 0, as follows.

• (π, i) |= true and (π, i) 6|= false,

• for p ∈ AP , we have that (π, i) |= p if p ∈ σi,

• for γ ∈ G∅, we have that (π, i) |= γ if ki |= γ,

• (π, i) |= ¬ϕ1 if (π, i) 6|= ϕ1,

• (π, i) |= ϕ1 ∧ ϕ2 if (π, i) |= ϕ1 and (π, i) |= ϕ2,

• (π, i) |= Xϕ if (π, i+ 1) |= ϕ, and

• (π, i) |= ϕ1Uϕ2 if there exists k ≥ 0 such that (π, i+ k) |= ϕ2 and (π, i+ j) |= ϕ1 for all
0 ≤ j < k.
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The computation π then satisfies ϕ, denoted π |= ϕ, iff (π, 0) |= ϕ. We use the abbreviations
Fϕ and Gϕ for trueUϕ and ¬F¬ϕ, respectively.

We continue to LTLA formulas that are not open. We distinguish between the case the
variables in the formula are quantified existentially and cases where they are quantified univer-
sally. An ∃LTLA formula is ψ = ∃x1;∃x2; . . . ;∃xk;ϕ, for an open LTLA formula ϕ with
var(ϕ) = {x1, . . . , xk}. For clarity, we also write ψ = ∃ϕ. A ∀LTLA formula is then
ψ = ∀x1;∀x2; . . . ;∀xk;ϕ (also written ∀ϕ). An LTLA formula is an ∃LTLA or ∀LTLA for-
mula. In Section 2.3, we show that a single universally quantified variable makes satisfiability
of LTLA undecidable, which justifies our focus in the existential and universal fragments. In-
deed, while we can negate a ∀LTLA formula and obtain an ∃LTLA formula, on which we can
reason, manipulations with fragments in which there is alternation between universal and ex-
istential variables would leave us with at least one universally quantified variables, leading to
undecidability.

Note that quantification is allowed only outside the open formula, and thus it cannot appear
in the scope of Boolean or temporal operators. We conjecture that a formalism with nested
quantification is strictly stronger. Consider, for example, the formula ψ = G(even → ∃x : ? =
x+x), which states that whenever the proposition even holds, the value is even. The existential
quantification on x is in the scope of the G temporal operator, allowing us to consider a different
assignment to x in each state. We conjecture that an LTLA formula equivalent to ψ requires a
different variable for each state in the computation, and thus ψ has no finite equivalent LTLA
formula. We leave the study of a temporal logic with a richer quantification for future research.

The semantics of open LTLA formulas is defined with respect to a computation π and an
assignment to the variables. For an open LTLA formula ϕ, a computation π, and an assignment
f : X → Z, we say that π satisfies ϕ under f , denoted π |=f ϕ, if π |= ϕf . For the LTLA
formulas ∃ϕ and ∀ϕ, satisfaction is defined with respect to a computation:

• π |= ∃ϕ if there is an assignment f : X → Z such that π |=f ϕ.

• π |= ∀ϕ if for all assignments f : X → Z, we have π |=f ϕ.

For example, a computation satisfies ∃x; G(up → (? = x) ∧X(? ≥ x)) if there is m ∈ Z such
that in every position in which up holds, the value is m, and it cannot be decreased in the next
position. Then, a computation satisfies ∀x; (x ≥ 10)→ F(? = x), if every value greater than 10
eventually appears in it. For an LTLA formula ψ, we define the language of ψ, denoted L(ψ),
as the set of all computations that satisfy ψ. We denote by |ψ| the length of ψ.

The two fundamental problems for LTLA are satisfiability and model checking. In the satis-
fiability problem, we are given an LTLA formula ψ and decide whether there is a computation
that satisfies it, namely whether L(ψ) 6= ∅. In the model-checking problem, we are given a
system K and an LTLA formula ψ and decide whether all the computations of K satisfy ψ.
When analyzing the complexity of the problems, we assume that the values in ψ and K are
given in unary.

2.2 Adding Arithmetics to NBWs

A nondeterministic Büchi word automaton with arithmetic (NBWA, for short) is a tuple A =
〈Σ, X,Q,Q0,∆, α〉, where Σ is an alphabet, X is a set of variables, Q is a set of states, Q0 ⊆ Q
is a set of initial states, ∆ ⊆ Q×Σ×GX×Q is a transition relation, and α ⊆ Q is an acceptance
condition. We assume that for every two states q1, q2 ∈ Q and letter σ ∈ Σ, there is at most one
γ ∈ GX such that 〈q1, σ, γ, q2〉 ∈ ∆. Note that this can be guaranteed, since multiple transitions
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from q1 to q2 with the same σ-label can be unified by applying a disjunction on the guards they
are labeled by.

A run of A on an infinite word 〈σ0, k0〉, 〈σ1, k1〉, . . . is a sequence of states q0, q1, . . . , where
q0 ∈ Q0, and there is an assignment f : X → Z such that for every position i ≥ 0, there
is a transition 〈qi, σi, γ, qi+1〉 ∈ ∆ such that ki |=f γ. Note that the assignment f is fixed
throughout the run. This is contrast to variants of register automata, in particular these used
in [44], which are needed to handle resets of variables during the computation. For a run r,
let inf(r) = {q : qi = q for infinitely many i’s}. That is, inf(r) is the set of states that r visits
infinitely often. Then, r is accepting iff inf(r) ∩ α 6= ∅. The language of A, denoted L(A),
is the set of words w ∈ (Σ × Z)ω such that A has an accepting run on w. The nonemptiness
problem for NBWAs is to decide, given an NBWA A, whether L(A) is empty.

