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Abstract

This paper describes interpolation procedures for EPR. In principle, interpolation for EPR is simple:

It is a special case of first-order interpolation. In practice, we would like procedures that take advantage

of properties of EPR: EPR admits finite models and those models are sometimes possible to describe

very compactly. Inspired by procedures for propositional logic that use models and cores, but not

proofs, we develop a procedure for EPR that uses just models and cores.

1 Introduction

EPR has interesting applications in shape [8] and hardware analysis [5]. EPR offers a degree of
succinctness over propositional logic that can be a significant advantage. EPR is often also hid-
den in plain sight [11]: bit-vector logic turns out to be much more succinct than propositional
logic and can be translated polynomially back and forth into EPR. Current applications in veri-
fication uses EPR as a language for describing assertions and systems. We can go much further,
however, and use EPR as a target of invariant synthesis. In other words, we are interested in
automatically inferring invariants that can be expressed in EPR for systems whose transitions
and assertions are already expressed in EPR. An important tool for formula based invariant
synthesis is to use interpolants [12], and as the reference indicates EPR interpolants from Z3
proofs is a solved problem (presuming interpolants are also EPR formulas). Nevertheless, we
press the issue and ask the question if there are interpolation procedures for EPR that can take
advantage of model and core producing facilities, in contrast to relying on resolution proofs.
We call the resulting procedure zipper interpolation because it zips between formulas A and B.

This paper considers the problem of computing so called reverse interpolants. Given two
formulas A and B a reverse interpolant between A and B is a formula I in the shared signature
such that A =⇒ I and B ∧ I is unsatisfiable.

Example 1. The formula I is a reverse interpolant of formulas A and B:

∃y . ∀x . p(y, x)︸ ︷︷ ︸
I

: ∀x . p(a, x)︸ ︷︷ ︸
A

∧ ∀x . ¬p(x, b)︸ ︷︷ ︸
B

∃x, y .x 6= y︸ ︷︷ ︸
I

: a1 6= a2︸ ︷︷ ︸
A

∧ ∀x, y . x = y︸ ︷︷ ︸
B

This short paper is organized as follows. We first describe a straight-forward Inst-Gen
interpolation procedure that is bootstrapped on top of propositional interpolation. Section 3
reviews methods for propositional interpolation that are based on models and cores. Section 4
extends the approach for propositional interpolants to EPR.
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2 Bootstrapped Inst-Gen Interpolation

Inst-Gen is an instantiation-based search procedure. It is complete for first-order logic [9]. In a
nutshell, given a set of clauses S, Inst-Gen is searching for a ground witness for unsatisfiability
of S as follows. First, a ground abstraction S⊥ of S is obtained by mapping all variables in S
into a designated constant ⊥. If S⊥ is unsatisfiable then S is also unsatisfiable. Otherwise, new
(possibly non-ground) instances of clauses in S are generated, guided by a propositional model
of S⊥ and added to S. The process is repeated until either an unsatisfiable ground abstraction
is obtained or a saturation is reached. The process (together with redundancy elimination) is
sound and complete for first-order logic. In particular, S is unsatisfiable if and only if Inst-Gen
terminates with a set of possibly non-ground instantiations S′ of clauses from S such that S′⊥
is unsatisfiable. It is easy to see that Inst-Gen is a decision procedure for the clausal EPR
fragment.

The Inst-Gen bootstrapped interpolation procedure will be parametrised by a complete in-
terpolation procedure for propositional logic IP. We assume that for any sets of propositional
clauses A and B such that A ∧ B is unsatisfiable IP(A,B) returns a propositional formula I
over shared propositional variables such that A =⇒ I and I ∧ B is unsatisfiable. Proposi-
tional interpolation procedures have been intensively investigated in the recent years. We will
not distinguish between ground atoms and propositional variables they represent. Therefore
we assume that a propositional interpolation procedure applied to ground formulas returns a
ground interpolant.

The Inst-Gen interpolation procedure consists of the following steps. Consider sets of EPR
clauses A and B.

1. Apply the Inst-Gen procedure to A ∪B obtaining a set of clauses A′ ∪B′ such that i) A′

is a set of instances of A and B′ is a set of instances of B, ii) A′⊥ ∪ B′⊥ is satisfiable if
and only if A ∪ B is satisfiable. If A ∪ B is satisfiable return the model. Otherwise go to
step 2.

