
Kalpa Publications in Computing

Volume 18, 2024, Pages 152–162

LPAR 2024 Complementary Volume

On Symbolic Derivatives and Transition Regexes

Margus Veanes

Microsoft Research, Redmond, USA
margus@microsoft.com

Abstract

Symbolic derivatives of extended regular expressions or regexes provide a mechanism for
incremental unfolding of regexes into symbolic automata. The underlying representation
is in form of so called transition regexes, that are particularly useful in the context of
SMT for supporting lazy propagation of Boolean operations such as complement. Here
we introduce symbolic derivatives of further operations on regexes, including fusion and
lookaheads, that are currently not supported in the context of SMT but have been used
in many application domains ranging from matching to temporal logic specifications. We
argue that those operators could also be supported in the context of SMT and motivate
why such direct support would be beneficial.

1 Introduction

We consider two new applications of the use of symbolic derivatives of extended regular ex-
pressions or regexes (ERE) in two distinct but related domains. Symbolic derivatives of ERE
were introduced in [13] and allow lazy unfolding of regexes into symbolic automata [3] by us-
ing so called transition regexes that are nested if-then-else expressions whose conditions are
predicates in a given alphabet theory A and whose leaves are regexes. A good example of
how such a symbolic derivative and transition regex can look like is taking the (symbolic)
derivative of the regex ~R where R = .*[a-d][a-z]{k}, denoted by δ(~R), that results in
the transition regex ~δ(R) = ite([a-d], ~(R|[a-z]{k}), ~R) that can further be transformed
into ite([a-d], ~R & ~([a-z]{k}), ~R) via de Morgan’s law applied to the left leaf. Observe
that regex complement (~) has just been propagated into the leaves of the transition regex, i.e.,
no determinization is required in order to handle complement as it is propagated lazily when
derivatives are constructed on a need-to-know basis.

We start by considering counters, that are currently not supported in SMT, but whose
derivative rule is otherwise well-known. We then extend the notion of derivatives for two new
constructs fusion and lookahead with motivations why these constructs are interesting and
practically relevant, but are currently not supported in the context of SMT either.

Counters or bounded loops are used heavily in practice but are also exposing an Achilles
heel in many regex matching engines [14]. The example of the regex R above illustrates use of a
counter. Sometimes the involved loop bounds are prohibitively large, and unwinding the loops
upfront becomes infeasible, in particular when the counters are nested. Therefore, in order to
properly support such regexes in SMT, counters should be supported natively.

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 152–162



On Symbolic Derivatives and Transition Regexes Margus Veanes

Fusion of regexes R:S denotes the language of all words uav such that a is an alphabet
element, ua is accepted by R, and av is accepted by S. Fusion has primarily been used in
SERE, that is a regular expression based sublanguage of PSL [6]. For us, this extension is
related to work in generalizing temporal logic beyond the classical (propositional) setting to
modulo theories [17]. Here the motivation is related to ongoing work in cloud reliability.

Lookaheads are used in practice in regex matching but are neither supported in any non-
backtracking matching engines, nor in SMT. We show that derivatives can provide elegant and
efficient ways to implement lookahead, and can potentially enhance the current derivative based
implementation of IsMatch in the new nonbacktracking regular expression engine in .NET [8].

A general observation about symbolic derivatives is that, adding new constructs such as
counters or fusion to ERE together with their derivation rules, does not affect any of the other
constructs or rules. Such locality of changes is a very powerful principle when dealing with
derivatives in general. A shining example of that is the derivative of complement that simply
propagates complement to the leaves of the transition regex. Symbolic automata based treat-
ment of complement would otherwise require determinization of the whole automaton as the
fixpoint of all the derivatives. This is, in the worst case, not only exponential in the number of
NFA states but can also be exponential in the number of transitions due to mintermization of
predicates. For the concrete regex R above, determinization would produce 2k+1 states. More-
over, since the loop bound k is not written in unary, this amounts to O(22

n

) many states where
n is the size of R. Loop bounds beyond a hundred or even thousand are not uncommon [14].

Overview Section 2 defines basic background material, including a formal definition of tran-
sition terms that is based on transition regexes from [13]. Section 3 recalls EREA and symbolic
derivatives from [13] where A is an alphabet theory. Section 4 discusses counters. Section 5
discusses and motivates a new derivative rule for fusion of regexes. Section 6 discusses and mo-
tivates a new derivative rule for handling of lookahead in regexes. Section 7 discusses ongoing
and future work.

