EPiC Series in Computing Sl
omputing

Volume 46, 2017, Pages 162-170
LPAR-21. 21st International Conference on Logic for m
Programming, Artificial Intelligence and Reasoning (‘\

Quantified Boolean Formulas: Call the Plumber!

Josef Lindsberger!, Alexander Maringele?, and Georg Moser?

! Department of Computer Science, Universitt Innsbruck, Austria
josef.lindsberger@ueb.de
2 Department of Computer Science, Universitt Innsbruck, Austria
{alexander.maringele,georg.moser}Quibk.ac.at

Abstract

In this tool paper we describe a variation of Nintendo’s Super Mario World dubbed Super
Formula World that creates its game maps based on an input quantified Boolean formula.
Thus in Super Formula World, Mario, the plumber not only saves his girlfriend princess
Peach, but also acts as a QBF solver as a side. The game is implemented in Java and
platform independent. Our implementation rests on abstract frameworks by Aloupis et al.
that allow the analysis of the computational complexity of a variety of famous video games.
In particular it is a straightforward consequence of these results to provide a reduction from
QSAT to Super Mario World. By specifying this reduction in a precise way we obtain the
core engine of Super Formula World. Similarly Super Formula World implements a reduction
from SAT to Super Mario Bros., yielding significantly simpler game worlds.

1 Introduction

Video games have established themselves over the last decades to be a huge part of society. Not
only as a funny way to spend spare time but also as interesting and challenging programming
tasks and as an interesting field in complexity theory.

For example the computational complexity of Minesweeper [6], Sokoban [3], various Nintendo
games, (for example Super Mario Bros) [1,4], Candy Crush [11,12], and Lemmings [10] has been
analysed. To this avail in recent years several schemes (or frameworks) for the analysis of the
computational complexity of famous video games have been proposed. Based on pioneering
work by Viglietta [9], Aloupis et al. [1] have introduced two such frameworks, one reducing
from SAT yielding NP hardness of the game subject to the framework and one reducing from
QSAT, which yields PSPACE hardness.

In this tool paper, we describe a variation of Nintendo’s Super Mario World (SMW for short),
dubbed Super Formula World (SFW for short), that creates its game maps based on an input
quantified Boolean formula. Thus in SFW, Mario, the plumber not only saves his girlfriend
princess Peach, but also acts as a QBF solver as a side. The game is implemented in Java and
platform independent. SFW is freely available at https://github.com/DwarfVader/mario.

The SNES game SMW was released in 1990 by Nintendo. The game extended Super Mario
Bros to the then latest technical possibilities. In particular, several game elements like climbing
vines, rotating blocks, stone balls, or trampolines were incorporated into the game. The presence

T.Eiter and D.Sands (eds.), LPAR-21 (EPiC Series in Computing, vol. 46), pp. 162-170

https://github.com/DwarfVader/mario

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

of these game elements allows the natural representation of door gadgets and consequently
significantly increases the computational complexity of the game. In particular it is an easy
consequence of Aloupis et al. that SMW is PSPACE complete, cf. [1]. This observation forms
the theoretical underpinning of our game SFW.

We recall the frameworks introduced by Aloupis et al., where we focus on the framework
for PSPACE hardness for brevity. This framework reduces from the satisfiability of quantified
Boolean formulas (QSAT for short) to the reachability problem in graphs representing the given
formulas. Thus playing a game suited in the formalism of the framework represents the separate
and individual search for a satisfying assignment for existentially quantified variables in each
possible assignment for preceding universally quantified variables [5] of a QBF formula ¢: the
formula ¢ is satisfiable if and only if the strategic and stubborn player manages to reach the
finish location. In order to cast this idea into code, a more precise statement of the PSPACE
framework proposed in [1] becomes necessary. Thus we slightly extend the framework. In
particular we introduce a grid-like topology for the game maps that allows an efficient map
generation and generalise the door gadgets suitably (see Section 3).