Example 1. The LTLA formula ψ1 = (? ≤ 3)U(p ∧ (? = 4)) states that a computation
eventually reaches a position in which p holds and the value is exactly 4, and until this position
the value is at most 3. The language L(ψ1) is recognized by the NBWA A1 appearing in
Figure 1. The self loop in q0 is labeled by 〈true, ? ≤ 3〉, meaning that a run can stay in q0,
reading either p or ¬p, as long the value it reads is at most 3. Further, it moves from q0 to q1
only when p holds and the value is 4. After the run moves to q1, it has no further restrictions.

Figure 1: The NBWAs A1 and A2

The ∃LTLA formula ψ2 = ∃x1;∃x2; F((left ∧ (? = x1)) ∧X(right ∧ (? = x2)) ∧XXG((? ≥
x1 +1)∧(? ≤ x2−1))) states that there are two values x1 and x2, such that eventually we reach
a position in which left holds and the value is x1, in the successive position right holds and the
value is x2, and all the values to follow are between x1 + 1 and x2 − 1. Note that ψ2 is simple.
The language L(ψ2) is recognized by the NBWA A2 appearing in Figure 1. An accepting run
of A2 moves from q0 to q1 when it reads left and some value x1, and in the next transition it
moves from q1 to q2, reading right and some value x2. From that position and on, it reads only
values in [x1 + 1, x2 − 1].

Note that while in LTLA we consider both an existential and a universal interpretation
to the quantified variables, in the case of NBWA we only consider an existential one. As we
show in Section 2.3 below, the reachability problem would be undecidable in an NBWA with a
universal interpretation to the quantified variables. For LTLA, where negation is easy, we keep
both interpretations.

2.3 Undecidability

It is well known that going to an infinite data domain in specification formalisms with vari-
able quantification leads to undecidability of the satisfiability problem. We prove that similar
considerations apply to the universal fragment of LTLA. The proof is by a reduction from the
halting problem for two-counter (Minsky) machines, as is the case with other variants of Pres-
burger LTL [20], and we bring it here for completeness. As is the case with the variable LTL of
[44], a single universally quantified variable is sufficient in order to obtain undecidability. The
proof there, however, is from the PCP problem.
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Theorem 1. The satisfiability problem for ∀LTLA is undecidable.

Proof. We describe a reduction from the halting problem for two-counter (Minsky) machines.
A two-counter machineM is a sequence (l1, . . . , ln) of commands involving two counters x and
y. We refer to L = {1, . . . , n} as the locations of the machine. There are five possible forms of
commands:

inc(c), dec(c), goto li, if c=0 goto li else goto lj , halt,

where c ∈ {x, y} is a counter and li and lj are locations. Since we can always check whether
c = 0 before a dec(c) command, we assume that the machine never reaches dec(c) with
c = 0. That is, the counters never have negative values. A halting run of M is a sequence
ρ = ρ1, . . . , ρm ∈ (L× N× N)∗ such that the following hold.

1. ρ1 = 〈l1, 0, 0〉.

2. For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β′). Then, the following hold.

• If lk is a inc(x) command (resp. inc(y)), then α′ = α+ 1, β′ = β (resp. β = β + 1,
α′ = α), and l′ = lk+1.

• If lk is a dec(x) command (resp. dec(y)), then α′ = α− 1, β′ = β (resp. β = β− 1,
α′ = α), and l′ = lk+1.

• If lk is a goto ls command, then α′ = α, β′ = β, and l′ = ls.

• If lk is an if x=0 goto ls else goto lt command, then α′ = α, β′ = β, and l′ = ls
if α = 0, and l′ = lt otherwise.

• If lk is a if y=0 goto ls else goto lt command, then α′ = α, β′ = β, and l′ = ls
if β = 0, and l′ = lt otherwise.

• If l′ is a halt command, then i = m. That is, a run does not continue after halt.

3. ρm = 〈lk, α, β〉 such that lk is a halt command.

Given a counter machineM, deciding whetherM has a halting run is known to be undecid-
able [37]. GivenM, we construct an ∀LTLA formula ψM = ∀z;ϕ(z) such that ψM is satisfiable
iff M has a halting run. Note that we use a fragment of ∀LTLA with a single variable.

Let AP be a set of atomic propositions that encode L, and, for 1 ≤ k ≤ n, let θ(lk) be an
assertion over AP that is satisfied by the assignment in which the atomic proposition encode the
location lk. We associate each position in a run ofM with a block of three successive positions
in computations over 2AP∪{#}×Z. The proposition component of the first position in each block
encodes the location, and the value components of the second and third positions maintain the
values of the counters x and y, respectively, namely α and β in the above description. A special
atomic proposition # labels the first position in each block. Thus, ϕ includes the conjunct
# ∧ (X¬#) ∧ (XX¬#) ∧G(#↔ XXX#).

Each location lk contributes to ϕ a conjunction ϕk defined as follows.

• If lk is an inc(x) command, then ϕk = G((# ∧ θ(lk)) → (XXXθ(lk+1) ∧X((? = z) →
XXX(? = z + 1)) ∧XX((? = z)→ XXX(? = z)))). Thus, the next location is lk+1, the
value of x is increased by 1, and the value of y does not change. Indeed, for all values z,
if the current value of x, namely the one be read in the next position, is equal to z, then
the next value of x, namely the one be read three positions later, is z + 1. Also, if the
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current value of y, namely the one be read in the next next position, is equal to z, then
the next value of y, namely the one be read three positions later, stays z.

The conjunction for dec(x) is similar, with z − 1. The conjunctions for increasing or
decreasing of y are also similar, with the value in the next next position being changed. For
example, if lk is a dec(y) command, then ϕk = G((#∧ θ(lk))→ (XXXθ(lk+1)∧X((? =
z)→ XXX(? = z)) ∧XX((? = z)→ XXX(? = z − 1)))).

• If lk is a goto ls command, then ϕk = G((# ∧ θ(lk)) → (XXXθ(ls)) ∧ X((? = z) →
XXX(? = z)) ∧XX((? = z) → XXX(? = z)))). That is, the location is updated, and
the values of x and y are not changed.

