
EPiC Series in Computing

Volume 50, 2017, Pages 188–201

GCAI 2017. 3rd Global Conference on Artificial Intelligence

Secrecy-Preserving Reasoning and Query Answering in
Probabilistic Description Logic Prob-EL>0,=1

−> KBs

Gopalakrishnan Krishnasamy-Sivaprakasam1, Adrienne Raglin2, Douglas
Summers-Stay2, and Giora Slutzki3

1 Central State University, Wilberforce, Ohio, USA
gkrishnasamy@centralstate.edu

2 U.S. Army Research Laboratory, Adelphi, Maryland, USA
{adriene.j.raglin.civ; douglas.a.summers-stay.civ}@mail.mil

3 Iowa State University, Ames, Iowa, USA
slutzki@iastate.edu

Abstract

In this paper we study Secrecy-Preserving Query Answering problem under the Open World As-
sumption (OWA) for Prob-EL>0,=1

−> Knowledge Bases (KBs). We have designed a tableau procedure
to compute a semi-modelM over the given KB which eventually is equivalent to a probabilistic model
to KB. A semi-model over KB is a tupleM = 〈Ω,W, τ〉 where Ω is a finite set {ω0,ω1, ...,ωm},W is a
function that assigns each element in Ω with a set of assertions whose concepts occur in KB and τ is
a function that assigns each element in Ω with a real number such that τ(ω0) = 0 and τ(ωi) > 0 for all
i ∈ Ω \ {0}. Given a secrecy set S, which is a finite set of assertions, we compute a function E, called
an envelope of S, which assigns a set E(ω) of assertions to each ω ∈ Ω. E provides logical protection
to the secrecy set S against the reasoning of a querying agent. Once the semi-model M and an enve-
lope E are computed, we define the secrecy-preserving semi-model ME . Based on the information
available in ME , assertional queries with probabilistic operators can be answered efficiently while
preserving secrecy. To the best of our knowledge, this work is first one studying secrecy-preserving
reasoning in description logic augmented with probabilistic operators. When the querying agent asks
a query q, the reasoner answers “Yes” if information about q is available in ME ; otherwise, the rea-
soner answers “Unknown”. Being able to answer “Unknown” plays a key role in protecting secrecy
under OWA. Since we are not computing all the consequences of the knowledge base, answers to the
queries based on just secrecy-preserving semi-modelME could be erroneous. To fix this problem, we
further augment our algorithms by providing recursive query decomposition algorithm to make the
query answering procedure foolproof.

1 Introduction
In web based business activities, a major issue is how to protect private information of users from the
unauthorized users while making sure the smooth transfer of non confidential information that avail-
able in the public domain among all the users. In the literature, most of the approaches dealing with
“information protection” are based on access control mechanisms. Controlled query evaluation (CQE)
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is an approach to enforcing secrecy based on control access mechanisms. Biskup et al. in [2, 1] stud-
ied the problem of enforcing secrecy using CQE on complete relational databases. Further, in [4, 3],
authors extended their research to incomplete databases. Since description logics (DLs) underlie web
ontology languages (OWLs), recently Cuenca Grau et.al. in [6, 7] adapted the CQE approach to study
secrecy-preserving reasoning in DL knowledge bases (KBs) which are assumed to be incomplete.

In [15, 17], the authors have developed a secrecy framework that attempts to satisfy the following
competing goals: (a) it protects secret information and (b) queries are answered as informatively as
possible (subject to satisfying property (a)). The notion of an envelope to hide secret information against
logical inference was first defined and used in [15]. In [17], Tao et al., introduced a more elaborate
conceptual framework for secrecy-preserving query answering (SPQA) under Open World Assumption
(OWA) with multiple querying agents. This approach is based on OWA and (so far) it has been restricted
to instance-checking queries. Specifically, in [15, 17] the main idea was to utilize the secret information
within the reasoning process, but then answering “Unknown” whenever the answer is truly unknown or
in case the true answer could compromise confidentiality. In [11, 13] we have extended the work of Tao
et al., reported in [15], to the ELH and EL+ languages respectively, and studied secrecy in the context
of assertions as well as general concept inclusions (GCIs). Finally, in [14] we have studied the SPQA
problem in modalized DL KBs.

The Prob-DLs are DLs with probabilistic constructors. Lutz et al., in [12] introduced a new family
of probabilistic DLs based on probabilistic FOL which is discussed in [9]. In [12], the authors argued
that Prob-DLs are suitable logical formalism to model bio medical domain knowledge. Further, in [8]
Gutierrez-Basulto et.al., studied various reasoning tasks in Prob-EL. Secrecy of probabilistic infor-
mation has been studied by many researchers in different contexts. Discussions of privacy issues in
probabilistic knowledge models were reported in [5, 10]. Motivated by these works, in this paper we
study SPQA problem in Prob-DL Prob-EL>0,=1

−> KBs. Prob-EL>0,=1
−> is a top-free description logic EL

augmented with the probabilistic operators P>0 and P=1. The reason for excluding > from the syntax of
Prob-EL>0,=1 logic is to avoid computing tautological statements that are not relevant to secrecy preser-
vation. In the literature there are several top-free DL languages, for instance, DL-LiteR is a top-free DL,
see (Calvanese et al., 2007). The syntax and semantics of the Prob-EL>0,=1

−> are presented in Section 2.
As a first step in constructing SPQA system, we design a tableau algorithm to compute a finite

collection of sets of assertions referred to as semi-model. One of the sets in this collection contains a set
of consequences of the given KB Σ = 〈A,T 〉, restricted to concepts that actually occur in Σ and an extra
“auxiliary” set of concepts defined over the signature of Σ. This semi-model, once computed, remains
fixed and is not modified. The tableau algorithm is sound and complete under the restrictions stated
above, see Section 3. Since the computed semi-model does not contain all the consequences of the
KB, in order to answer user queries we have designed recursive algorithms which break the queries into
smaller assertions all the way until the information in the semi-model can be used. In effect, we have
split the task of query answering into two parts: in the first part we compute all the consequences of Σ
restricted to concepts and individuals that occur in Σ, in the second part we use a recursive algorithm to
evaluate more complex queries with the base case that has been computed in the first part.