Then we instantiate the framework for SMW. As in the literature, the only modification
of the game is the generalisation of map size and the assumption that the logical screen size
captures the whole game map, that is, no parts of the game are ever reset to their initial state
while playing. Based on this instantiation, we have implemented our game SFW in Java. For
sprites we relied on the The Spriters Resource.! We summarise the contributions of this tool

paper.

e Based on earlier work by Aloupis et al., we describe a framework to show PSPACE hard-
ness of video games. We instantiate this framework for Super Mario World and establish
PSPACE completenes (see Section 3).

e Our implementation of the framework, Super Formula World, takes as input a QBF formula
¢ in prenex form and renders an equivalent game map. The skilful and enduring player
can successfully finish the level if and only if ¢ is satisfiable (see Section 4).

e The game is equipped with a standard GUI and allows specialisation to the framework for
NP or PSPACE. Furthermore cheat, challenge, and speed-up modi are available to improve
the user’s experience (see Section 2).

In sum, we provide a (hopefully) entertaining video game that showcases the almost in-
scrutable hardness of QBF solving: In Super Formula World, Mario, the plumber, not only saves
his girlfriend princess Peach, but also renders the solution to a highly intractable problem as a
side.

For presentational purposes, we restrict our attention to QBF solving in this paper. How-
ever, we emphasise that SFW implements (precise versions of) both frameworks established by
Aloupis et al. in [1]. If the game is started with a propositional formula only gadgets of the
framework for NP are employed. In particular, in this case SFW implements a variant of the
classic Super Mario Bros. as no features of SMW are employed. Thus, the generated game map
of SFW precisely represents a SAT or QBF solver, respectively.

The above mentioned PSPACE completeness for SMW is superseeded by the recent results
that already Super Mario Bros is PSPACE completeness, cf. [4]. This result is based on a clever
encoding of loop commands, a game feature that makes Mario repeat earlier screens if he doesn’t
follow a specific path through the game. Our encoding does not make use of loop commands.

1See http://www.spriters-resource.com/.

163

http://www.spriters-resource.com/

uantified Boolean Formulas: Call the Plumber! Lindsberger et al.
g

Tie: 1407 ! ! Score: 850 ‘

N T e N

L
£
£
L
L
L
3

7727777777777,

H!!I!!lﬂ!!ﬂEI‘IIEHHH!!RIIHHH!!!E!lﬂl

2]
ol
2]
2]
L]
"
2]
L]
2]
L]

{
{
L

Vy: (x V)

(a) Start frame. (b) Finish frame.

Figure 1: Start and Finish for Super Formula World on Vy (y — x).

Furthermore, unlike the here employed framework the hardness proof in [4] seems to crucially
rely on assumed specifics of the physics engine in Super Mario Bros. In our point of view this
complexity result is thus less suitable a basis for a serious game, like SFW.

This tool paper is structured as follows. In the next section we showcase the developed
video game in an example run. In Section 3, we present the theoretical basis of Super Formula
World and comment on its implementation in Section 4. Finally, in Section 5, we conclude and
mention future work.

2 Example Run

In this section an example run of our game Super Formula World is shown. The input to the
game is a QBF in prenex form, allowing for standard notions for propositional connectives. We
consider the QBF Vy (y — x). The free variable z is treated as existentially quantified, that is,
the generated game represents the prenex normal form JzVy (z V —y).

The game offers three modi: normal, moderate and challenging. In normal mode the formula
is displayed in prenex normal form, where the matrix is transformed into CNF. In moderate
mode the original formula is displayed as the player entered it. During the game the assignments
are highlighted in those modi. In challenging mode the formula is not shown, and the player has
to keep track of the assignments herself. Furthermore various cheats are provided. Mario can be
made invincible, allowed to jump repeatedly and potentially walk through walls. Furthermore
the player can slow down or speed up Mario to a certain degree. For the example run we employ
the normal mode.

Figure 1(a) shows Mario shortly after the start of the game. To make the game more
entertaining, coins can be won that improve the score. These features are independent of the
PSPACE hardness of the game. At the bottom of the screen the input formula is shown in
prenex normal form. In particular the implicit existential quantifier 3z for the free variable x is
not shown. On the right, one can see the entrance of the first quantifier gadget, in this case the
one for dz. Mario decides to assign the variable x to true, which is achieved by falling down.
In Figure 2(a), Mario reaches the door gadget representing literal z in the clause gadget from
the left. Eventually Mario wants to traverse this gadget, coming from the upper middle path

164

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

(]
"
(i
"
"
i
"
(]
"
"

(a) Door for literal x. (b) Door for literal & opened.