2 Preliminaries

As a meta-notation throughout the paper we write lhs
def
= rhs to let lhs be equal by definition to

rhs. In the following let D be a nonempty (possibly infinite) domain of core elements.

2.1 Effective Boolean algebra

An effective Boolean algebra (EBA) over D [3] is a tuple

A = (D,Ψ, J K,⊥,⊤,∨,∧,¬)

where Ψ is a set of predicates closed under the Boolean connectives; J K : Ψ → 2D is a denotation
function; ⊥,⊤ ∈ Ψ; J⊥K = ∅, J⊤K = D, and for all α, β ∈ Ψ, Jα ∨ βK = JαK ∪ JβK, Jα ∧ βK =
JαK∩ JβK, and J¬αK = D\ JαK. We also write a ⊨ α for a ∈ JαK. For α, β ∈ Ψ we write α ≡ β to
mean JαK = JβK. In particular, if α ≡ ⊥ then α is unsatisfiable, also denoted by UNSAT(α),
else SAT(α) if α ̸≡ ⊥. We require that the connectives of A are computable and that a ⊨ α is
decidable. A is decidable if SAT(α) is decidable. A is extensional if α ≡ β implies that α = β,
e.g., a BDD algebra is typically extensional. If A is extensional then it is clearly decidable.
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2.2 Derivatives

Let D be either D∗ or Dω (ω-words over D), with the associated definition of complement
∁(L)

def
= D \L for L ⊆ D. The derivative of L for a ∈ D is Da(L)

def
= {v | av ∈ L}. Observe that

Da(∁(L)) = ∁(Da(L)) and Da(L1 ∩ L2) = Da(L1) ∩Da(L2). For a nonempty word w let w0

denote the first element of w and w(1..) the rest of w.

2.3 Transition Terms

Let A = (D,Ψ, J K,⊥,⊤,∨,∧,¬) be a given EBA and let Φ be some given set called leaves.
We work with transition regexes [13] in a generalized and normalized form that can be applied
both, to represent derivatives over D∗, as well as Dω, but here we will primarily use D∗. We
use here a lifted view of transition terms to avoid lift rules [13, Section 4.1] – we consider it an
implementation choice here whether to apply the operations (1) and (2) below eagerly or lazily,
but the simplified view here is that those operations are eager.

The set of transition terms TA⟨Φ⟩ (T⟨Φ⟩ or just T when both A and Φ are clear from the
context) is defined by the following abstract grammar where f ∈ T , α ∈ Ψ, and ℓ ∈ Φ:

f ::= ℓ | ite(α, f1, f2)

where α is called the condition, f1 the true-case and f2 the false-case of ite(α, f1, f2). All
binary operations ⋄ : Φ× Φ → Φ, and unary operations ♦ : Φ → Φ are lifted to T :

♦ite(α, f, g)
def
= ite(α, ♦f, ♦g) (1)

ite(α, f1, f2) ⋄ g
ℓ ⋄ ite(α, f1, f2)

def
= ite(α, f1 ⋄ g, f2 ⋄ g)
def
= ite(α, ℓ ⋄ f2, ℓ ⋄ f2)

(2)

Given a ∈ D and f ∈ T , the leaf (value) of f for a, denoted by f [a], is defined as follows.

ℓ[a]
def
= ℓ, ite(α, f1, f2)[a]

def
=

{
f1[a], if a ∈ JαK;
f2[a], otherwise.

The following facts hold for all the lifted operations:

(f ⋄ g)[a] = f [a] ⋄ g[a] and (♦f)[a] = ♦(f [a]) (3)

Functional equivalence of f, g ∈ T is defined by

f ∼= g
def
= ∀a ∈ D : f [a] = g[a]

The set of all leaves of f , Lvs(f), and the set of all conditions that occur in f , Conds(f),
are defined inductively. A transition term f is clean when all of its branches are feasible. Many
rewrites that preserve ∼=, such as cleaning [13], can be applied incrementally during operations
on T by incorporating satisfiability checking modulo A to eliminate unreachable subterms. The
trivial rewrites ite( , f, f) ∼= f , ite(⊤, f, ) ∼= f , and ite(⊥, , f) ∼= f should be seen as built-in
simplifications that are always applied.