• If lk is an if x=0 goto ls else goto lt command, then ϕk = G((# ∧ θ(lk))→ (X(? =
0)→ XXXθ(ls)) ∧ (¬X(? = 0))→ XXXθ(lt)) ∧X((? = z)→ XXX(? = z)) ∧XX((? =
z)→ XXX(? = z)))).

That is, the location is updated according to the values of x, and the values of x and y
are not changed. The case the control depends on y is similar.

In addition, ϕ includes a conjunct that requires the run to start in (l1, 0, 0), namely θ(l1)∧X(? =
0) ∧XX(? = 0), and a conjunct that requires the run to halt. Thus, if H = {k : lk is a halt
command}, then ϕ includes the conjunct F(# ∧

∨
k∈H θ(lk)).

It is not hard to prove that a computation π satisfies ψM iff π describes a halting run of
M. First, the single halting run of M satisfies all conjuncts. Indeed, the requirements about
the atomic propositions are satisfied, and whatever value we assign to z, either no position in
the computation that is located in the second or third position in a block has z in its value
component, in which case all the assertions involving z are satisfied vacuously, or there are
positions in which α or β take value z, in which case the fact the run is legal guarantees that the
requirements imposed by the conjuncts are satisfied. For the other direction, if ψM is satisfiable,
then the conjunct F(#∧

∨
k∈H θ(lk)) guarantees that the satisfying computation includes a finite

prefix that reaches a location with a halt command. We can prove by induction on the length
of the prefix that it describes a halting run. In particular, the universal quantification on z
implies that α and β proceed as required.

2.4 Useful Results on Integer Linear Programming

The feasibility problem in integer linear programming (ILP) is to decide, given a set E of linear
inequalities, whether it is satisfiable by an integer assignment to the variables. We assume
that E consists of a set of linear inequalities (with ≤ and ≥) over a set X of variables. As
we show in the sequel, many problems about LTLA and NBWA are reduced to variants of
ILP. In particular, while in ILP the inequalities are over a set X of variables, in our setting
the inequalities may contain the term ?. Some of the occurrences of ? are related, as they
origin from guards that refer to the same input. Also, in the application of model checking,
the values for ? are given, and in the application of hierarchical systems, occurrences of ? that
correspond to states in the same depth agree on their value. These different contexts require
different treatments of ? in the inequalities. For example, if we naively replace each occurrence
of ? by a fresh variable, as is natural to do in the case of satisfiability, we increase the number
of variables, giving up complexity results that make use of this parameter. In this section we
define and study the feasibility problem for the variants of ILP we are going to encounter in the
context of LTLA and NBWA. We start with a general known result. Throughout this section,
we consider a set E of linear inequalities of size M over a set X of N variables, with L being
the largest number that appears in E .
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Lemma 1. [48, 41, 34] If E is satisfiable, then it is satisfiable by an assignment bounded by
((M +N) ·N · L)N . Deciding the satisfiability of E is NP-complete.

To see how the exponential blow up in Lemma 1 may be attained, consider a system E
over {x1, . . . , xN} that includes the set of inequalities x1 ≥ 1, and xi+1 > xi + xi, for every
1 ≤ i < N . The minimal value that xN is assigned in a satisfying assignment is exponential
in N . By bounding the length of a chain of variables whose values depend on each other, we
can bound the exponent in the expression in Lemma 1. In particular, when we translate a
conjunction of atomic guards into an ILP and replace occurrences of ? by fresh variables in
Y (possibly the same variable in Y for different occurrences of ? – these that origin from the
same transition of a given NBWA), then the variables in Y cannot participate in such a chain.
Formally, consider an ILP E over X and a partition 〈X1, X2〉 of X. We say that 〈X1, X2〉
is ?-consistent if all inequalities in E contain at most one variable from X2, appearing with
coefficient 1. A conjunction of atomic guards with ? being replaced by fresh variables in Y then
results in an ILP for which the partition 〈X,Y 〉 is ?-consistent.

Lemma 2. Let 〈X1, X2〉 be a ?-consistent partition of X. If E is feasible, then it is feasible by
an assignment bounded by ((M +N) ·N · L)|X1|.

By setting additional constraints on E , we can reduce the range of the values in a solution
even further (see also [31], for a setting without a ?-consistent partition).

Lemma 3. If there is a ?-consistent partition 〈X1, X2〉 of X such that all inequalities in E
contain at most one variable from X1, appearing with coefficients 1 or −1, then E is feasible iff
E is feasible with an assignment bounded by O(L ·min{|X1|, |X2|}). Accordingly, if the values
in E are given in unary, its feasibility can be decided in NLOGSPACE.

Lemma 4. If there is a ?-consistent partition 〈X1, X2〉 of X, for X1 of a constant size, then
E is feasible iff E is feasible with an assignment bounded by poly(|E|). Accordingly, if the values
in E are given in unary, its feasibility can be decided in NLOGSPACE.

3 Decision Procedures for NBWAs

In the automata-theoretic approach to LTL, we translate an LTL formula ψ over AP to an
NBW Aψ over the alphabet 2AP that accepts exactly all the computations that satisfy ψ.
Then, satisfiability of ψ is reduced to checking the nonemptiness of Aψ and model checking of
a system K with respect to ψ is reduced to checking the emptiness of the product A¬ψ ×K,
which models all the computations of K that do not satisfy ψ. In the case of LTL, the product
A¬ψ ×K is an input-free NBW: the labels of K “feed” the transitions of A¬ψ with alphabet
letters in 2AP , and thus the product is a graph with an acceptance condition induced by the
acceptance condition of A¬ψ. The input-free setting is not less complex: in both settings
nonemptiness is reduced to reachability and is done in NLOGSPACE.

In the case of ∀LTLA, while K feeds the transitions of the product A¬ψ×K with an element
in 2AP × Z, the guards on the transitions refer also to the variables in X, and thus the edges
in A¬ψ ×K are labeled by inequalities over the variables in X. As we show below, this makes
the nonemptiness problem for NBWAs strongly related to ILP in both the general and the
input-free settings.