Figure 2: Door Gadget and Literal Path for Super Formula World.

on the right and leaving via the top right (see Section 3). However, this is at the moment not
possible, as Mario cannot jump high enough to reach the top right exit. In order to do so, he
needs a trampoline on top of the rotating block depicted in the middle of the figure. Currently
the trampoline is at the bottom and below the rotating block, that is, the door is closed. In
order to open the door, Mario fetches the trampoline from the bottom, and carries it via the
left shaft to the top, so that he can throw it down the right shaft. It will land on top of the
rotating block. The door is now open, and can be traversed eventually, see Figure 2(b). This is
also indicated by marking the literal in green. The literal path for = (see Figure 3(a)) leads
Mario back to the existential quantifier gadget from which he started. Following internal paths
through this gadget, Mario reaches the universal quantifier gadget for y, where he is forced to
assign true to y and therefore has to close the door for literal -y in the clause gadget. In Figure
3(b), Mario has already traversed the close path of that door. For that Mario had to jump
against the rotating block from below which began turning, whence the trampoline falls to the
bottom of the second shaft again. Thus the door is closed, and the literal —y is set to false,
which is shown by marking the literal =y in red. As the (only) clause is satisfied, Mario can
traverse the check path of this clause and head back to the universal quantifier gadget which
now forces him to assign the variable y with false.

Repeating a similar sequence of steps as above, Mario now is able to traverse the check path
for the clause x V —y a second time, this time as the literal —y is true. Finally, Mario reaches
the finish (Figure 1(b)) and wins the level. On the side, he has acted as a QBF solver for the
formula JzVy (y — x).

3 Super Formula World

As mentioned in the introduction, Aloupis et al. introduced a framework for PSPACE hardness
in [1], which reduces from the PSPACE complete problem QSAT. The framework defines a
graph which models the decision problem of reachability. Instantiations of this framework, for
example for Donkey Kong Country and The Legend of Zelda, have been established. In this
section we present a precise definition and slight extension of the framework suited to our
needs. For brevity, we assume (at least nodding) acquaintance with the general construction
in [1] and focus on the necessary changes in our construction after we have given a short general

165

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

‘

rere A

E]
a

i
{
(]
(]
.
[
{
L
)

= EE i i FEREREETEEEEeee
(] i { e L
L]

Vy:(xvoy) e vy:

(a) Literal path for x. (b) Door for literal —y closed.

Figure 3: Door Gadget and Literal Path for Super Formula World (cont’d).

explanation of the framework.

The framework encodes a reduction from QSAT to a game represented as a graph that is
built of gadgets. There are different kinds of gadgets, providing different kinds of behaviour.
The framework combines them in such a way that the resulting graph represents a QBF ¢ and
its solving process. The goal of the game is to reach a defined finish node, given a start node, by
traversing the graph and making decisions, for example which one of two literal paths to follow
at existential quantifier gadgets. Naturally these decisions represent the variable assignments in
the formula. By traversing literal paths, door gadgets get visited and operated, that is, opened
or closed, such that later regions of the graph get traversable. In particular, iff previous variable
assignments satisfy a clause, the corresponding clause gadget becomes thus traversable. In our
setting clause gadgets consist of multiple door gadgets, each representing a literal of the clause.

Universally quantified variables are handled via universal quantifier gadgets in such a way
that both assignments have to be validated, one after the other. Therefore, these gadgets
introduce a certain amount of structural complexity to the graph. A reroute through the graph
is necessary, such that the intended recursive behaviour is achieved. In general paths in the
graph might cross each other. These collisions need to be resolved by crossover gadgets. They
allow traversing the crossing region without the possibility of leaking from one path to the
other. In sum, the construction guarantees that the finish node is reachable iff the QBF ¢ is
satisfiable. All the gadgets used in the framework have to fulfil one requirement: They have
to be non-exhaustive, which means they may not change their behaviour upon usage. Non-
exhaustive gadgets are needed to handle the repeating/recursive behaviour of the framework.
In order to implement this framework, a few extensions are necessary. Most importantly we
require a grid-like layout of the game map, where each gadget is assigned a two-dimensional
location. Thus the location of each gadget becomes easily calculable based on the input QBF .
We only sketch the layout in the following, full details can be found in [7]. The start and finish
gadgets are located on the top left of the grid. To the right of these, the quantifier gadgets
are placed as they appear in the prefix, while the clause gadgets are placed at the bottom in
a row. The horizontal spacing is done so that the row of clause gadgets is to the right of the
quantifier gadgets. Together with an order on the (quantified) variables, this set-up allows to
compute the precise location of all gadgets, including crossover gadgets. Observe that such a
precise layout is not required for the soundness of the framework. However, it simplifies the