2. Let Ig(ā, b̄, c̄,⊥) be the ground interpolant returned by IP(A′⊥, B′⊥), where ā are con-
stants local to A, b̄ constants local to B, and c̄ are shared constants. Then, an EPR
formula I = ∃ā ∀b̄ ∀⊥ Ig(ā, b̄, c̄,⊥) is the required reverse interpolant.1

Theorem 1. The Inst-Gen bootstrapped interpolation procedure computes a reverse EPR in-
terpolant between A and B.

3 Propositional Zipper Interpolation

We now describe a simple approach to obtain interpolants for propositional logic. It is a variant
of [4], and is a special case of interpolants generated as a side-effect of IC3 [3, 2, 14]. Variants
and extensions have been examined for richer theories, such as arithmetic [1, 7]. Let A and
B be two propositional formulas, whose conjunction is unsatisfiable. Algorithm 1 procedure
computes an interpolant I using only models and unsatisfiable cores. The dual, Algorithm 2,
uses models from A instead of B and computes a disjunctive interpolant.

Theorem 2. The Propositional Zipper algorithms compute a reverse propositional interpolant
between A and B.

1Notice that we quantify over ā and b̄ that were previously free in the formulas A and B. Identifiers that
are free in formulas are called constants; identifiers that are bound by quantifiers become bound variables.
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The propositional Zipper interpolation algorithms can be used as part of the solution in
Section 2.

Initialize I := >
1. If B ∧ I is unsatisfiable, return I.

2. Extract a model M for B ∧ I.

3. Let L be a set of literals consisting of: the atomic formulas of B which hold in M , and
the negations of the atomic formulas of B which do not hold in M .

4. Check satisfiability of A ∧ L. If satisfiable, then A ∧ B are satisfiable, and there is no
interpolant. Otherwise, let C be the unsatisfiable core from L.

5. Let C ′ be the literals in C consisting of atomic formulas from A.

6. Update I := I ∧ ¬C ′. Go to step 1.

Algorithm 1: Propositional Zipper Interpolation

Initialize I := ⊥
1. If A ∧ ¬I is unsatisfiable, return I.

2. Extract a model M for A ∧ ¬I.

3. Let L be a (prime) implicant of A consistent with M .

4. Check satisfiability of B ∧ L. If satisfiable, then A ∧ B are satisfiable, and there is no
interpolant. Otherwise, let C be the unsatisfiable core from L.

5. Let C ′ be the literals in C consisting of atomic formulas from A.

6. Update I := I ∨ C ′. Go to step 1.

Algorithm 2: Dual Propositional Zipper Interpolation

4 EPR Zipper Interpolation

Satisfiable EPR formulas have small models whose domain, is the set of constants used in the
formulas (assuming Skolemization has been applied). The models can be expressed as a finite
conjunction of literals where the literals just have to completely cover the set of combinations
of arguments to each predicate. Representing models in this way is of course impractical for
large domains or predicates with large arities. It is often possible to represent models in a
much more economical way when predicates are almost always false or almost always true. In
this case it suffices to represent just the cases where the predicate is true (respectively false),
and the default case can be summarized as the complement. Z3 uses this model representation
and leverages it for model-based quantifier instantiation. Similar model representations are
based on implicit generalisations [6] and definitional extensions of term algebras [10], as used in
iProver. Let us here describe Z3 models in the context of EPR as what we call defaulted cubes:

Definition 1 (Defaulted Cube). A pair 〈L,D〉 is called a defaulted cube over a vocabulary Σ if
L is a conjunction of ground literals over Σ, and D is a conjunction of formulas of the following
form: For every predicate p of arity n in Σ, D includes a conjunct of the form

∀x.¬GroundL
p → p(x) or ∀x.¬GroundL

p → ¬p(x) ,
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where GroundL
p is the disjunction of all formulas of the form x1 = t1 ∧ . . . ∧ xn = tn for every

ground terms t1 . . . tn such that either p(t1 . . . tn) or ¬p(t1 . . . tn) occur in L.

4.1 Constructing Defaulted Cubes

We say that a defaulted cube 〈LB , DB〉 implies a formula B if it implies all its ground instances.
We here show how to construct defaulted cubes from models for a formula B in such a way
that the constructed defaulted cube remains an implicant of B. Roughly, Z3 models (we use
M to refer to models) for EPR formulas are of the form

p(x̄) := p′(π(x̄))

π(x̄) := match x̄ with
| s̄1 → t̄1
| s̄2 → t̄2

...
| → t̄n

p′(x̄) := match x̄ with
| t̄1 → >
| t̄2 → ⊥

...
| → >

In other words, Z3 creates interpretations of EPR predicates as a composition of a projection
operation π and an interpretation values in the projection. Models can be inspected, so we can
enumerate the terms s̄1, s̄2, . . . and extract truth values for p on the non-default branches. The
default evaluation then becomes the value of p′(t̄n).