To protect the secret information in the secrecy set S, we compute an envelope E which is a function
that defines each set in the computed semi-model a set of assertions. This envelope is computed by a
tableau algorithm based on the idea of inverting the local and global expansion rules given in Figures
1 and 2. The idea behind the envelope concept is that no expression in the envelope can be logically
deduced from information outside the envelope. Once such envelope is computed, the answers to the
queries are censored whenever the queries belong to the envelope. Since, generally, an envelope for a
given secrecy set is not unique, the developer can force the algorithm to output a specific envelope from
the available choices satisfying the needs of application domain, company policy, social obligations and
user preferences.

189



Secrecy-Preserving Reasoning and Query Answering Krishnasamy-Sivaprakasam, Raglin, Summers-Stay and Slutzki

Next, we discuss query answering procedures which allow us answer queries without revealing
secrets. The queries are answered based on the information available in the secrecy-preserving semi-
model, see Section 4. Usually in SPQA framework queries are answered by checking their membership
in the computed semi-model. Since the secrecy-preserving semi-model does not contain all the state-
ments entailed by Σ, we need to extend the query answering procedure from just membership checking.
Towards that end we have designed a recursive algorithm to answer more complicated queries. To
answer a query q, the algorithm first checks if q is a member secrecy-preserving semi-model (in a par-
ticular set that contains the consequences of Σ), in which case the answer is “Yes”; otherwise, the given
query is broken into subqueries based on the constructors, and the algorithm is applied recursively on
the subqueries, see Section 5.

2 Syntax and Semantics of Prob-EL>0,=1
−>

A vocabulary of EL is a triple < NO,NC ,NR > of countably infinite, pair-wise disjoint sets. The elements
of NO are called objects or individuals, the elements of NC are called concept names and the elements
of NR are called role names. The set of EL concepts is denoted by C and it is syntactically defined by
the following rules

C ::= A | > | CuD | ∃r.C

where A ∈ NC , r ∈ NR, > denotes the “top concept”, and C,D ∈ C. The semantics of EL concepts is
specified, as usual, by an interpretation I = (∆, ·I) where ∆ is a non-empty domain of the interpretation,
and ·I is an interpretation function mapping each a ∈ NO to an element aI ∈ ∆, each A ∈ NC to a subset
AI ⊆ ∆, and each r ∈ NR to a binary relation rI ⊆ ∆×∆. The interpretation function ·I is extended
inductively to all EL concepts in the usual manner:

>I = ∆

(CuD)I = CI ∩DI

(∃r.C)I = {d ∈ ∆ | ∃e ∈CI : (d,e) ∈ rI}

In [12], the authors (did not study secrecy at all) did show that some extensions of DL EL with prob-
abilistic constructors are intractable. In this paper we initiate the study of secrecy-preserving reasoning
in probabilistic KBs, specifically in the language Prob-EL>0,=1

−> which is a fragment of the language
Prob-EL01

c introduced in [12]. The set of Prob-EL>0,=1
−> concepts is denoted by PC, and the concepts

are formed according to the following syntax

C ::= A | CuD | ∃r.C | P>0C | P=1C

where C,D ∈ PC. Assertions are expressions of the form C(a) or r(a,b) and general concept inclusions
(GCIs) are expressions of the form C v D where C,D ∈ PC, r ∈ NR and a,b ∈ NO.

To define the semantics of Prob-EL>0,=1
−> , we use probabilistic interpretations which combine the

EL interpretations together with an extra probabilistic structure, see [12, 8]. Formally, a probabilistic
interpretation is a structure I = (∆,W, {Iω}ω∈W , µ) where ∆ is a non-empty domain, W a non-empty
set of possible worlds, µ a discrete probability measure on W, and for each ω ∈W, Iω is a classical
EL interpretation. Here we assume that for each world ω in W, Iω have the same domain ∆. We
shall write CI,ω or even Cω (respectively rI,ω or rω) for CIω (respectively rIω ). We make the global
name assumption (gna), namely, that individual names are interpreted globally, in a world-independent
fashion: for all a ∈ NO and all u,v ∈ W, aI,u = aI,v. Define the probability of a domain element to
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belong to a concept name by pI
d (A) = µ({ω ∈W | d ∈ AI,ω}) and extend it to compound concepts and

simultaneously, in a mutually recursive fashion, define the extension of the interpretation function ·I,ω

to compound concepts as follows:

pId (C) = µ({ω ∈W | d ∈CI,ω}), for all compound concepts C, and

(CuD)I,ω = CI,ω∩DI,ω,

(∃r.C)I,ω = {d ∈ ∆ | ∃e ∈CI,ω : (d,e) ∈ rI,ω},

(P>0C)I,ω = {d ∈ ∆ | pId (C) > 0}, and

(P=1C)I,ω = {d ∈ ∆ | pId (C) = 1}.