Theorem 2. The nonemptiness problem for NBWAs is NP-complete. NP-hardness holds al-
ready for input-free NBWAs.
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Proof. For the upper bound, consider an NBWA A over variables in X. As in NBWs, A is not
empty iff there is an accepting lasso in A, namely a path from an initial state to an accepting
state reachable from itself, and an assignment to the variables in X and to the ?’s along the
lasso such that all guards are satisfied. The algorithm guesses such an accepting lasso (it is
easy to see that a search for a lasso in which each state appears at most once is sufficient),
resolves disjunctions in guards by guessing the disjunct to be satisfied, and checks the feasibility
of the induced set E of inequalities. Each state q in the lasso contributes a new variable yq that
replaces the ? in the guards in the transition from q to its successor in the lasso. Let Y be the
union of all variables yq, for states q in the lasso. The partition 〈X,Y 〉 is ?-consistent. Hence,
by Lemma 2, the feasibility of E can be decided in NP.

NP-hardness follows from NP hardness of ILP [41]. Indeed, we can arrange a given set of
inequalities along the transitions of a single path from an initial state to an accepting loop of
an NBWA. Clearly, the above can be done also in an input-free NBWA.

As discussed in Section 2.4, the exponential blow-up in the possible values in a satisfying
assignment to X = {x1, . . . , x|N |} is due to our ability to force the accepting lasso to induce a
set of inequalities in which the assigned value of xi multiples that of xi−1. In Lemmas 3 and 4,
we showed two ways to disable such a chain of assignments: either by forcing the guards to be
simple, preventing the different variables in X to relate to each other, or by fixing their number.
Hence, the following is an immediate corollary of Lemmas 3 and 4.

Theorem 3. The nonemptiness problem is NLOGSPACE-complete for NBWAs with a constant
number of variables and for NBWAs with simple guards.

4 Decision Procedures for LTLA

In this section we present an automata-theoretic approach for LTLA and use it in order to
solve the satisfiability problem for ∃LTLA and the model-checking problem for ∀LTLA. We
first translate ∃LTLA formulas to NBWAs of exponential size. The construction is similar to
the LTL to NBW construction in [46], except that the closure of the formula, and hence also
the states of the NBWA, refer also to the guards in the formula, which induce guards on the
transitions.

Theorem 4. Given an ∃LTLA formula ∃ϕ, there is an NBWA Aϕ such that L(Aϕ) = L(ϕ), the
size of Aϕ is exponential in |ϕ|, and the guards that label the transitions of Aϕ are conjunctions
of atomic guards in ϕ and their negations.

Proof. Consider an ∃LTLA formula ∃ϕ. The extended closure of ϕ, denoted ecl(ϕ), includes
ϕ and all its subformulas and their negations. Formally, the set ecl(ϕ) is the smallest set of
formulas that satisfies the following (we unify ϕ1 with ¬¬ϕ1):

• ϕ ∈ ecl(ϕ),

• ϕ1 ∈ ecl(ϕ) iff ¬ϕ1 ∈ ecl(ϕ),

• if ϕ1 ∧ ϕ2 ∈ ecl(ϕ) or ϕ1Uϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ), and

• if Xϕ ∈ ecl(ϕ) then ϕ ∈ ecl(ϕ).

Note that we keep decomposing subformulas that are Boolean assertions until we reach atomic
propositions or atomic guards.
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We say that a subset T ⊆ ecl(ϕ) is good in ecl(ϕ) if T is a maximal set of formulas in ecl(ϕ)
that does not have propositional inconsistency. Formally, we require T to satisfy the following
conditions:

• for every ϕ1 ∈ ecl(ϕ), we have ϕ1 ∈ T iff ¬ϕ1 /∈ T ,

•
∧
γ∈GA

X∩T
γ is satisfiable, and

• for every ϕ1 ∧ ϕ2 ∈ ecl(ϕ), we have ϕ1 ∧ ϕ2 ∈ T iff ϕ1 ∈ T and ϕ2 ∈ T .

The main idea of the translation of ∃LTLA formulas to NBWAs is to reduce the question
of satisfaction of an ∃LTLA formula ∃ϕ in a computation π to questions about the satisfaction
of formulas in ecl(ϕ) in the suffixes of π. For an ∃LTLA formula ∃ϕ over X, we define Aϕ =
〈2AP , X,Q,Q0,∆, α〉, where Q = {T : T is a good subset in ecl(ϕ)} and Q0 = {T : ϕ ∈ T}.
The transitions are defined such that for every state T ⊆ ecl(ψ), all the computations that leave
T satisfy all the subformulas in T . Technically, the transition relation ∆ ⊆ Q× 2AP × GX ×Q
is defined such that 〈T, σ, γ, T ′〉 ∈ ∆ iff the following hold.

• σ = AP ∩ T and γ =
∧
γ′∈GA

X∩T
γ′

• for every ϕ ∈ ecl(ϕ), we have that Xϕ ∈ T iff ϕ ∈ T ′, and

• for every ϕ1, ϕ2 ∈ T , we have that ϕ1Uϕ2 ∈ T iff ϕ2 ∈ T or both ϕ1 ∈ T and ϕ1Uϕ2 ∈ T ′.

We first define the automaton with respect to generalized Büchi acceptance condition, where
every formula ϕ1Uϕ2 contributes to the condition the set {T ∈ Q : ϕ2 ∈ T or ¬(ϕ1Uϕ2) ∈ T}.
By taking at most |ϕ| copies of the automaton, we can translate it to an NBWA with at most
2O(|ϕ|) states.

Finally, note that the set of guards that appear in the transitions in Aϕ are conjunctions of
atomic guards that either appear in ϕ or their negation appear in ϕ.