The model construction can also be minimized by using information about B. The con-
struction works by iterating over the clauses in B.

1. Set LB := > and DB :=
∧

p∈Σ ∀x̄ . ± p(x̄), where the sign of p in DB is given by the
default branch in M (this is easy to obtain).

2. For ground clauses, pick some literal that is true in the model M and add it to LB .

3. For non-ground clauses of the form ∀ȳ.`1 ∨ . . .∨ `n we repeat a refinement loop as follows:
Suppose LB ∧DB ∧

∧
1≤i≤n ¬`i[ȳ] is satisfiable in a model over the vocabulary of B (we

assume Σ contains at least one constant). Say these values are b̄. Choose a literal `i[b̄]
that is true in M and add it to LB .

Example 2. Let B = ¬p(b, b) ∧ (∀x . p(a, x)). A model for B may consist of two element
{a, b} and assign p to be always > except for p(b, b) = ⊥. Thus we begin with LB := > and
DB := ∀x, y . p(x, y). Then the ground clause ¬p(b, b) is added to LB. For the non-ground
clause ∀x . p(a, x), we have that LB ∧DB ∧¬p(a, x) is satisfiable, by a model with one element
{b} and p(b, b) = ⊥, and an assignment of x to b. Thus we add p(a, b) to LB, and obtain that
〈LB , DB〉 imply B.

4.2 Algorithm

We now describe an algorithm that is based on Algorithm 1, but works directly with an EPR
decision procedure. It does not require assembling instantiations provided by the decision pro-
cedure. Instead it relies on models and cores. The main idea of the algorithm is to incrementally
extract a ground model for A ∧ B using models for B and models for A. The intermediary
ground models may not extend to full models so the algorithm has to repair such intermediary
models. Algorithm 3 contains the overall description and we motivate it in the following.
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1. Initialize I := >.

2. While B ∧ I is satisfiable, do:

(a) Construct 〈LB , DB〉 such that 〈LB , DB〉 implies B ∧ I.

(b) Initialize J := >.

(c) While LB ∧ J ∧A is satisfiable, do:

i. Extend LB to LA and DA such that the defaulted cube 〈LA, DA〉 implies A. Add
also definitions for predicates from DB that are not mentioned in A, so that we
can use DA to evaluate B.

ii. If 〈LA, DA〉 implies B, then A ∧B is satisfiable. Exit.

iii. If LA ∧ B is unsatisfiable, then let C be a minimal subset of LA \ LB such that
C ∧ LB ∧B is unsatisfiable. Update J := J ∧ ¬C.

iv. If LA∧B is satisfiable and LA is complete for ΣAB , then A∧B is satisfiable. Exit.

v. Otherwise, 〈LA ∧DA〉 implies ¬B:
Then there is some conjunct ∀b̄.`1∨ . . .∨`n in B that is false in the model induced
by LA ∧ DA (`1 . . . `n are literals). In other words, LA ∧ DA ∧

∧
1≤i≤n ¬`i[ȳ] is

satisfiable and we can extract an assignment d̄ for ȳ by inspecting 〈LA, DA〉 as we
did when extracting minimized defaulted cubes from models. One of the literals
`i[d̄] is going to evaluate to > under DB (because 〈LB , DB〉 is a model for B).
Pick this literal and update LB := LB ∧`i[d̄] and continue the loop (at step 2 (c)).

(d) Extract a minimal subset C from LB ∧ J , such that C ∧A is unsatisfiable.

(e) Update I := I ∧ ∀b̄ ¬C, where b̄ are the constants in B that do not occur in A.

3. Return ∃ā I, where ā are the constants in A that do not occur in B.

Algorithm 3: EPR Zipper Interpolation Algorithm

Let us illustrate one aspect of the algorithm using an example.