166

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

implementation and as it minimises the number of crossover gadgets needed it also simplifies
the correctness proof of the reduction.

Since the width of the map is bound by the number of quantifiers and clauses and the
height by the number of quantifiers the size of the map is quadratically bound by the size of the
formula in prenex CNF. Due the naive implementation within SFW the transformation to CNF
may introduce an exponential blow-up. This could be easily fixed by the use of the linearly
bound Tseitin transformation of satisfiability.

Furthermore, we emphasise the need for locality of door gadgets. The actions needed to
change the state of the door must only have local effect. This means, everything that can be
done in the open or close path is not allowed to alter the state of the game anywhere else.
For instance, the trampoline in the Super Mario World instantiation in Figure 4 may not be
carried out of the door gadget as it could be used to break the framework by opening later
doors. We remark that our precise definition of the framework given in [1] highlighted minor
(and easily correctable) shortcomings of the original framework, in particular in the framework
for NP hardness. In particular the construction of the crossover gadgets for Super Mario Bros
and Metroid requires more precise arguments, cf. [7, Chapter 3].

In the remainder of this section, we sketch the
instantiation of the PSPACE framework to SMW?
The crucial step in the application of the frame-
work is to create door and crossover gadgets that
follow the given game mechanics, using only non-
exhaustive, local game elements without allowing
any leakage. The straightforward construction of
the other gadgets is left to the reader. Full details
are given in [7, Chapter 4]. As an easy corollary we
obtain that SMW is PSPACE-complete.

SMW offers a large set of game elements, though
the implementation of the gadgets only requires
a few, non-exhaustive ones: climbing vines, r0-
tating blocks, stone balls, and trampolines. Mario
can jump while climbing vines but he cannot climb
while carrying something. If Mario jumps at a ro-
tating block from below, the block begins to rotate
and gets passable for a short amount of time, which
allows trampolines to fall through.

Stone balls are placed at the end of a chain that
rotates around a given point. If Mario gets hit by
the stone ball, he dies. Trampolines can be picked
up when approaching them horizontally, they can
be carried around and dropped down shafts. Tram-
polines can be used arbitrarily often and allow
Mario to bounce off and jump higher. There is
no collision if Mario touches a trampoline from the
bottom, in particular trampolines can fall through
Mario without collision. We observe that if big Su- .
per Mario performs a spinning jump on top of the Figure 4: Door Gadget for SMW.
rotating block, it gets destroyed. Thus for the soundness of the construction it is essential to

P E . Forr

kK
e

=
N
3
N
=
&
&
&
X
X
X
3
N

2See http://en.wikipedia.org/w/index.php?title=Super_Mario_World&oldid=656286985.

167

http://en.wikipedia.org/w/index.php?title=Super_Mario_World&oldid=656286985

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

guarantee that Mario is small throughout the course of the game. Thus super mushrooms are
not allowed (and not needed) in the implementation of the framework.

Door gadget Note that the door gadget consists of three paths: (i) a path to open the
door, (ii) a path to close the door and (iii) the path that actually traverses the door. Thus its
functionality is split according to that paths. In Figure 4, the door gadget for SMW is shown.

Open path. Mario enters from the top left and jumps down the left shaft. At the bottom,
Mario heads right where a trampoline blocks his way. Mario carries the trampoline via the left
shaft to the top and throws it down the right shaft. The trampoline falls until it reaches the
rotating block. Mario cannot leak to the traverse path via the right shaft as the fire on the top
would kill him.