A further normalization can be applied to (2) by using a total order ‘<’ over Ψ if such an
order exists. Then (2) has the case:

ite(α, f1, f2)︸ ︷︷ ︸
f

⋄ ite(β, g1, g2)︸ ︷︷ ︸
g

def
=

ite(α, f1 ⋄ g1, f2 ⋄ g2), if α = β;
ite(α, f1 ⋄ g, f2 ⋄ g), else if α < β;
ite(β, f ⋄ g1, f ⋄ g2), otherwise.
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This definition is analogous to how BDD operations are implemented. Observe also that
ite(α, f, g) ∼= ite(¬α, g, f). A further rule that can be used is to rewrite ite(α, f, g) into
ite(¬α, g, f) when for example ¬α < α.

Cleaning Through Restriction

Consider a decidable EBA A and let f be a transition term in TA⟨Φ⟩. A straightforward
cleaning procedure of f is achieved through restriction, f↾⊤, where for β ∈ Ψ, f↾β is defined
as follows. For all leaves ℓ let ℓ↾β

def
= ℓ and for ite-terms let

ite(α, f1, f2)↾β
def
=

f2↾β, if UNSAT(α ∧ β);
f1↾β, else if UNSAT(¬α ∧ β);
ite(α, f1↾(α ∧ β), f2↾(¬α ∧ β)), otherwise.

Observe the invariant that β is satisfiable above, when starting the cleaning from f↾⊤. Note also
that if A is extensional then α∧β = ⊥ iff UNSAT(α∧β). While in the context of SMT solvers,
like Z3, interval constraints that arise in transition regexes are not extensional in general, the
EBA used for character classes in the regex matchers in [8, 15] is not only extensional, but is
a K-bit bitvector algebra [8, Section 5.1], say BV . In most practical cases K ≤ 64 and BV
represents predicates using unsigned 64-bit integers or UInt64 where all the Boolean operations
are essentially O(1) operations: bitwise-AND, bitwise-OR, and bitwise-NOT, with ⊥ = 0.

When implementing the binary operations (2) it is beneficial to maintain cleanness of transi-
tion terms as a global invariant, in particular when working with A = BV . Then the restriction
operation is embedded into (2), as is the case with transition regexes in [13].

3 Extended Regular Expressions Modulo A
We fix the alphabet algebra A = (D,Ψ, J K,⊥,⊤,∨,∧,¬). EREA or ERE for short is defined
by the following abstract grammar, where α ∈ Ψ. We let R ∈ ERE, R is called a regex. Let
REA stand for the standard fragment of EREA without intersection (&) and complement (~).

R ::= α | ε | R1|R2 | R1&R2 | R1·R2 | R* | ~R

The operators are in order of precedence, where union (|) binds weakest and complement (~)
binds strongest. This definition gives rise to the EBA (D∗,ERE,L,⊥,⊤*, |, &, ~) where

L(α) = JαK, L(ε) = {ϵ}, L(R1·R2) = L(R1)·L(R2), L(R*) = L(R)∗.

Nullability of a regex R, Null(R), means that ϵ ∈ L(R) that is defined inductively and is
associated with each AST node of regexes at construction time as a Boolean flag.

Null(ε)
def
= true (4)

Null(R*)
def
= true (5)

Null(α)
def
= false (6)

Null(~R)
def
= notNull(R) (7)

Null(R1|R2)
def
= Null(R1) or Null(R2) (8)

Null(R1&R2)
def
= Null(R1) and Null(R2) (9)

Null(R1·R2)
def
= Null(R1) and Null(R2) (10)
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The (symbolic) derivative of R ∈ ERE is denoted by δ(R) [13] and is a transition regex in
TA⟨ERE⟩, defined as follows, where α ∈ Ψ. Recall that (1) and (2) lift the operators to T .

δ(ε)
def
= ⊥ (11)

δ(α)
def
= ite(α, ε,⊥) (12)

δ(R1·R2)
def
=

{
δ(R1)·R2|δ(R2), if Null(R1);
δ(R1)·R2, otherwise.

(13)

δ(R∗) def
= δ(R)·R∗ (14)

δ(R1 ⋄R2)
def
= δ(R1) ⋄ δ(R2) (for ⋄ ∈ {|, &}) (15)

δ(~R)
def
= ~δ(R) (16)

The union operation | over ERE is treated as an ACI (associative, commutative, and idem-
potent) operation in [13] which implies that MR, as defined next, is well-defined as a symbolic
DFA (modulo A), by having a finite state space.