An ABox A is a finite, non-empty set of assertions and a TBox T is a finite set of GCIs. A
Prob-EL>0,=1

−> KB is a pair Σ = 〈A,T 〉 where A is an ABox and T is a TBox. Let I = (∆,W, {Iω}ω∈W ,µ)
be a probabilistic interpretation, ω ∈ W, C,D ∈ PC, r ∈ NR and a,b ∈ NO. We say that (I,ω) satis-
fies C(a), r(a,b), or C v D, notation (I,ω) |= C(a), (I,ω) |= r(a,b) or (I,ω) |= C v D if, respectively,
aI,ω ∈ CI,ω, (aI,ω,bI,ω) ∈ rI,ω or CI,ω ⊆ DI,ω. (I,ω) satisfies Σ, notation (I,ω) |= Σ, if (I,ω) satisfies
all the assertions in A and all the GCIs in T . I satisfies Σ, or I is a model of Σ, if there exists a ω ∈W
such that (I,ω) |= A and for all ω ∈W, (I,ω) |= T , see [12].

Definition 1. Let Σ = 〈A,T 〉 be an Prob-EL>0,=1
−> KB and let α be an assertion. We say that Σ entails α,

notation Σ |= α, if for all probabilistic interpretations I = (∆,W, {Iω}ω∈W ,µ) satisfying Σ, (I,ω) |= Σ ⇒
(I,ω) |= α, for all ω ∈W of I.

Note that by Definition 1, any probabilistic interpretation I that satisfies Σ must satisfy the TBox T
in every world ω ∈W. On the other hand. the ABox A must be satisfied in some world ω ∈W. In other
words, a probabilistic interpretation I satisfies KB Σ in some world in ω ∈W. For more details see [12].
In section 3, we have designed a tableau algorithm to compute a model for the Σ which has the above
mentioned characteristics.

3 Computation of a model for Prob-EL>0,=1
−> KB

Let Σ = 〈A,T 〉 be an Prob-EL>0,=1
−> KB. Denote by NΣ the set of all concept names and role names

occurring in Σ and let S be a finite set of concepts over the symbol set NΣ
1. Let CΣ,S be the set of all

subconcepts of concepts that occur in S or Σ and define

A∗ = {C(a) |C ∈ CΣ,S and Σ |= C(a)}∪ {r(a,b) | Σ |= r(a,b)}.

We use OΣ to denote the set of individual names that occur in Σ, and define the witness set W =

{w r
C | r is a role name that occurs in Σ and C ∈ CΣ,S }. Define O∗ = OΣ ∪W . Typically, in studying

reasoning problems, the goal of designing a reasoning algorithm is to compute a model for given KB.
For a given probabilistic KB Σ, we design a tableau algorithm that builds a semi-model over Σ which
eventually is equivalent to a probabilistic model to Σ. A semi-model over Σ is a tuple M = 〈Ω,W, τ〉
where Ω is a finite set {ω0,ω1, ...,ωm}, W is a function that assigns each element in Ω with a set of
assertions whose concepts occur in Σ and τ is a function that assigns each element in Ω with a real
number such that τ(ω0) = 0 and τ(ωi) > 0 for all i ∈ Ω \ {0}.

Given Σ and CΣ,S , we outline a procedure that computes a semi-model over Σ, see [12] for a similar
construction. We use P0 to denote the set of subconcepts of the form P>0C of concepts that occur in CΣ,S .

1A technicality: S will be used in Section 4 in the context of secrecy-preserving reasoning.
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u+− rule : if C(a), D(a) ∈W(ω), CuD ∈ CΣ,S , and
CuD(a) <W(ω), thenW(ω) :=W(ω)∪{CuD(a)};

u−− rule : if CuD(a) ∈W(ω), and C(a) <W(ω) or D(a) <W(ω),
thenW(ω) :=W(ω)∪{C(a),D(a)};

∃+− rule : if r(a,b), C(b) ∈W(ω), ∃r.C ∈ CΣ,S and
∃r.C(a) <W(ω), thenW(ω) :=W(ω)∪{∃r.C(a)};

∃−− rule : if ∃r.C(a) ∈W(ω), and ∀b ∈O∗, {r(a,b),C(b)} *W(ω),
thenW(ω) :=W(ω)∪{r(a,w r

C ),C(w r
C )}, where w r

C ∈W;
v −rule : if C(a) ∈W(ω), C v D ∈ T , and D(a) <W(ω),

thenW(ω) :=W(ω)∪{D(a)}.

Figure 1: Local expansion rules.

Let Ω = {0}∪P0, and τ(0) = 0 and τ(ω) = 1/|Ω \ {0}| for all ω ∈ Ω \ {0}. The procedure starts computing
M with the initialization step: The set W(0) is initialized as the ABox A, and W(ω) is initialized as ∅
for all ω ∈ Ω \ {0}. Further,M is computed by recursively applying the expansion rules in Figures 1 and
2. M is said to be completed if no expansion rule in Figures 1 or 2 is applicable to it. The procedure
is designed to output a completed semi-model M with W(0) = A∗. The strategies for designing this
procedure are (a) the set W(0) collects the consequences of the given KB and (b) the members of the
sets W(ω) where ω ∈ Ω \ {0} serve as witnesses for the some of the members in the set W(0). For the
purpose of query answering, M is used as a “good approximation” of a canonical model of the given
KB, see Section 5.

In more detail, there are two kinds of expansion rules: (a) local expansion rules and (b) global
expansion rules. Local expansion rules are given in Figure 1 and generate new assertions within a par-
ticular setW(ω). The u−-rule decomposes conjunctions, and ∃−-rule decomposes existential restriction
assertions of the form ∃r.C(a) by introducing a corresponding witness w r

C from the set W . The v-rule
derives new assertions based on the GCIs present in T . Finally, to construct concept assertions whose
associated concept expressions already belong to CΣ,S , we use the u+ and ∃+-rules. The global ex-
pansion rules are given in Figure 2. The P+

>0 and P+
=1-rules add new probabilistic assertions in all the

sets W(ν) for ν ∈ Ω if the corresponding probabilistic concept expressions already occur in CΣ,S . The
P−>0-rule generates an assertion to the set W(P>0C) if P>0C(a) occurs in the set W(ω) for some ω ∈ Ω.
Similarly, the P−

=1-rule generates an assertion to the each setW(w) for ω ∈ Ω \ {0} if P=1C(a) occurs in
the setW(ω) for some ω ∈ Ω.

