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Abstract

CT-based methods, such as robotic systems and patient-specific instrumentation (PSI),
offer precise bone depiction, making them valuable for Total Knee Arthroplasty (TKA).
However, they must be robust to the presence of cartilage, which is not easily visible on
CT-scans. We present here a coupled bone and cartilage Statistical Shape Model (SSM)
that predicts cartilage solely from bone shape. Four models were trained and tested for
healthy and pathological patients, for both femur and tibia. Cartilage prediction results
show good adaptability to the pathology as well as similar accuracy compared to the inter-
observer MRI manual segmentation variability. This solution could be integrated in the
planning of TKA surgeries to improve CT-based PSI and robotic systems.

1 Introduction

Knee osteoarthritis (KOA) affected 365 million people in 2019, with a projected 74.9% increase
by 2050 compared to 2020 [8]. Patient-specific instrumentation (PSI) and robotic systems have
recently been developed to automate Total Knee Arthroplasty (TKA), to reduce cost, operating
time and dissatisfaction rates. Some systems are image-based and require a 3D joint model from
preoperative imaging. Studies comparing CT and MR-based PSIs ([13], [16], [7]) draw opposite
conclusions, suggesting no clear consensus on the most suitable modality in terms of accuracy.
CT-scan is often preferred for its higher availability, shorter scan time and lower cost [13].

However, soft tissues, particularly cartilage, are not easily visible on CT-scan. In CT-based
procedures, this absence of cartilage in the preoperative model impacts the accuracy of direct
matching with the intraoperative scene, which includes cartilage. One solution is to acquire
the bony surface intraoperatively to align with the preoperative bone model, either by exposing
bone through cartilage removal [10] or piercing cartilage with a probe to collect bony points
[12]. These additional steps may be prone to user error, tedious, and cognitively demanding.
An alternative is to preoperatively predict cartilage from bone, enabling direct surface-based
registration with the intraoperative scene.

Statistical Shape Models (SSMs) are effective for personalized modeling [9] and for inferring
missing shape parts [11]. This study builds on well-established SSM methods for knee carti-
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lage prediction [15] and extends their application to comparing performances on healthy and
pathological datasets.

2 Materials and methods

2.1 Dataset

The OAI-ZIB dataset was used, with 507 manual segmentations of femur and tibia bone and
cartilage [1]. A normal, narrowed or severe joint space narrowing (JSN) degree was assigned
to each patient for both lateral and medial sides. It allowed the grouping of patients into
four subdatasets : patients with either premorbid, medial, lateral or bilateral JSN. This study
focuses on the premorbid (healthy) and medial (pathological) JSN datasets due to insufficient
data in the others for SSM training. They will be referred to as healthy and pathological sets
— in terms of JSN — regardless of the presence of osteophytes. The train/test sets distribution
was 129/33 and 187/47 for healthy and pathological sets respectively, following a 80/20% ratio.

2.2 Statistical Shape Model

To obtain a coupled SSM that encompasses bone and cartilage, we first trained a bone SSM on
the bone mesh of each patient. The bone SSM was then fitted [4] to each patient of the train
set to obtain a set of bones in correspondence.

From the corresponding bones, we compute the subchondral vertices as the nearest neighbors
of the cartilage mesh on the bone point cloud. We then compute the intersections of the normals
of these subchondral vertices with the cartilage surface and obtain a set of cartilage vertices in
correspondence, for all the patients in the training set.

A dataset of global bone and cartilage point clouds is computed by merging bones and
cartilages in correspondence, on which Principal Component Analysis is applied to obtain a
coupled bone and cartilage SSM. The bone part of the coupled SSM can then be fitted to a
new patient whose cartilage is unknown to predict the missing cartilage.

Four coupled SSMs were generated, for healthy and pathological femurs and tibias.

2.3 Evaluation metrics

The coupled bone and cartilage SSM was validated using standard metrics from [14]. The
cartilage thickness among the training set was computed as the distance between subchondral
bone and cartilage intersection points along the normal, based on the cartilage correspondences’
establishment method (2.2). The cartilage prediction among the testing set was assessed as the
point-to-surface distance between the predicted cartilage point cloud and the patient bone and
cartilage mesh.

3 Results

Maps of mean cartilage thickness are presented in figure 1. Mean cartilage thickness was 1.9 mm
(95th percentile: 4.2 mm) for healthy femurs, 1.9 mm (4.3 mm) for pathological femurs, 1.1 mm
(3.7 mm) for healthy tibias, and 1.1 mm (3.8 mm) for pathological tibias. The 95th percentile
provided a robust estimate of maximum thickness, minimizing outlier influence. Cartilage
prediction results are presented in figure 2. Prediction RMSE was 0.8 mm for pathological
femur and 0.7 mm for all other three cases.
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(a) Healthy (b) Medial pathology

Figure 1: Maps of mean cartilage thickness, for healthy and pathological patients of the train
set. Lateral and medial sides are indicated by the letters L and M.

(a) Median error boxplot - Healthy (b) Median error boxplot - Medial pathology

(c) Median error map - Healthy (d) Median error map - Medial pathology

Figure 2: Cartilage prediction median errors for the healthy (left) and pathological (right) test
sets. (a), (b) For each patient, the median error across all cartilage vertices was computed.
Boxplots summarize the distribution of these patient-wise median errors. (c), (d) For each
vertex, the median error across all patients was computed to generate error maps. Lateral and
medial sides are indicated by the letter L and M.
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4 Discussion

We presented a method for predicting cartilage surface from bone shape, for healthy and
arthritic knees.

Cartilage thicknesses are consistent with the literature [2] and show expected medial loss in
medial KOA. Similar mean and 95th percentile thicknesses across groups indicate that pathology
causes cartilage thinning in specific areas, with comparable thickness elsewhere in the joint.

Cartilage prediction errors remain well below the maximal observed 95th percentile thick-
ness of 4.3 mm. RMSE around 0.7 mm is close to [15], with slightly higher values likely due to a
smaller training set. It is also similar to inter-observer variability in manual MRI segmentation
[6], suggesting that SSM-based cartilage prediction from a CT-scan is an interesting alterna-
tive to MRI cartilage segmentation. Errors along the cartilage surface outline (figure 2) may
result from osteophytes which are highly patient-specific and can lead to poorly established
correspondences in these regions. Additionally, osteophyte formation is non-linear and may
not be well captured by SSMs [5]. Still, similar prediction errors in healthy and pathological
patients suggest that our model effectively models KOA and its impact on cartilage. This study
demonstrates the applicability of SSMs to pathological cases.

However, limitations remain. The models were trained and tested on different numbers of
patients, affecting comparability. A larger dataset is needed for better evaluation. Additionally,
cartilage was predicted from bone MRI segmentations rather than CT-scans, ignoring potential
MRI-CT bias [3].
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