A naive combination of Theorem 4 with the complexity of the nonemptiness algorithm
described in Section 3 leads to an NEXPTIME upper bound for satisfiability. Below we provide
a careful analysis of the setting, which takes into account the fact that the atomic guards in
Aϕ origin from ϕ, thus their number is only polynomial in ϕ.

Theorem 5. The satisfiability problem for ∃LTLA is PSPACE-complete.

Proof. Given an ∃LTLA formula ∃ϕ over X, its satisfiability is reduced to checking the
nonemptiness of Aϕ. Consider an accepting lasso in Aϕ, and the 〈X,Y 〉 ?-consistent parti-
tion of a set E of inequalities induced by resolving disjunctions in the guards along it as in the
proof of Theorem 2. Since |X| ≤ |ϕ|, then, by Lemma 2, the domain of values that have to
be checked when we decide the feasibility of E is exponential in |ϕ|. Thus, we can guess and
store an assignment to the variables and generate the accepting lasso on-the-fly in PSPACE.
The lower bound follows from the PSPACE-hardness of LTL satisfiability [43].

In the context of model checking, we have to combine the analysis above with a decompo-
sition of the product into K and Aϕ.

Theorem 6. The model-checking problem for ∀LTLA is PSPACE-complete. The nondeter-
ministic space complexity is polynomial in the specification and logarithmic in the system.
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Proof. Given a system K = 〈AP,W,R,W0, l, v〉 and a ∀LTLA formula ∀ϕ, we need to decide
whether there is a computation of K that satisfies the ∃LTLA formula ∃¬ϕ. For an atomic
guard γ ∈ GAX that includes ? and a value m ∈ Z, let γ(m) be the atomic guard obtained from
γ by replacing ? by m. For example, if γ = (? ≤ x), then γ(m) = (m ≤ x).

Let A¬ϕ = 〈2AP , X,Q,Q0,∆, α〉 be the NBWA for ¬ϕ. Taking the product of A¬ϕ with
K, we get an input-free NBWA A¬ϕ × K = 〈{a}, X,Q × W,Q0 × W0,∆

′, α × W 〉, where
∆′ ⊆ (Q×W )×{a}×GX×(Q×W ) is such that there is a transition 〈〈q, w〉, a, γ′, 〈q′, w′〉〉 ∈ ∆′

iff 〈w,w′〉 ∈ R and there is a transition 〈q, l(w), γ, q′〉 ∈ ∆ such that γ′ = γ(v(w)). By Lemma 1,
the domain of values that have to be considered when we check the feasibility of a set of equations
induced by an accepting lasso is linear in |K| and exponential in |ϕ|. Indeed, the equations
refer to |X| variables, with |X| ≤ |ϕ|, their size is |K| · 2O(|ϕ|), and the largest value appearing
in them is linear in |K| and |ϕ|. Accordingly, we can check A¬ϕ×K for emptiness in PSPACE
in |ϕ| and NLOGSPACE in |K|. Indeed, we need space polynomial in |ϕ| and only logarithmic
in |K| in order to store a state in the product and a guess for a satisfying assignment. Hardness
follows from hardness for LTL model checking.

In Section 2.3, we proved that the satisfiability problem for ∀LTLA is undecidable. In
the setting of finite domains, satisfiability can be reduced to model checking a system that
generates all possible computations. Also, in our setting, an ∀LTLA formula ∀ϕ is satisfiable
if a system that generates all computations does not satisfy the ∃LTLA formula ∃¬ϕ. Thus,
∀LTLA satisfiability can be reduced to ∃LTLA model checking in infinite-state systems, making
the latter undecidable. In the case, however, of finite systems, ∃LTLA model checking is
decidable. To see this, consider a system K and an ∃LTLA formula ∃ϕ over X, and let π be a
computation of K. Since ∃ϕ has a bounded number of atomic guards, and K is labeled with
a bounded number of values in Z, it is not hard to see that if π satisfies ∃ϕ, then π satisfies
∃ϕ under an assignment that is bounded by some number c, where c depends on |ϕ| and on
|K|. Thus, checking whether all the computations of K satisfy ∃ϕ can be reduced to checking
whether all the computations of K satisfy ϕf for some f : X → Z bounded by c. Thus, given a
system K and an ∃LTLA formula ∃ϕ, one can model check K with respect to ∃ϕ by computing
such a bound c, constructing a variable-free formula ϕ′ =

∨
f :X→[−c,c] ϕf , and solving model

checking for K and ϕ′.

5 Applications to Hierarchical Systems

We present an application of LTLA to hierarchical systems, where the Z-component is a nat-
ural number that refers to the depth of computations in the system. We start with defining
hierarchical systems, and then study their model checking.

5.1 Hierarchical Systems

A hierarchical system is a tuple K = 〈K1, . . . ,Kn〉 of subsystems. For every 1 ≤ i ≤ n, we
have that Ki = 〈AP,Wi, Bi, τi, Ri,W

i
0,W

i
Exit, li〉, where AP is a set of atomic propositions, Wi

is a set of states, Bi is a set of boxes, τi : Bi → {i + 1, . . . , n} is a function that maps every
box in Bi to a subsystem Kj , for j > i, W i

0 ⊆ Wi is a set of initial states, W i
Exit ⊆ Wi is a

set of exit states, li : Wi → 2AP is a labeling function, and Ri is a transition relation. Every
transition leaves a state in Wi or an exit state of a box in Bi, and enters a state in Wi or an
initial state of a box in Bi. Formally, let τ(Bi) be the set of all indices j such that τi(b) = j
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for some box b ∈ Bi. Then, Ri ⊆ ((
⋃
j:j∈τ(Bi)

W j
Exit)∪Wi)× ((

⋃
j:j∈τ(Bi)