Example 1. Let Σ = 〈A,T 〉 be a Prob-EL>0,=1
−> KB, where A = {P>0A(a), C(d), u(a,d)}, T = {P>0A v

P=1P>0B, C v P>0(DuE), E v ∃u.F, } and S = {∃u.C}. Then, applying the rules in Figures 1 and 2 we
compute the completed semi-modelM = 〈Ω,W, τ〉 in the following:

- Ω = {0, P>0A, P>0B, P>0(DuE)} and
- τ(0) = 0 and τ(ω) = 1/3 for all ω ∈ Ω \ {0}.

- W(0) = A∗ = {P>0A(a), P=1P>0B(a), C(d), P>0(DuE)(d), u(a,d),
∃u.C(a), P>0B(a)},

- W(P>0A) = {A(a), P>0A(a), P=1P>0B(a), P>0B(a), P>0(DuE)(d)},
- W(P>0B) = {P>0A(a), P=1P>0B(a), P>0B(a), B(a), P>0(DuE)(d)} and
- W(P>0(DuE)) = {P>0A(a), P=1P>0B(a), P>0B(a), DuE(d), D(d), E(d),
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P+
>0− rule : if C(a) ∈W(ω) with ω , 0, P>0C ∈ CΣ,S , and

P>0C(a) <W(ν), thenW(ν) :=W(ν)∪{P>0C(a)};
P−>0− rule : if P>0C(a) ∈W(ω) and C(a) <W(P>0C),

thenW(P>0C) :=W(P>0C)∪{C(a)};
P+

=1− rule : if ∀ω , 0, C(a) ∈W(ω), P=1C ∈ CΣ,S , and
P=1C(a) <W(ν), thenW(ν) :=W(ν)∪{P=1C(a)};

P−=1− rule : if P=1C(a) ∈W(ω) and C(a) <W(ν) with ν , 0,
thenW(ν) :=W(ν)∪{C(a)}.

Figure 2: Global expansion rules.

∃u.F(d), u(d,wu
F), F(wu

F), P>0(DuE)(d)}. �

We denote by Λ the algorithm which, given Σ and CΣ,S , nondeterministically applies the expansion
rules in Figures 1 and 2 until no further applications are possible. It is easy to see that the size of each
setW(ω) for ω ∈ Ω is polynomial in | Σ | + | CΣ,S |. Since the size of Ω is linear in | CΣ,S |, Λ computes
theM in a time polynomial in | Σ | + | CΣ,S |.

Before proving the correctness of Λ, we define the notion of interpretation of a semi-model over Σ,
see [12].

Definition 2. LetM = 〈Ω,W, τ〉 be a semi-model over Σ, I = (∆,W, {Ix}x∈W ,µ) a probabilistic interpre-
tation, and π a mapping from Ω to W. We say that I satisfiesM via π if for each ω ∈ Ω,

- (I,π(ω)) |=W(ω), i.e., (I,π(w)) |= α for every α ∈W(ω), and
-
∑
ω∈Ω τ(ω) =

∑
w∈W µ(w) = 1.

We say that I satisfiesM, denoted as I ||=M, if there is a mapping π such that I satisfiesM via π.

In the next lemma, we formulate the local soundness property of Λ.

Lemma 1. Let Σ = 〈A,T 〉 be Prob-EL>0,=1
−> KB and let I = (∆,W, {Ix}x∈W ,µ) be a model of Σ. Also letM

be a semi-model over Σ, α a local or global expansion rule andMα a semi-model obtained by applying
α toM. If I satisfiesM via π, then there exists a probabilistic interpretation I′ = (∆,W, {I′x}x∈W ,µ) such
that

- I′ satisfiesMα via π, and
- I′ satisfies Σ.

Proof. (Outline). We present two cases to illustrate how I is transformed into I′ by the applications
of local and global extension rules; for more details see [16]. Assume the hypotheses and let α be the
∃−-rule. Then, for some ω ∈ Ω, ∃r.C(a) ∈W(ω), and since I satisfies M via π, we have (I,π(ω)) |=
∃r.C(a). By the semantics of existential restriction, there exists a d ∈ ∆ such that (aI,π(ω),d) ∈ rI,π(ω)

and d ∈CI,π(ω). After applying the ∃−-rule,W(ω) :=W(ω)∪{r(a,w r
C ),C(w r

C )}. We have two cases: (1)
If w r

C occurs in W(ω) before the application of the ∃−-rule to ∃r.C(a), then I′ = I; (2) If w r
C does not

occur inW(ω) before the application of the ∃−-rule to ∃r.C(a), then define the interpretation (I′,π(ω))
as (I,π(ω)) except for w r

C : (w r
C )I

′,π(ω) = d. The resulting semi-modelMα is satisfied by I′ via π. Since
I satisfies Σ and Ω remains unchanged, we conclude that I′ satisfies Σ.

Now let α be the P−>0-rule. Then, for some ω ∈ Ω, P>0C(a) ∈W(ω) and C(a) <W(P>0C). Since I
satisfies M via π, we have (I,π(ω)) |= P>0C(a). By the semantics of Prob-EL>0,=1

−> , there exists a state
x ∈W such that µ(x) > 0 and aI,x ∈ CI,x. After applying the P−>0-rule, W(P>0C) :=W(P>0C)∪ {C(a)}.