Definition 1. [MR for R ∈ EREA] MR = (A, Q,R, ϱ, F ) where Q =
⋃

q∈Q Lvs(δ(q)) ∪ {R}
is a finite set of states with R as the initial state, ϱ : Q → T⟨Q⟩ is the transition function such
that ϱ(q) = δ(q), and F = {q ∈ Q | Null(q)}. ⊠

Many regex rewrites are built-in simplification rules, such as treating ⊥ as the unit of |, ⊤*
as the unit of &, ε as the unit of ·, e.g., R|⊥ = R and R·⊥ = ⊥. More advanced rewrite rules
are also used as approximations of subsumption as illustrated in Example 1.

Let M = MR. For all u ∈ D∗ and q ∈ Q let

ϱ̂(q, u)
def
= if u = ϵ then q else ϱ̂(δ(q)[u0], u(1..))

For all q ∈ Q let LM(q)
def
= {u ∈ D∗ | ϱ̂(q, u) ∈ F}. Lemma 1 is implied by [13, Theorem 4.3]

and [2, Theorem 3.1].

Lemma 1 ( [13]). ∀ q ∈ Q, a ∈ D : LM(q) = L(q) and L(ϱ(q)[a]) = Da(L(q)).

A state q is alive if LM(q) ̸= ∅ else dead. Thus, a state ϱ̂(R, u) is alive ⇔ ∃x : ux ∈ L(R).
A new algorithm for dead state detection was recently presented in [12].

Symbolic NFA Construction

The definition of MR is somewhat simplified above. In particular, it is often advantageous, as is
the case in Z3, to represent MR as a symbolic NFA: one can avoid incremental determinization
by keeping δ(R) in DNF with each leaf S as a union S1| · · · |Sm and, instead of using S
as a state, treating each Si as a separate state, which introduces nondeterminism into the
underlying automaton being constructed lazily, during further derivation steps. The symbolic
NFA construction is related to Antimirov derivatives [1].

A classical example is R = ⊤*·α·⊤(n) where δ(R) = ite(α,R|⊤(n), R) and δ(⊤(n)) = ⊤(n−1)

with R and ⊤(i) as separate states. So MR would in this case be a symbolic NFA of with O(n)
states instead of a symbolic DFA with O(2n) states.

4 Counters

Let k > 1 and let R be a regex. A counter or bounded loop is a regex R{k} with the language
semantics L(R{k}) def

= L(R)(k). The derivative and nullability of R{k} are defined as follows.
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Let also R{1} def
= R and R{0} def

= ε.

δ(R{k}) def
= δ(R)·R{k − 1} (17)

Null(R{k}) def
= Null(R) (18)

Counters often occur in regexes that are used in the context of security critical applications, for
example in credential scanning [7] and in network intrusion detection [11]. Typically, counters
are used as bounded repetitions over some character class, such as a base-64 alphabet.

Several important rewrite rules arise in derivatives of counters, that often kick in during
matching [15], to reduce the state space of the automaton that has been constructed so far.
The following example illustrates a typical case.

Example 1. Consider a regex R = .*a?{1000} where . is ⊤ and a? abbreviates a|ε.1

δ(R) = δ(.*)·a?{1000} | δ(a?{1000})
∼= R | δ(a?)·a?{999}
∼= R | ite(a, ε,⊥)·a?{999}
∼= R | ite(a, a?{999},⊥)
∼= ite(a, R|a?{999}, R)

For the leaf R|a?{999} of δ(R) we now get the derivative

δ(R|a?{999}) = δ(R)|δ(a?{999})
∼= ite(a, R|a?{999}, R)|ite(a, a?{998},⊥)
∼= ite(a, R|a?{999}|a?{998}, R)
∼= ite(a, R|a?{999}, R)

In the last simplification, a loop subsumption rule is used based on the fact that, for all nullable
regexes S, and for all n and m such that n ≤ m, it holds that L(S{n}) ⊆ L(S{m}). The
resulting symbolic DFA has therefore only two states as illustrated in Figure 1 ⊠

¬a
a

¬a

a

.*a?{1000} .*a?{1000}|a?{999}

Figure 1: Symbolic DFA of .*a?{1000} in RE extended with counters.