Example 3. Take A := q(c) and B := p(c) ∧ ∀x . ¬p(x) ∨ ¬q(x). Suppose that initially
LB := > and DB := ∀x . p(x),∀x . ¬q(x). Then LA is still > and DA := ∀x . q(x),∀x . p(x).
Note that DA inherits interpretations of predicates that are mentioned in B but not mentioned
in A. In this case LA ∧ B is satisfiable, but LA is not complete and 〈LA, DA〉 implies ¬B.
Therefore the last case in step 2 (c) applies. The last case checks satisfiability of DA∧p(y)∧q(y)
with an interpretation where y := c. The assignment ¬p(c) is inconsistent with 〈LB , DB〉
because DB requires ∀x . p(x). On the other hand, the assignment ¬q(c) is consistent with DB.
Therefore we add ¬q(c) to LB and repeat step 2 (c). This time, LB ∧A is unsatisfiable, and the
resulting interpolant I is (simply) q(c). Furthermore B∧I is also unsatisfiable, so the algorithm
terminates.

The algorithm terminates at the latest when all groundings have been created. This criteria
is based on the following definition and observation:

Definition 2 (Ground complete sets of literals). We say that a set of literals L is complete
with respect to a vocabulary Σ if for every ground p(t̄) over Σ, L contains either p(t̄) or its
negation.

Proposition 1. A ground complete set of literals L that is consistent with an EPR formula ϕ
can be extended to a model for ϕ.
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Proof. The only thing that is not forced by L is the domain. Set the domain to be the term
model given by Σ. Then the fact that L∧ϕ is satisfiable means that every ground clause from
ϕ contains a literal in L.

However, terminating by the time of ground complete literals is only a worst case scenario.
There are other cases where the exchange of facts between A and B can ensure termination.
In contrast to Algorithm 1 we drop the requirement that literals created from B are implicants
of B. This means that A may extend the partial assignment learned from B in a way that is
inconsistent with B. To avoid such extensions, the new algorithm (Algorithm 3) accumulates
a set of constraints that we call J that prevent A to extract such assignments. Recall that
the idea of Algorithm 1 is to extract consequences of A, so the new algorithm has to ensure A
eventually learns such a consequent.

Example 4 (Using J). Take the same example as before: A := q(c) and B := p(c)∧∀x . ¬p(x)∨
¬q(x). As before LB := > and DB := ∀x . p(x),∀x . ¬q(x) but this time LA := q(c) and
DA := ∀x . x 6= c → ¬q(x),∀x . p(x). It is now the case that LA ∧ B is unsatisfiable and the
subset of LA that is used for unsatisfiability comprises of q(c). Set J := ¬q(c) and repeat step
2 (c). This time LB ∧J ∧A is unsatisfiable and the core from LB ∧J is ¬q(c). The interpolant
is updated I := q(c) and the algorithm terminates because B ∧ I is unsatisfiable.

Note that in general J is a conjunction of clauses (not just literals), whereas LA and LB

are conjunctions of literals.

Example 5. Take A := ∀x . p(a, x) and B := ∀x . ¬p(x, b). Suppose that initially LB := >
and DB := ∀x, y . ¬p(x, y). Then LA is still > and DA := ∀x, y . p(x, y). Thus LA ∧ B is
satisfiable, but LA is not complete and 〈LA ∧DA〉 implies ¬B. Therefore the last case in step
2 (c) applies. This checks satisfiability of DA ∧ p(x, b). A model may assign x to b, resulting
in LB := ¬p(b, b), and we return to step 2 (c). Still LB ∧ J ∧ A is satisfiable. Now there
is no DA such that 〈LB , DA〉 would imply A, so LB should be extended, and we may obtain
LA := ¬p(b, b) ∧ p(a, a) and DA := ∀x, y . (x 6= a ∨ y 6= a) ∧ (x 6= b ∨ y 6= b) → p(x, y). Again
we arrive at step 2 (c), that results with LB := ¬p(a, b). Now LB ∧ J ∧A is unsatisfiable, and
C = ¬p(a, b) is a minimal subset from LB ∧ J , such that C ∧ A is unsatisfiable. We obtain
I := ∃a∀b . p(a, b), and terminate since B ∧ I is unsatisfiable.

Note that the algorithm uses minimal cores. Using minimal cores is an automating way to
ensure that the predicates are in the shared vocabulary between A and B. In summary,

Theorem 3. The EPR Zipper algorithm computes a reverse EPR interpolant between A and
B.

5 Summary

We developed a method for EPR interpolation based on models and cores. It zips between
satisfiability checks for formulas A and B. In contrast to propositional interpolants we suggested
to relax the use of implicants. Instead, the procedure communicates sets of literals that are
consistent with the formulas A or B, and refines these literals until either augmenting the
generated interpolant or determining that the formulas are satisfiable. In future work we are
interested in extending the notion of EPR Zipper Interpolants to somewhat richer logics that
include arithmetic or arrays.
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