193



Secrecy-Preserving Reasoning and Query Answering Krishnasamy-Sivaprakasam, Raglin, Summers-Stay and Slutzki

Now we set π(P>0C) = x. Then, Mα is the new semi-model. Hence, Mα is satisfied by I′ via π where
I′ = I. Clearly, I′ satisfies Σ because I satisfies Σ. �

Lemma 1 makes sure that each application of local and global rules preserves the model existence
property. Next we define the canonical probabilistic interpretation of a semi-model.

Definition 3. Let M be a completed semi-model over Σ. The canonical probabilistic interpretation
Ic = (∆,W, {Ic

x}x∈W ,µ) forM is defined as follows:
- W = Ω,
- µ(0) = τ(0) = 0; µ(ω) = τ(ω) = 1/ | Ω \ {0} | for each ω ∈ Ω \ {0},
- ∆ = O∗ = OΣ ∪W ,
- aI

c,ω = a for all a ∈O∗ and each ω ∈ Ω,
- AIc,ω = {a ∈O∗ | A(a) ∈W(ω)}, for all A ∈ NC ∩NΣ ,
- rI

c,ω = {(a,b) ∈O∗×O∗ | r(a,b) ∈W(ω)}, for all r ∈ NR∩NΣ ,
(Ic,ω) is extended to compound concepts in the usual way (see Section 2).

The following lemma shows that Ic satisfies the completed semi-modelM. The proof is by standard
induction on the structure of concepts C and hence it is omitted.

Lemma 2. Let Σ = 〈A,T 〉 be Prob-EL>0,=1
−> KB. Also let M be a completed semi-model over Σ. Then

Ic ||=M.

Next we prove that (Ic,ω) |= T , for each ω ∈ Ω. We need the following auxiliary lemma whose
proof is standard and it is omitted.

Lemma 3. For each C ∈ CΣ,S , each a ∈O∗ and each ω ∈ Ω, if (Ic,ω) |= C(a) then C(a) ∈W(ω).

Lemma 4. For each ω ∈ Ω, (Ic,ω) |= T .

Proof. Let ω ∈ Ω. Suppose that C v D ∈ T and let a ∈ CIc,ω. This means that (Ic,ω) |= C(a) and by
Lemma 3, C(a) ∈W(ω). SinceM is completed, by the v-rule, D(a) ∈W(ω). Since Ic ||=W, by Lemma
2, (Ic,ω) |= D(a). Therefore, (Ic,ω) |= C v D. Hence, (Ic,ω) |= T . �

The following corollary is an immediate consequence of Lemmas 2 and 4.

Corollary 1. Ic satisfies Σ.

Proof. By Definitions 2 and 3 and Lemmas 2 and 4, we have that (1) (Ic,0) |= Σ and (2) for each ω ∈Ω,
(Ic,ω) |= T . Hence Ic satisfies Σ. �

The proof of the next theorem follows immediately from Definition 3 and Lemma 3. In a sense, this
theorem captures the completeness property of the algorithm Λ.

Theorem 1. Let M be a completed semi-model over Σ and Ic = (∆,W, {Ic
x}x∈W ,µ) a canonical model

forW. Then, for all ω ∈ Ω, C ∈ CΣ,S , r ∈ NΣ ∩NR, and all a,b ∈O∗

- (Ic,ω) |= r(a,b)⇒ r(a,b) ∈W(ω) and
- (Ic,ω) |= C(a)⇒ C(a) ∈W(ω).

Finally, the following is a consequence of Theorem 1 and Corollary 1.

Corollary 2. W(0) = A∗.
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4 Secrecy-Preserving Reasoning in Prob-EL>0,=1
−> KBs

Let Σ = 〈A,T 〉 be a Prob-EL>0,=1
−> KB and S ⊆A∗ the “secrecy set”. Also let M be a completed semi-

model over Σ. Given Σ, S andM, the objective is to answer assertion queries while preserving secrecy,
i.e., answering queries so that assertions in S remain protected. Our approach is to compute a function
E that assigns a finite set of assertions to each world in Ω. E is called the secrecy Envelope for S, so
that protecting E(ω) for all ω ∈ Ω, the querying agent cannot logically infer any assertion in S. The sets
E(ω) for each ω ∈ Ω are obtained by applying the inverted expansion rules given in Figures 3 and 4.
The role of OWA in answering the queries is the following: When answering a query with “Unknown”,
the querying agent should not be able to distinguish between the case that the answer to the query is
truly unknown to the KB reasoner and the case that the answer is being protected for reasons of secrecy.
We envision a situation in which once theW is computed, a reasoner R is associated with it, i.e., R has
unfettered access toW. R is designed to answer queries as follows: If a query cannot be inferred from
Σ, the answer is “Unknown”. If it can be inferred and it is not in E(0), the answer is “Yes”; otherwise,
the answer is “Unknown”. We make the following assumptions about the capabilities of the querying
agent:

(a) does not have direct access to ABox A, but is aware of the underlying vocabulary of Σ,
(b) has full access to TBox T ,
(c) can ask queries in the form of assertions, and
(d) is not aware of the witness set W , by hidden name assumptions (HNA), for more details see [15].

We formally define the notion of an envelope in the following:

Definition 4. Let Σ = 〈A,T 〉 be a Prob-EL>0,=1
−> KB, S a finite secrecy set and M a completed semi-

model. The secrecy envelope of S is a function E with domain Ω satisfying the following properties:
- S ⊆ E(0),
- for each ω ∈ Ω, E(ω) ⊆W(ω), and
- for each ω ∈ Ω, each α ∈ E(ω),W(ω) \E(ω) 6|= α.