Similar rewrites can be implemented in the context of SMT. Many of those rewrites, like
the loop subsumption rule used in Example 1, would be hard to detect if the counter a?{k} is
first expanded into an equivalent repeated concatenation a?(k). Note also that the size of a?(k)

is exponential in the size of a?{k}. A naive application of the derivative rule for concatenation
(13) would cause further quadratic blowup of δ(a?(k)) because a? is nullable.

1The alternative notation for .*a?{1000} uses 0 as the lower bound in the bounded loop as .*a{0,1000}.
In general, S{m,n} where m ≤ n stands for S{m}·(S|ε){n−m}.
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5 Fusion

Let R,S ∈ ERE. Fusion of R with S, R :S, is a regex that denotes the language where the
last and the first elements of the respective words must overlap, let X,Y ⊆ D∗:

L(R :S)
def
= L(R) :L(S), X :Y

def
= {xay ∈ D∗ | a ∈ D, xa ∈ X, ay ∈ Y }

Fusion is relatively unknown in the context of classical regexes, but plays an important role in
the context of regexes (SERE) used in the IEEE 1850 Property Specification Language PSL of
concurrent systems [6, 5]. In an ongoing line of work, we are investigating use of derivative-
based unfolding of linear temporal logic enhanced with regular expressions, called RLTLA [17],
that also builds on transition terms and where fusion is a desired operator. In this setting the
symbolic derivatives have language semantics over ω-words (Dω) and are represented by tran-
sition terms in TA⟨RLTLA⟩. This framework combines regex derivatives with linear temporal
logic (LTL) derivatives and thereby extends LTL into an ω-regular language modulo theories.
The intended application domain for us in that work is trace analysis of cloud services, where
the modulo theories aspect is crucial for dealing with JSON values represented by corresponding
data types in Z3 [19]. Therefore, in that work, the ability to treat fusion through derivatives
is fundamental. A variant of fusion is also present in other PSL operations, such as existential
suffix implication R ⋄� φ, that combines regexes R with temporal formulas φ.

5.1 One Step Lookahead

Let R ∈ ERE. Let One(R) be a predicate in Ψ that denotes L(R)∩D. One(R) plays a key role
in the definition of the derivative for fusion below, essentially as a one-step lookahead predicate
such that a ∈ JOne(R)K ⇔ Null(δ(R)[a]).

One(R)
def
= One(⊤, δ(R))

One(β,R)
def
=

{
β, if Null(R) and SAT(β);
⊥, otherwise.

One(β, ite(α, f, g))
def
= One(β ∧ α, f) ∨One(β ∧ ¬α, g)

Thus (since ⊥ is the unit of ∨), One(R) = ⊥ ⇔ L(R) ∩ D = ∅. Note that if δ(R) is clean then
the test SAT(β) is redundant. One(R) is mostly used below when also δ(R) is needed, the
calculation of the pair (One(R), δ(R)) is therefore naturally combined into a single procedure.

5.2 Derivative of Fusion

The derivative of R:S can be defined elegantly as the union of the derivative of S restricted
with One(R) (the condition that corresponds to the singleton words accepted by R) with the
derivative of R whose leaves are fused with S:

δ(R:S)
def
= ite(One(R), δ(S),⊥) | (δ(R):S) (19)

Null(R:S)
def
= false (20)

where again (2) lifts all the binary operations to transition regexes (extended with fusion).
Many additional rewrite rules, such as ε:S ∼= ⊥, are then also used aggressively. It is also
trivially clear from the formal semantics of fusion that Null(R:S) = false because ϵ /∈ L(R:S).
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Example 2. For α, β ∈ Ψ and R = α*:β*, we get the following derivative, that we compare
here side-by-side with the derivative of S = α*·(α∧β)·β*. Note that One(α*) = α.

δ(R) ∼= ite(α, ite(β, (β*|R), R),⊥)
δ(S) ∼= ite(α, ite(α∧β, (β*|S), S),⊥)

where R and S are clearly equivalent regexes, which is also reflected in their derivatives. ⊠

We now provide an informal argument showing that Lemma 1 holds for regexes with fusion,
in particular that LM(R:S) = L(R:S). Consider X,Y ⊆ D∗ and let av ∈ X:Y . If a ∈ X then
either av ∈ Y or v ∈ Da(X):Y . If a /∈ X then v ∈ Da(X):Y . This reformulation of X:Y
corresponds precisely to the definition of the symbolic derivative. For a formal argument, we
can extend the inductive proof of [13, Theorem 4.3] with fusion as an additional construct.