Mario again jumps down the left shaft and leaves via the bottom left. If the door is already
in its opened state, Mario immediately leaves the gadget via bottom left. As already observed
in [1], Mario can choose to leave the door in closed state without opening it. Leakage to the
close path is not possible as the fire on the bottom would kill Mario. It is important to prevent
the player from carrying the trampoline outside the gadget as a closed door could be opened
via its traverse path by placing the carried trampoline. Therefore, a vine at the exit of the open
path forces Mario to climb which is not possible while carrying a trampoline. This fulfils the
locality constraint for actions needed to operate doors.

Traverse path. Mario enters from the upper middle path on the right and needs to jump
up and leave via the top right. To overcome this height, the door has to be opened before
by throwing the trampoline down the right shaft. Using the trampoline, Mario can reach the
upper path and leave.

Leakage to the open path is not possible as there
is fire placed on the top. Leakage down to the close
path is not possible, as even if there is no tram-
poline, allowing Mario to reach the rotating block,
Mario is small and cannot destroy it with a spin-
ning jump. The traverse path represents the actual
door: If it is traversable, the door is open, otherwise
the door is closed.

Close path. Mario enters from the bottom right
and jumps on the ledge at the left of the shaft to
perform a second jump to reach the upper hori-
zontal tunnel and leave the gadget. Mario’s jump
height forces him to jump against the rotating block \ = -
before he can leave horizontally, such that the tram- rrrrr&‘ y
poline (if previously placed on the rotating block) L b r
falls to the ground. ?

Crossover gadget Given trampolines and spiky,
rotating stone balls, a non-exhaustive crossover
gadget can be created. In Figure 5, the crossover
gadget for SMW is shown. All stone balls in the
crossing section are rotating clockwise with the
same speed. There are four locations on which
those balls are placed. Each ball has a twin that Figure 5: Crossover Gadget for SMW.
rotates with an angle offset of 180 degrees. This

3

>
i
v
i
v
i

168

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

rotating behaviour leads to short phases in which Mario can quickly pass through without get-
ting hit by a stone ball. Leakage is not possible, since if one path is free, the other is blocked.
Waiting in the crossing region for the other path to get traversable will not work as there al-
ways is a ball that will pass Mario’s location before he gets a chance to leak to the other path.
When traversing the vertical path bottom to top, Mario uses a vine to quickly climb to the top.
When traversing top to bottom, an alternative version of this gadget is used, in which Mario
simply falls through the crossing region in a well-timed moment. Although the version with the
vine could be used to climb or fall down as well, this alternative version is used for the sake of
variety.

Finally, we observe that generalised SMW is a member of PSPACE. To describe a state of the
game, the following information is needed: Mario’s location, the locations of the trampolines,
the states of the rotating blocks (traversable or not) and whether Mario is carrying a trampoline.
This describes everything that can change while playing and is a relevant part of the game.
This clearly is within polynomial bounds. The goal is to move Mario to a defined finish location
in order to win the game. The algorithm non-deterministically guesses an assignment which
allows the player to reach this finish location. By Savitch’s theorem NPSPACE = PSPACE,
so the claim follows and we immediately arrive at the PSPACE completeness of (generalised)
SMW. We emphasise that the only generalisation performed here is the map size of SMW. By
the above observation, SMW is in PSPACE. Furthermore, applicability of the framework yields
PSPACE hardness. In conjunction SMW is PSPACE complete.

4 Implementation

In this section, we briefly comment on the implementation of SFW. The code is written in Java,
compatible with versions 1.6 and later. Thus the game is platform independent. It comprises
about 11400 LOC in 115 files and is freely available online: https://github.com/DwarfVader/
mario.

The game provides a help window, explaining the usage/controls of the program. The user
can choose between English and German language. The program allows to enter propositional
formulas or QBF formulas in prenex form, allowing for standard notions for propositional
connectives. Alternatively (multiple) DIMACS .cnf files can be read in. If multiple files are
read in, each DIMACS file corresponds to a different level. Based on the considered formula,
the game creates a world following either the framework for NP or PSPACE hardness. Both
frameworks provide individual incarnations of their corresponding gadgets. The start, finish
and crossover gadgets are not shared between the frameworks. Thus, the generated game map
precisely represents a SAT or QBF solver, respectively. If we rate the gameplay experience of
these variants it is an unfortunate result of the repetitive nature of the latter framework that
Mario seems most of the time to be busy with travelling between the different gadgets, rather
than actual problem solving. This is in contrast to the subgame representing SAT solving,
implementing a variant of the original Super Mario Bros. Here the game experience is quite
satisfactory. In order to partly overcome this, the game provides speed-up facilities to increase
Mario’s speed. Additionally, we provided a feature that allows Mario to directly teleport from
the beginning to the end of the literal and check paths, avoiding those long travels.