W j
0 )∪Wi). The size

of a hierarchical system K = 〈K1, . . . ,Kn〉 is
∑

1≤i≤n |Ki|.
A system without boxes is flat. Each hierarchical system can be transformed to a flat system,

referred to as its flat expansion, by recursively substituting each box by a copy of the suitable
subsystem. Note that all the states in the flat expansion of K have nesting depth 1. In order to
retain information about the internal structure ofK, we add to the flat expansion a function that
labels each state by its nesting depth in K. Formally, given a hierarchical system K, for each
subsystem Ki we inductively define its flat expansion KF

i = 〈AP,WF
i , R

F
i ,W

i
0,W

i
Exit, l

F
i , vi〉,

as follows. The state space is WF
i = Wi ∪ (∪b∈Bi

{b} ×WF
τi(b)

). Note that the same subsystem

may be called by different boxes. By substituting each box b by a set of states {b}×WF
τi(b)

, we
preserve b as an identifier in the names of the states of the called subsystem. The transition
relation RFi includes the following transitions:

• (u1, u2) such that u1, u2 ∈Wi and (u1, u2) ∈ Ri,

• (u1, 〈b, u2〉) such that u1 ∈Wi, u2 = W
τi(b)
0 and (u1, u2) ∈ Ri,

• (〈b, u1〉, u2) such that u1 ∈W τi(b)
Exit , u2 ∈Wi and (u1, u2) ∈ Ri, and

• (〈b, u1〉, 〈b, u2〉) such that u1, u2 ∈WF
τi(b)

and (u1, u2) ∈ RFτi(b).

The labeling function lFi : WF
i → 2AP labels every state u ∈ Wi with li(u), and every state

〈b, u〉, where u ∈WF
τi(b)

, with lFi (u). Finally, the labeling function vi : WF
i → {1, . . . , n} labels

every state in KF
i with its nesting depth in Ki. Thus, for every u ∈Wi, we have that vi(u) = 1,

and for every b ∈ Bi and u ∈ WF
τi(b)

, we have that vi(〈b, u〉) = vτi(b)(u) + 1. Note that states

in W1 have depth 1, and all other states in KF are of the form 〈b1, 〈b2, 〈. . . , 〈bk, u〉 · · ·〉〉〉, and
have depth k + 1. Note also that the domain of vi is {1, . . . , n− i+ 1}. The system KF

1 is the
flat expansion of K, and we denote it by KF .

As an example, consider the hierarchical system K = 〈K1,K2〉 in Figure 2. The subsystem
K1 includes two boxes, b1 and b2, with τ1(b1) = τ1(b2) = 2. The subsystem K2 is flat. The flat
system KF is described on the right. In KF , the states w1

0, v1, v2, v3, v4, and v5 have depth 1,
and all other vertices have depth 2.

It is not hard to see that the hierarchical setting is exponentially more succinct, for example
when Ki includes two boxes that call Ki+1, for all 1 ≤ i < n [3].

5.2 ∀LTLA Model Checking for Hierarchical Systems

Consider a hierarchical system K. Recall that every state in KF has a nesting depth in
K, as defined above. When we reason about KF and specify its properties with ∀LTLA
specifications, we may refer to the nesting structure of K. For example, the ∀LTLA formula
∀x; G((send ∧ (? = x)) → ((? ≥ 2) ∧ (? = x)Uack)) states that sending cannot be performed
in the outermost component, and that whenever a sending is performed, the control stays
in the current component until an ack is received. In the model-checking problem, we are
given a hierarchical system K and a ∀LTLA formula ψ, and we have to decide whether all the
computations of K satisfy ψ. A straightforward approach to model checking is to flatten K
and then continue as described in the proof of Theorem 6. Flattening K, however, involves
an exponential blow-up, which we want to avoid. An algorithm that avoids this blow-up for
LTL model checking is described in [4]. The main idea is to construct the product of A¬ψ
with the components of K in an iterative manner, starting with the innermost component and
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Figure 2: A hierarchical system and its flat expansion.

compressing every such product. In more detail, for every 1 ≤ i ≤ n, starting with i = n,
we construct A¬ψ × Ki and generate from it a small gadget that retains only the necessary
information about reachability and accepting cycles in A¬ψ×Ki. The gadget is computed only
once, and its size is linear in A¬ψ and the number of exit states of Ki. If Ki has a box b that
calls Kj , then, as j > i, the gadget corresponding to A¬ψ × Kj has already been calculated,
and we replace b by this gadget. Thus, the blow-up of flattening K is avoided, and indeed LTL
model-checking can be solved in time polynomial in K and exponential in ψ. In terms of space
complexity, the problem remains PSPACE-complete also for hierarchical systems [4].

The algorithm described above for LTL model checking follows a general technique for
efficient reasoning about hierarchical systems: an iterative compression of subsystems in a way
that maintains the essential information and still results in subsystems whose size depends only
on the number of exit states [27]. A naive application of this approach to ∀LTLA specifications
might be infeasible. To see why, consider a hierarchical system K = 〈K1, . . . ,Kn〉 and a ∀LTLA
formula ψ = ∀ϕ. Let A¬ϕ be the NBWA that corresponds to ∃¬ϕ. Unlike the case of LTL, the
product A¬ϕ ×Ki, for 1 ≤ i ≤ n, may depend on the nesting depth of Ki. Indeed, the guards
on the transitions of A¬ϕ may include ? and thus refer to the nesting depth. Thus, while the
approach of [4] avoids the exponential blow-up in the flattening, its naive extension to ∀LTLA
formulas requires i copies of the gadget for Ki – one for each possible nesting depth. We show
how this upper bound can be tightened for simple ∀LTLA formulas.

Consider a hierarchical system K = 〈K1, . . . ,Kn〉 and a ∀LTLA formula ψ = ∀ϕ over X. For
a subsystem Ki, a function f : X → Z and a nesting depth 1 ≤ d ≤ i, we define (A¬ϕ ×Ki)f,d
as the product NBWA A¬ϕ ×Ki, where the nesting depth of Ki is d and the assignment to X
is f . Lemma 5 below shows that the number of different assignments and nesting depths we
should consider is exponential in |ϕ| and is independent of n.