6 Lookahead

Lookaheads (as well as lookbehinds) are in practice often used to define boundary conditions
for matches when searching for matching subwords also known as captures. In some situations
lookaheads are also used to overcome limitations of standard regexes (RE) where intersection is
unavailable (by enabling a limited form of intersection). The abstract notation for lookaheads
that we are using here is in line with the standard concrete notation. If L ∈ RE then the
lookahead of L is (?=L). While lookaheads can in general be combined freely in any context here
we limit the discussion to when L itself does not contain lookaheads to simplify the reasoning.

Use of lookaheads is in some sense only meaningful as a prefix of a concatenation as in
(?=L)·R where R can of course be ε as a trivial case but R can itself also contain lookaheads.
With respect to language semantics (?=L)·R is equivalent with the regex (L·⊤*)&R in ERE.
In particular, observe that if L is nullable then

L((L·⊤*)&R) = L(L·⊤*) ∩ L(R) = L(⊤*) ∩ L(R) = L(R)

The derivative of (?=L)·R propagates lookahead of the leaves of the derivative of L to the leaves
of the derivative of R. Note that the lookahead operator (?=f) below is lifted to transition
terms f by (1), i.e.,

(?=ite(α, f, g)) = ite(α, (?=f), (?=g))

The following is a form of synchronous product of transition terms that mimics intersection
without explicitly introducing it.

δ((?=L)·R)
def
=

{
δ(R), if Null(L);
(?=δ(L))·δ(R), otherwise.

(21)

Null((?=L))
def
= Null(L) (22)

Recall that concatenation (·) is lifted to transition terms by (2) that essentially constructs
a “product” of the two transition terms whereby the leaves are concatenated as continued
lookaheads – during which cleaning (modulo A) is used to eliminate unreachable combined
leaves. Note also that (?=L) acts as ε if Null(L). Use of the above rule also requires use of
a right-associative normal form of concatenations of RE enhanced with lookaheads, say RE=,
so that the derivative rule (13) is not applied when R1 is a lookahead.

The following example shows a simple use case that illustrates a common pattern that
avoids factorial explosion of regex size as the number of lookahead conditions is increased
when expressed without lookaheads in RE. Such patterns are common for example in checking
password conditions.
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Example 3. The regex R = (?=.*a)(?=.*b)[a-z]* matches a word in lowercase letters that
contains at least one a and at least one b. In ERE R corresponds to (.*a.*)&(.*b.*)&[a-z]*.
Next we construct the derivative of R by using the rules above and we apply cleaning to simplify,
as indicated by ∼=. Here ‘.’ stands for ⊤. Any lookahead with nullable regex simplifies to ε, ε
is the unit element of concatenation, and ⊥ is the cancellation element of concatenation – we
consider ε·R = R·ε = R and ⊥·R = R·⊥ = ⊥ as built-in equalities below.

We start by constructing the derivative of (?=.*b)[a-z]* in some detail to illustrate how the
derivative operations, the propagation rules of regex operations, and the cleaning of transition
terms work.

δ((?=.*b)[a-z]*) = (?=δ(.*b))·δ([a-z]*)
= (?=δ(.*)·b|δ(b))·δ([a-z]*)
∼= (?=.*b|ite(b, ε,⊥))·δ([a-z]*)
∼= (?=ite(b, .*b|ε, .*b))·δ([a-z]*)
∼= ite(b, (?=.*b|ε), (?=.*b))·δ([a-z]*)
∼= ite(b, ε, (?=.*b))·ite([a-z], [a-z]*,⊥)

= ite(b, ε·ite([a-z], [a-z]*,⊥), (?=.*b)·ite([a-z], [a-z]*,⊥))
∼= ite(b, [a-z]*, ite([a-z], (?=.*b)[a-z]*,⊥))

We now construct the derivative of R but omit many intermediate rewrites.

δ(R) = (?=δ(.*a))·δ((?=.*b)[a-z]*)
∼= ite(a, ε, (?=.*a))·ite(b, [a-z]*, ite([a-z], (?=.*b)[a-z]*,⊥))
∼= ite(a, (?=.*b)[a-z]*, ite(b, (?=.*a)[a-z]*, ite([a-z], R,⊥)))
∼= ite(a, (?=.*b)[a-z]*, ite(b, (?=.*a)[a-z]*, R))

We get the derivative for the leaf (?=.*a)[a-z]* similarly to (?=.*b)[a-z]* above.