169

https://github.com/DwarfVader/mario
https://github.com/DwarfVader/mario

Quantified Boolean Formulas: Call the Plumber! Lindsberger et al.

5 Conclusion and Future Work

In this paper we have refined a framework to show PSPACE hardness for video games established
by Aloupis et al. [1]. By precisely defining the framework and fixing a topology of it, we have
established an instantiation of it for SMW, which directly allows an implementation in an actual
game. The purpose of this game, dubbed SFW, is to exhibit the computational complexity of
video games like SMW explicitly. Playing SFW is equivalent to the search for a satisfying
assignment for a quantified Boolean formula ¢, that is, ¢ is satisfiable if and only if the player
is able to reach the finish location. Thus the player actually acts as a QBF solver. Furthermore,
we have also refined and implemented in SFW the corresponding framework for NP. That is, if
the game is started with a propositional formula then the player acts as a SAT solver. We are
employing the game in teaching and in public events directed towards prospective students. So
far the experiences have been promising.

The repetitive nature of the PSPACE frameworks somewhat hinders the gameplay experi-
ence. Currently we overcome this effect by extending Mario’s capabilities. In future work one
could study whether one can overcome this defect of the game more principally. Here we could
either come up with an implementation based on a direct PSPACE hardness proof specialised for
SMW, for example exploiting [4] or preferably develop an alternative to the framework which
does not rely on the current repetitive structure (present in [1,9]). On a more theoretical level
it may be of interest to relate known benchmarks for QBF solvers to research on the difficulty
in logic puzzles (like Sudoku) or video games in general [2,8].

Acknowledgements We want to thank The Spriters Resource for providing the images
that are used in this paper and the implementation.

References

[1] G. Aloupis, E.D. Demaine, A. Guo, and G. Viglietta. Classic Nintendo Games are (Computation-
ally) Hard. T'CS, 586:135-160, 2015.

[2] M-V. Aponte, G. Levieux, and S. Natkin. Measuring the level of difficulty in single player video
games. Entertainment Computing, 2(4):205-213, 2011.

[3] J.C. Culberson. Sokoban is PSPACE-complete, 1997. Available online https://webdocs.cs.
ualberta.ca/~joe/Preprints/Sokoban/.

[4] E.D. Demaine, G. Viglietta, and Aaron Williams. Super Mario Bros. is Harder/Easier Than We
Thought. In Proc. 8th FUN, volume 49 of LIPIcs, pages 13:1-13:14, 2016.

[5] H. Samulowitz and F. Bacchus. Using SAT in QBF, pages 578-592. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[6] R. Kaye. Minesweeper is NP-complete. Math. Intelligencer, 22(2):9-15, 2000.

[7] J. Lindsberger. Classic Nintendo Games are Completely Hard. Master’s thesis, Universitt Inns-
bruck, 2016. Available online at https://github.com/DwarfVader/mario.

[8] R. Peldnek. Difficulty Rating of Sudoku Puzzles by a Computational Model. In Proc. 2/th FLAIRS.
AAAT Press, 2011.

[9] G. Viglietta. Gaming Is a Hard Job, but Someone Has to Do It! TCS, 54(4):595-621, 2014.
[10] G. Viglietta. Lemmings is PSPACE-complete. T'CS, 586:120-134, 2015.
[11] T. Walsh. Candy Crush is NP-hard. CoRR, abs/1403.1911, 2014.
[12] T. Walsh. Candy Crush’s Puzzling Mathematics. American Scientist, 102(6):40-43, 2014.

170

https://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/
https://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/
https://github.com/DwarfVader/mario

	Introduction
	Example Run
	Super Formula World
	Implementation
	Conclusion and Future Work