Lemma 5. Consider a hierarchical system K = 〈K1, . . . ,Kn〉 and a simple ∃LTLA formula
∃¬ϕ over X. There exist c, c′ ∈ N, linear in |ϕ|, such that the following hold.

1. If K satisfies ϕ, then K satisfies ϕ with an assignment bounded by c.
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2. For every 1 ≤ i ≤ n, assignment f bounded by c, and d ≥ c′, we have that (A¬ϕ×Ki)f,d =
(A¬ϕ ×Ki)f,c′ .

Proof. The proof of the first claim follows the same considerations as in Lemma 3 (in fact, here
the analysis is even tighter, as all ?’s from the same subgraph induce a single variable in Y ).
For the second claim, we define c′ = c + L + 1, where L is the largest value. It is not hard to
see that for every atomic guard γ in ϕ, assignment f bounded by c, and d ≥ c′, we have that
d |=f γ iff c′ |=f γ. Hence, reachability in (A¬ϕ ×Ki)f,d and (A¬ϕ ×Ki)f,c′ coincides, and we
are done.

We can now define the product (A¬ϕ×Ki)f,d. First, for a flat Ki, we define (A¬ϕ×Ki)f,d =
〈{a}, ∅, Q×Wi, Q×W i

0, Q×W i
Exit,∆i, α×Wi〉, where ∆i ⊆ (Q×Wi)×{a}×{true}×(Q×Wi)

is such that 〈〈q1, w1〉, a, true, 〈q2, w2〉〉 ∈ ∆i iff 〈q1, li(w1), γ, q2〉 ∈ ∆, Ri(w1, w2), and d |=f γ.
Essentially, (A¬ϕ ×Ki)f,d is a product graph that preserves only transitions whose guards are
satisfied by d under f .

The size of the product (A¬ϕ × Ki)f,d depends on the sizes of A¬ϕ and Ki. We now
compress it, replacing paths by single edges, to retain only information about reachability to
the exit vertices of Ki. We distinguish between reachability and reachability via an accepting
state, and consider also the possibility of reaching an accepting cycle in Ki. Formally, we
define the compressed product (A¬ϕ ⊗ Ki)f,d as follows. The state space of (A¬ϕ ⊗ Ki)f,d
includes one copy of the initial states, two copies of the exit states of (A¬ϕ × Ki)f,d, and
a new accepting state. There are three types of transitions in (A¬ϕ ⊗ Ki)f,d. All are from
the initial states, and they are either to the new accepting state, in the case that there is a
reachable accepting cycle in (A¬ϕ ×Ki)f,d, to the first copy of the exit states, in the case that
the exit states are reachable, or to the second copy of the exit states, in the case that the exit
states are reachable via an accepting state. Note that an accepting cycle in (A¬ϕ × KF )f,1
may include states from different subsystems, meaning that it enters and exits a box. In
this case, the accepting state that makes the loop accepting may be either in the calling or
in the called subsystem. The former case is captured by reachability to the first copy of
an exit state, while the latter is captured by reachability to the second copy. Formally, we
define (A¬ϕ ⊗ Ki)f,d = 〈{a}, ∅, {qiacc} ∪ Q × (W i

0 ∪ ({0, 1} × W i
Exit)), Q × W i

0, Q × {0, 1} ×
W i
Exit,∆

′
i, (α × (W i

0 ∪ {0} ×W i
Exit)) ∪ {qiacc} ∪ (Q × {1} ×W i

Exit)〉. The transition relation
∆′i ⊆ ((Q×W i

0)∪ {qiacc})×{a}× {true}× ((Q×{0, 1}×W i
Exit)∪ {qiacc}) is such that there is

a transition 〈u1, a, true, u2〉 ∈ ∆′i when u1 = u2 = qiacc, or one of the following holds.

• u1 ∈ Q ×W i
0, and either u2 = 〈q, 0, w〉 ∈ Q × {0} ×W i

Exit and 〈q, w〉 is reachable from
u1 in (A¬ϕ ×Ki)f,d, or u2 = 〈q, 1, w〉 ∈ Q × {1} ×W i

Exit and 〈q, w〉 is reachable via an
accepting state from u1 in (A¬ϕ ×Ki)f,d.

• u1 ∈ Q×W i
0, u2 = qiacc, and there is a reachable accepting cycle from u1 in (A¬ϕ×Ki)f,d.

Note that ∆′i can be computed in time polynomial in |(A¬ϕ×Ki)f,d|. In addition, it is easy to
see that |(A¬ϕ ⊗Ki)f,d| is linear in |Q| · |W i

0 ∪W i
Exit|.

It left to show how (A¬ϕ×Ki)f,d is constructed in the case Ki is not flat. The idea is similar,
except that we replace the product with boxes by the compressed product of the corresponding
subsystem. Recall that a call to a subsystem increases the depth of the computation. Thus,
we should replace boxes that call Kj with (A¬ϕ ⊗Ki)f,d+1. Here, we use the second claim in
Lemma 5, and increase d only up to the bound c′ form the lemma. Formally, for 1 ≤ d < n,
let inc(d) = min{d+ 1, c′}. Then, we construct (A¬ϕ ×Ki)f,d by replacing boxes that call Kj

with (A¬ϕ ⊗Ki)f,inc(d), as follows. For every 1 ≤ i ≤ n, let Ui,f,d and Uαi,f,d be the states and
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accepting states of (A¬ϕ ⊗Ki)f,d, respectively. We define (A¬ϕ ×Ki)f,d = 〈{a}, ∅, Q ×Wi ∪
(∪b∈Bi

{b}×Uτi(b),f,inc(d)), Q×W i
0, Q×W i

Exit,∆i, (α×Wi)∪ (∪b∈Bi
{b}×Uατi(b),f,inc(d))〉. The

transition relation ∆i consists of the following transitions:

• 〈〈q1, w1〉, a, true, 〈q2, w2〉〉, where 〈q1, l(w1), γ, q2〉 ∈ ∆, Ri(w1, w2) and d |=f γ,

• 〈〈q1, w1〉, a, true, 〈b, 〈q2, w2〉〉〉, where 〈q1, l(w1), γ, q2〉 ∈ ∆, b ∈ Bi, Ri(w1, 〈b, w2〉) and
d |=f γ,

• 〈〈b, 〈q1, w1〉〉, a, true, 〈q2, w2〉〉, where 〈q1, l(w1), γ, q2〉 ∈ ∆, b ∈ Bi, Ri(〈b, w1〉, w2) and
inc(d) |=f γ, and

• 〈〈b, u1〉, a, true, 〈b, u2〉〉 such that b ∈ Bi, u1, u2 ∈ Uτi(b),f,inc(d), and 〈u1, a, true, u2〉 is a
transition in (A¬ϕ ⊗Kτi(b))f,inc(d).

We can now conclude with the following.

Theorem 7. ∀LTLA model checking for hierarchical systems is PSPACE-complete. For simple
∀LTLA formulas, it can be solved in time polynomial in the size of the system and exponential
in the size of the formula.

Proof. Consider an ∀LTLA formula ∀ϕ and a hierarchical system K. Membership in PSPACE
is easy, since (as is the case already for LTL model checking of hierarchical systems [4]) the
polynomial space dependency is in both ϕ and K. Thus, we can reason about A¬ϕ×KF , where
each state can be stored in space polynomial in |K| + |ϕ|. Hardness in PSPACE follows form
hardness in the flat setting.

We turn to describe an algorithm for simple ∀LTLA formulas. Let K = 〈K1, . . . ,Kn〉.
We proceed iteratively for every subsystem Ki, starting with i = n. In the i-th iteration, we
compute (A¬ϕ ⊗Ki)f,d for every f bounded by c and 1 ≤ d ≤ min{c′, i}, where c and c′ are
as in Lemma 5. After computing (A¬ϕ⊗K1)f,1 for every f bounded by c, we check whether it
includes, for some f , an accepting cycle reachable from a state in Q0 ×W 1

0 . By Lemma 5, it is
sufficient to construct product automata only for functions bounded by c and depths at most
c′.

We analyze complexity of this algorithm. For every 1 ≤ i ≤ n, the algorithm constructs at
most (2c+ 1)|X| · c′ copies of A¬ϕ ×Ki. Every such construction is done in time O(2|ϕ| · |Ki|).
in addition, constructing (A¬ϕ ⊗Ki)f,d is done in time linear in |(A¬ϕ ×Ki)f,d|. If ϕ is given
in binary, this leads to a time complexity of O(2|ϕ|·|X| · |K|), as c|X| · c′ = O(2|ϕ|·|X|). If ϕ is
given in unary, the time complexity becomes O(2|ϕ|+|X|·log(|ϕ|) · |K|), as c|X| · c′ = O(|ϕ||X|) =
O(2|X|·log(|ϕ|)). Since |X| ≤ |ϕ|, we are done.

6 Discussion and Directions for Future Research

We introduced LTLA – a formalism for reasoning about systems with variables over Z, and
showed its applications in reasoning about systems over unbounded domains, especially over
the domain of whole numbers, where arithmetic is supported, and in the setting of hierarchical
systems. Our contribution enables the specification and verification of properties that refer to
the internal structure of the hierarchical system and to its call-return behaviour. Our specifi-
cation formalism does not require an a-priori knowledge of the maximal nesting depth and our
model-checking algorithm avoids the exponential flattening of the system. Below we discuss
some directions for future research.
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LTLA satisfiability and synthesis for hierarchical systems The problem of ∃LTLA satis-
fiability for hierarchical systems is to decide whether there is a hierarchical system that satisfies
a given ∃LTLA formula. The problem is more involved than general ∃LTLA satisfiability, as
the value-components in the guessed computation should correspond to the nesting depth of
states in a computation of a hierarchical system: it has to start with value 1 and to increase
or decrease the value in at most 1 in every step. While we conjecture that the problem can
be solved in PSPACE, essentially by combining the nonemptiness algorithm for NBWAs with
a partition of Z to equivalence classes, we think that a more practical formulation of the sat-
isfiability problem in the context of hierarchical systems should take into an account the goal
of generating succinct hierarchical systems. Thus, it should be combined with some quality
measures, as in [6], which direct the algorithm to search for solutions that use the hierarchy in
a meaningful way. We find this, as well as a similar extension to the synthesis problem, to be
of both theoretical and practical interests.

Branching time Similarly to the extension of LTL to LTLA, one could add arithmetics to
branching time temporal logics [15]. In particular, we suggest to consider CTL with arithmetics
(CTLA). Several variants of extensions of CTL with values over infinite domains have already
been studied [13, 44]. An interesting problem is CTLA model checking for hierarchical systems.
In [4], the authors describe a CTL model checking for hierarchical systems that avoids their
flattening. The key idea is to bound the information that a compressed subsystem needs to
maintain. It is shown in [4] that this information can be exponential in the number of exit
states. As in the case of LTLA, a naive extension of this approach to CTLA requires taking
many copies of each subsystem – one for each nesting depth. We believe that as in the case of
LTLA, it is possible to avoid this blow up by keeping variables in the compressed subsystems.

Recursive systems A recursive system is a hierarchical system that allows unbounded nesting
of components. In particular, there is no bound on the nesting depth of components. Verifica-
tion of recursive systems is tightly related to reasoning about pushdown systems [1, 49]. Indeed,
flattening of a recursive system results in a infinite-state system that behaves in a pushdown
manner. Since LTLA handles values in Z, it can naturally specify such systems. An interesting
future work is to extend model-checking algorithms of recursive systems to specifications in
LTLA.

Acknowledgmenets We thank Ofer Strichman for helpful discussions on the complexity
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