δ((?=.*a)[a-z]*) ∼= ite(a, [a-z]*, ite([a-z], (?=.*a)[a-z]*,⊥))

We also have that δ([a-z]*) = ite([a-z], [a-z]*,⊥). We have now reached a fixpoint. The
resulting symbolic DFA accepting L(R) is illustrated in Figure 2. ⊠

¬a ∧ [a-z]

¬b ∧ [a-z]

¬a ∧ ¬b ∧ [a-z] a

b a

b [a-z]

(?=.*a)(?=.*b)[a-z]*

(?=.*a)[a-z]*

(?=.*b)[a-z]*

[a-z]*

Figure 2: Symbolic DFA of (?=.*a)(?=.*b)[a-z]* in RE=.

So why bother about RE= if one can already use intersection in ERE? The key point here
is that RE= is part of the standard use of regexes in practice, e.g., in .NET, while as of today,
there exists no industrial nonbacktracking matching engine that supports lookaheads. Since the
new nonbacktracking engine in .NET [8] is already built on derivatives, this technique can be
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used to enhance its expressivity without requiring changes in the syntax of RE=, at least for
IsMatch. From the perspective of SMT community one could consider a class of regexes that
falls into the fragment of RE= as a separate category.

7 Ongoing and Future Work

There are two lines of ongoing work where symbolic derivatives and transition terms are used
as a core technology. We note that transition regexes for ERE were introduced in [13]. They
are a symbolic generalization of Brzozowski derivatives [2] as well as Antimirov derivatives [1]
and have been implemented in Z3 [4, 19].

In the first line of work the derivative based matching framework developed in the .NET
library [8] is being generalized and lifted to ERE together with support also for lookarounds [15].
This work builds on a notion of derivatives that works with spans of words, that enables a
formalization of both lookaheads and lookbehinds and allows to specify the POSIX semantics
of matching. The correctness of this framework has recently also been formalized in Lean [20].
A future work item is to propose a similar extension to SMT that would enable to expand the
support for regexes today to a much larger fragment.

The second line of work is about generalizing temporal logic beyond the classical (proposi-
tional) setting to modulo theories [17]. Here the motivation is related to ongoing work in cloud
reliability, where we want to model, test, and verify behavioral properties of web services. The
observable behavior of a web service at the top level can be seen as ω-words over JSON values
that correspond to http request/response messages with the service. The RLTLA framework
that we have been working with is primarily intended for symbolic model checking of temporal
properties. It first lifts classical LTL to modulo theories, LTLA, by using transition terms over
Dω. This construct lifts, what we call Vardi derivatives [16], to modulo A. It has been widely
recognized that full ω-regularity is fundamental for general applications of linear temporal prop-
erties [9], but is not expressible in LTL alone [18]. We were inspired by the core PSL primitives
in SPOT [5], namely existential suffix implication (R ⋄� φ) and weak closure ({R}), because
both operators elegantly admit incremental derivative based unfolding and can be seamlessly
integrated with transition regexes. While we have been working on a prototype in F#, we
consider it fully feasible to also implement the framework directly in Z3, as then the sequence
theory can be utilized more fully. Related open problems are to axiomatize ω-sequences in
SMT and to standardize the PSL notation in SMT. Recently LTL modulo theories has also
been studied in [10] for realizability of temporal specifications, where use of RLTLA may also
be relevant.
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[10] Andoni Rodŕıguez and César Sánchez. Boolean abstractions for realizability modulo theories. In
Constantin Enea and Akash Lal, editors, Computer Aided Verification, volume 9710 of LNCS,
pages 305–328. Springer, 2023.

[11] Marty Roesch. SNORT. https://www.snort.org/.

[12] Caleb Stanford and Margus Veanes. Incremental dead state detection in logarithmic time. In
Constantin Enea and Akash Lal, editors, Computer Aided Verification, volume 13965 of LNCS,
pages 241–264. Springer, 2023.

[13] Caleb Stanford, Margus Veanes, and Nikolaj S. Bjørner. Symbolic boolean derivatives for efficiently
solving extended regular expression constraints. In Stephen N. Freund and Eran Yahav, editors,
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, pages 620–635. ACM, 2021.
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