Inv-u−−rule : if {C(a), D(a)}∩E(ω) , ∅ and CuD(a) ∈W(ω) \E(ω),
then E(ω) := E(ω)∪{CuD(a)};

Inv-u+−rule : if CuD(a) ∈ E(ω), {C(a), D(a)} ⊆W(ω) \E(ω) and
CuD ∈ CΣ,S , then E(ω) := E(ω)∪{C(a)}
or E(ω) := E(ω)∪{D(a)};

Inv-∃+− rule : if ∃r.C(a) ∈ E(ω), {r(a,b),C(b)} ⊆W(ω) \E(ω) with b ∈O∗ and
∃r.C ∈ CΣ,S , then E(ω) := E(ω)∪{r(a,b)}
or E(ω) := E(ω)∪{C(b)};

Inv- v −rule : if D(a) ∈ E(ω), C v D ∈ T , and C(a) ∈W(ω) \E(ω),
then E(ω) := E(ω)∪{C(a)}.

Figure 3: Inverted local expansion rules.

The intuition for the above definition is that no information in E(ω) can be inferred from the set
W(ω)\E(ω) for each ω ∈Ω. To compute an envelope, we use the idea of inverting the rules of Figures 1
and 2 (see [15], where this approach was first utilized for membership assertions). Induced by the Local
and Global expansion rules in Figures 1 and 2, we define the corresponding “inverted” Local and Global
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expansion rules in Figures 3 and 4, respectively. Note that the ∃−-rule does not have its corresponding
inverted rule. The reason for the omission is that an application of this rule results in adding assertions
with individual names from the witness set. By HNA, the querying agent is barred from asking any
queries that involve individual names from the witness set. Inverted expansion rules are denoted by
prefixing Inv- to the name of the corresponding expansion rules.

Inv-P+
>0− rule : if P>0C(a) ∈ E(ω), P>0C ∈ CΣ,S , and

C(a) ∈W(ν) \E(ν) with ν , 0, then E(ν) := E(ν)∪{C(a)};
Inv-P−>0− rule : if C(a) ∈ E(P>0C) and P>0C(a) <W(ω) \E(ω),

then E(ω) := E(ω)∪{P>0C(a)};
Inv-P+

=1− rule : if P=1C(a) ∈ E(ω), P=1C ∈ CΣ,S , and ∀ν , 0, C(a) ∈W(ν) \E(ν),
then pick a τ , 0 such that E(τ) := E(τ)∪{C(a)};

Inv-P−=1− rule : if C(a) ∈ E(ω) with ω , 0, and P=1C(a) ∈W(ν) \E(ν),
then E(ν) := E(ν)∪{P=1C(a)}.

Figure 4: Inverted global expansion rule.

From now on, we assume that M has been computed and is readily available for computing the
envelope. The computation begins with the initialization step: The set E(0) is initialized as S, and E(ω)
is initialized as ∅ for all ω ∈ Ω \ {0}. Next, the sets E(0) and E(ω) for all ω ∈ Ω \ {0} are expanded
using the inverted expansion rules listed in Figures 3 and 4 until no further applications are possible.
The resulting function E is said to be completed. We denote by ΛS the algorithm which computes the
sets E(ω) for all ω ∈ Ω. Due to non-determinism in applying the rules Inv-u+ and Inv-∃+, different
executions of ΛS may result different outputs. Since for each ω ∈ Ω,W(ω) is finite, the computation of
ΛS terminates. Let the sets E(ω) for ω ∈Ω be an output of ΛS. Since the size of eachW(ω) is polynomial
in |Σ |+ |CΣ,S |, and each application of inverted expansion rule moves an assertion fromW(ω) into E(ω),
the size of E(ω) is at most the size of W(ω). Since the size of Ω is linear, ΛS may take polynomial
time to compute the sets E(ω). Define the secrecy-preserving semi-model for the secrecy set S to be
ME = 〈Ω,WE , τ〉, whereWE(ω) =W(ω) \E(ω) for all ω ∈ Ω.

Example 2. (Example 1 cont.) Recall that ME = 〈Ω,WE , τ〉 is a completed semi modal. Let S =

{P=1P>0B(a), P>0(DuE)(d)} be the secrecy set. Then, applying the rules in Figures 3 and 4 we compute
the envelope for S and one of the corresponding secrecy-preserving semi-modelME = 〈Ω,WE , τ〉 is given
below:

- E(0) = S∪{P>0A(a), C(d), P>0B(a)},
- E(P>0A) = {A(a), P>0A(a), P>0B(a), P>0(DuE)(d)},
- E(P>0B) = {B(a),P>0B(a),P>0A(a), P>0(DuE)(d)} and
- E(P>0(DuE)) = {P>0A(a), P>0B(a), DuE(d), D(d), P>0(DuE)(d)}.

- WE(0) = A∗ \E(0) = {u(a,d),∃u.C(a)},
- WE(P>0A) = {P=1P>0B(a)},
- WE(P>0B) = {P=1P>0B(a)} and
- WE(P>0(DuE)) = {P=1P>0B(a), E(d), ∃u.F(d), u(d,wu

F), F(wu
F)}. �

We use this secrecy-preserving semi-model for proving some properties of the envelopes and for
answering queries. Before proving the main result on envelopes, we prove several auxiliary lemmas.
First, we show that for each ω ∈ Ω, no assertions in E(ω) is “logically reachable” from the members of
the setWE(ω).
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Lemma 5. Let the function E be completed by applying the inverted rules in Figures 3 and 4. Also, let
ME be a secrecy-preserving semi-model. Then,ME is completed.

Proof. Let ω ∈Ω. We have to show that no rule in Figures 1 or 2 is applicable toWE(ω) =W(ω)\E(ω).
The proof is by contradiction according to cases: assuming that a rule in Figures 1 and 2 is applicable
and showing that some inverse rule is applicable.

- If u−-rule is applicable, then there is an assertion C uD(a) ∈WE(ω) such that C(a) <WE(ω) or
D(a) <WE(ω). SinceM is completed, {C(a),D(a)} ⊆W(ω). Hence, {C(a),D(a)}∩E(ω) , ∅. This
makes the Inv-u−-rule applicable.

- If u+-rule is applicable, then there are assertions C(a),D(a) ∈WE(ω) such that CuD ∈ CΣ,S and
CuD(a) <WE(ω). SinceM is completed, CuD(a) ∈W(ω). Hence, CuD(a) ∈ E(ω). This makes
the Inv-u+-rule applicable.

- If ∃+-rule is applicable, then there are assertions r(a,b),C(b) ∈WE(ω) such that ∃r.C ∈ CΣ,S and
∃r.C(a) <WE(ω). Since M is completed, ∃r.C(a) ∈W(ω). Hence, ∃r.C(a) ∈ E(ω). This makes
the Inv-∃+-rule applicable.

- If v-rule is applicable, then there is an assertion C(a) ∈WE(ω) and a GCI C v D ∈ T such that
D(a) <WE(ω). SinceM is completed, D(a) ∈W(ω). Hence, D(a) ∈ E(ω). This makes the Inv-v-
rule applicable.

- If P+
>0-rule is applicable, then there is an assertion C(a) ∈WE(ω) with ω , 0 such that P>0C ∈ CΣ,S

and P>0C(a) <WE(ν) where ν ∈ Ω. Since M is completed, P>0C(a) ∈W(ν). Hence, P>0C(a) ∈
E(ν). This makes the Inv-P+

>0-rule applicable.

- If P−>0-rule is applicable, then there is an assertion P>0C(a) ∈WE(ω) such that C(a) <WE(P>0C).
Since M is completed, C(a) ∈W(P>0C). Hence, C(a) ∈ E(P>0C). This makes the Inv-P−>0-rule
applicable.

- If P+
=1-rule is applicable, then there is an assertion C(a) ∈WE(ω) for each ω , Ω \ {0} such that

P=1C ∈ CΣ,S and P=1C(a) <WE(ν) where ν ∈ Ω. SinceM is completed, P=1C(a) ∈W(ν). Hence,
P=1C(a) ∈ E(ν). This makes the Inv-P+

=1-rule applicable.

- If P−
=1-rule is applicable, then there is an assertion P=1C(a) ∈WE(ω) such that C(a) <WE(ν) with

ν , 0. Since M is completed, C(a) ∈W(ν). Hence, C(a) ∈ E(ν). This makes the Inv-P−>0-rule
applicable.

�

Next we claim that the secrecy-preserving semi-model has similar properties as that of its completed
semi-model. The proof is similar to the proofs of the Lemmas 2, 3 and 4.

Lemma 6. Let ME be a secrecy-preserving semi-model obtained from the completed semi-model
M over Σ and the completed function E. Define the canonical probabilistic interpretation IE =

(∆,W, {IE
x }x∈W ,µ) forME as

- W = Ω,
- µ(0) = τ(0) = 0; µ(ω) = τ(ω) = 1/ | Ω \ {0} | for each ω ∈ Ω \ {0},
- ∆ = O∗ = OΣ ∪W ,
- aI

E ,ω = a for all a ∈O∗ and each ω ∈ Ω,
- AIE ,ω = {a ∈O∗ | A(a) ∈WE(ω)}, for all A ∈ NC ∩NΣ ,
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- rI
E ,ω = {(a,b) ∈O∗×O∗ | r(a,b) ∈WE(ω)}, for all r ∈ NR∩NΣ ,

(IE ,ω) is extended to compound concepts in the usual way (see Section 2). Then,
- IE ||=ME ,
- For each C ∈ CΣ,S , each a ∈O∗ and each ω ∈ Ω, if (IE ,ω) |= C(a), then C(a) ∈WE(ω) and
- For each ω ∈ Ω, (IE ,ω) |= T .

Finally, we show that a completed function E is in fact an envelope for the secrecy set S.

Theorem 2. LetM be a completed semi-model over Σ. Also, letME be a secrecy-preserving semi-model
for the secrecy set S. Then, the completed function E is an envelope for S.

Proof. We have to show that the completed function E satisfies all three properties of Definition 4.
Properties 1 and 2 are obvious. To prove property 3, suppose that for some ω ∈ Ω, some α ∈ E(ω),
WE(ω) |= α.

Let IE = (∆,W, {IE
x }x∈W ,µ) be the canonical interpretation for ME . By Lemma 6, for each ω ∈ Ω,

(IE ,ω) |=WE(ω). Again, by Lemma 6, α ∈WE(ω). This is a contradiction. �

5 Query Answering

Let Σ = 〈A,T 〉 be a Prob-EL>0,=1
−> KB. We assume that the secrecy-preserving semi-modelME has been

precomputed. The reasoner R answers queries based on the information in ME and replies to a query
q with “Yes” if Σ |= q and q < E(0); otherwise, the answer is “Unknown”. Because of the syntactic
restrictions of the language Prob-EL>0,=1

−> , R does not answer “No” to any query. Since the completed
semi-model M over Σ does not contain all the consequences of Σ, the completed secrecy-preserving
semi-model ME obtained from M does not contain all the information needed to answer queries. To
address this problems we provide a procedure Eval(k,q) which works by recursively decomposing the
compound queries all the way to the information available inME . Initial call of this procedure is at the
setWE(0) of secrecy-preserving semi-model ME . In lines 1 and 2 of Figure 5, the reasoner checks the
membership of q inWE(ω) and answers “Yes” if q ∈WE(ω). From line 3 onwards we consider cases in
which query q is broken into subqueries based on the constructors defined in Prob-EL>0,=1

−> and apply
the procedure recursively. The following theorem states the correctness claim of the algorithm.

Theorem 3. Let Σ = 〈A,T 〉 be an Prob-EL>0,=1
−> KB, ME a completed secrecy-preserving semi-model

and q a query. Then, for every ω ∈ Ω,
- Soundness: Eval(ω,q) outputs “Yes” ⇒ WE(ω) |= q;
- Completeness: Eval(ω,q) outputs “Unknown” ⇒ WE(ω) 6|= q.

Proof. We omit the proof of soundness. To prove the completeness part assume that WE(ω) |= q. We
have to show that Eval(ω,q) = “Yes”. Let IE be the canonical probabilistic interpretation for ME as
defined in Section 4. By Lamma 6, IE ||= ME and for all ω ∈ Ω, (IE ,ω) |= T . Therefore, for each
ω ∈ Ω, (IE ,ω) |=WE(ω) and hence, by the assumption, for every ω, (IE ,ω) |= q. We prove the claim
by induction on the structure of q. The inductive hypothesis is, for each ω ∈ Ω and each assertion α if
(IE ,ω) |= α, then Eval(ω,α) = “Yes”. The base case: Let q = C(a) where C ∈ CΣ,S . Then, by Lemma 6,
C(a) ∈WE(ω). By Lines 1 and 2 in Figure 5, the claim follows immediately. Next, let q = C(a) where
C < CΣ,S .

- q = CuD(a). To answer this query the algorithm computes Eval(ω,C(a)) and Eval(ω,D(a)). Now,
the assumption (IE ,ω) |= CuD(a) implies (IE , ω) |= C(a) and (IE ,ω) |= D(a) which, by inductive
hypothesis, implies that Eval(ω,C(a)) = Eval(ω,D(a)) = “Yes”. Hence, by Lines 4 and 5 in Figure
5, Eval(ω,CuD(a)) = “Yes”.
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Eval(ω,q)
1: case q ∈WE(ω)
2: return “Yes”
3: case q = CuD(a)
4: if Eval(ω,C(a)) =“Yes” and Eval(ω,D(a)) =“Yes” then
5: return “Yes”
6: else
7: return “Unknown”
8: case q = ∃r.C(a)
9: if for some d ∈O∗ [ r(a,d) ∈WE(ω) and

Eval(ω,C(d)) =“Yes”] then
10: return “Yes”
11: else
12: return “Unknown”
13: case q = P>0C(a)
14: if for some ν ∈ Ω \ {0} [ Eval(ν,C(a)) = “Yes”] then
15: return “Yes”
16: else
17: return “Unknown”
18: case q = P=1C(a)
19: if for each ν ∈ Ω \ {0} [Eval(ν,C(a)) = “Yes”] then
20: return “Yes”
21: else
22: return “Unknown”

Figure 5: Query answering algorithm for assertional queries.

- q = ∃r.C(a). By the assumption, (IE ,ω) |= ∃r.C(a). This implies that, for some d ∈O∗, (IE ,ω) |=
r(a,d) and (IE ,ω) |= C(d). By Theorem 1, r(a,d) ∈ WE(ω) and by the inductive hypothesis
Eval(ω,C(d))=“Yes”. Hence, by the Lines 9 and 10 in Figure 5, Eval(ω,∃r.C(a))= “Yes”.

- q = P>0C(a). Then, (IE ,ω) |= P>0C(a). This implies that, for some ν ∈ Ω \ {0}, (IE , ν) |= C(a).
By the inductive hypothesis Eval(ν,C(a)) = “Yes”. Hence, by the Lines 13 and 14 in Figure 5,
Eval(ω,P>0C(a))= “Yes”.

- q = P=1C(a). Then, (IE ,ω) |= P=1C(a). This implies that, for each ν ∈ Ω \ {0}, (IE , ν) |= C(a).
By the inductive hypothesis Eval(ν,C(a)) = “Yes”. Hence, by the Lines 18 and 19 in Figure 5,
Eval(ω,P=1C(a))= “Yes”.

�

Given an assertional query q, the algorithm given in Figure 5 checks for some assertions related to
query q in the setsWE(ω) for each ω ∈Ω. Since the size of each setWE(ω) is bounded by | Σ | + | CΣ,S |
and also |Ω | is bounded by | Σ | + | CΣ,S |, this algorithm runs in time polynomial in | Σ | + | CΣ,S |. Hence
the assertional query answering can be done in polynomial time in the size of | Σ | + | CΣ,S |.

Example 3. (example 2 cont.) Recall that ME is a secrecy-preserving semi-model. Suppose that the
querying agent asks the assertional queries u(a,d), P>0∃u.F(a), P>0P>0A(a) and P>0B(a) . Using the
algorithm in Figure 5, we get the following answers:
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q Eval(ω,q) Remarks
u(a,d) Yes by Line 1

P>0(∃u.F)(d) Yes by Lines 13 and 8
P>0P>0A(a) Unknown by Lines 13 and 14

P>0B(a) Unknown by Line 22 �

6 Conclusions

In this paper we have studied the problem of secrecy-preserving query answering over Prob-EL>0,=1
−>

KBs. We have used the conceptual logic-based framework for secrecy-preserving reasoning which was
introduced by Tao et al., see [17], to a description logic EL augmented with the probabilistic constructors
P>0 and P=1. The main contribution is in the way that we compute the consequences and preserve secrecy
while answering queries. We break the process into two parts, the first one precomputes the semi-model
M and the envelope E for the given secrecy set S. For this we use two separate (but related) tableau
procedures. In query answering step, givenM and E, we define the secrecy-preserving semi-modelME .
Once ME has been computed, the query answering procedure is efficient and can be implemented in
polynomial time. As for future work, we would like to study secrecy-preserving reasoning framework
in temporal description logic CTLE^,E�

EL , see [8].
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