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Abstract

Energy optimization problem in Wireless Sensor Networks (WSN) is a backbone of efficient per-

formance of sensor network consisting of small devices with limited and non-recovering battery. WSN

lifetime maximization problem under assumption of that the coverage is main task of the network is

known as Maximal lifetime coverage problem (MLCP). This problem belongs to a class of NP-hard

problems. In this paper we propose a novel simulated annealing (SA) algorithm to solve MLCP. The

proposed algorithm is studied for high dense WSN instances under different parameter setup.

1 Introduction

WSN is a set of huge number of small devices enabling to monitor surroundings, gather infor-
mation about environment and perform many other tasks. They are getting involved in many
spheres of human vital activities, such as agriculture, healthcare, biomedicine, environment
observation, etc. For many missions, sensors are randomly distributed over the target field,
where human access is limited or impossible, therefore batteries of sensors cannot be usually
rechargeable or renewable. Exhaustion of battery charge implies the change in topology of
WSN, quality of its work and reduction of its lifetime.

Maximal lifetime coverage problem in WSN can be stated as a combinatorial problem with
given target field and WSN instance, where a target field is represented by a set POIs = {1,
2, ..., NPOIs} of NPOIs integer numbers and a set of sensors S={s1, s2, ..., sN} is represented
by a family of N subsets from POIs, i.e. si ⊆ POIs for all i=1, 2, ..., N , so that i-th subset is
related to those POIs which are within coverage area of the i-th sensor. Consider homogeneous
network with circle coverage area of radius Rs called sensing range of a sensor. We assume that
all sensors initially possess the same battery charge given by an integer number b and during
each time of sensor’s activity battery limit decreases by one energy unit. The goal of a network
is to support a given coverage ratio q until energy supply of all sensors are exhausted. This
condition called coverage requirement means that at least q-th part of POIs should be sensed
by an active set of sensors. The goal is to find a maximal number of subsets of active sensors,
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each sensor can be included in no more than b subsets and each of such subsets should meet the
coverage constraint. The number of the found subsets corresponds to lifetime of the network.

Simulated annealing (SA) is one of the nature inspired algorithms leading from the physical
process of crystal growth. Firstly SA was proposed and developed by Kirkpatrick, Gelatt and
Vecchi [8], and later by Johnson et al. [7], Koulamas [9], Abramson [1] and Emden-Weinert [3].
SA is based on the physical annealing process applied in glass and metal metallurgy. The goal
of this process is crystallization of metal via its heating and gradual cooling. In slow annealing
the global decrease of system energy is arisen during the crystallization. However, there are
exist system states with energy increased for a while. Due to this fact it is possible to exit from
the local optimum, which the system is found in.

During the last years the efficiency of simulated annealing technique to problems of dis-
crete optimization was proven. These approaches were applied to different combinatorial hard-
computational problems, among which are graph colouring problem [6], [7], flow shop and job
shop scheduling problem [9], school time tabling problem [1], airline crew-pairing problem [3],
etc. There are also more recent applications of SA, among which are router nodes placement
problem [15], parametric sensitivity in fuzzy control systems [12], dynamic robot path planning
[10], replenishment policy for ATO supply chain [5]. In this paper, we propose a novel SA
algorithm to solve MLC problem in WSNs.

The remainder of the paper is organized as follows. In next section, we introduce simulated
annealing algorithm application to MLCP in WSN. Section 3 and 4 contains parameter setup
and experimental results with discussion. Conclusion are presented in the last sections. More
results are added in appendix of the paper.

2 Simulated Annealing algorithm solves MLCP

SA algorithm has four initial parameters: temperature T , a cooling ratio r, temperature length
L, frozen threshold θ. Pseudo code of the general scheme of SA is presented in Algorithm 1
and consists of the following steps. Two cycles are performed on the randomly taken solution
Sol, called accepted solution. The external cycle is executed until the temperature T drops
below θ. Each external cycle step the temperature is decreased according to a cooling scheme.
During the internal cycle, which is repeated L times, a random neighbouring solution Solneigh
is generated and evaluated by a function f as well as accepted solution. In case of the worse
neighbour, it is accepted instead of previous one with probability e−

∆
T , where

∆ = f(Sol)− f(Solneigh) (1)

otherwise, the best of these two is accepted for the next iteration.

SA provides comparatively good solutions for many problems of combinatorial optimization.
However, there exists a fine parameter tuning problem which means that appropriate set of
parameters highly impacts on the algorithm’s performance and depends on a given problem.
For SA algorithm running, the following entities should be defined:

• search space, which should contain all feasible solutions, i.e. the solutions meeting all
constraint posed by the problem,

• neighbourhood, which is defined by a heuristic of low computational cost and enables to
achieve good solutions,

• initial parameters: temperature T0 and a cooling scheme with a set of cooling parameters.
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Algorithm 1 SA algorithm to MLCP

Input :
Initial temperature T=100
A cooling ratio r ∈ [0,1)
Temperature length L
Frozen threshold θ
Random solution Sol
while notfrozen do

for i← 1 to L do
evaluate accepted solution f(Sol)
pick a random neighbour Solneigh(Sol)
evaluate neighbouring solution f(Solneigh)
let ∆ = f(Sol)− f(Solneigh)
if ∆ ≤ 0 then
Sol < −− Solneigh

else
Sol < −− Solneigh with probability e

∆
T

end if
i=i+1,

end for
reduce temperature T = r × T ,

end while
Output :
the last accepted solution

Initial temperature and a cooling scheme have a key meaning for the quality of results
provided by the algorithm. Beginning from too low temperature or too rapid cooling enables
to converge the local optimum. Too high temperature or very slow cooling follows the increase
in computation time need to obtain the result. We consider linear cooling scheme, where
temperature is changing as follows:

Ti+1 = Ti − α, (2)

where a cooling factor α ∈ (0, 1), d is usually set to one [2], c is greater than or equal to the
largest energy barrier in the problem [11] [4] and i is a current step in the external cycle, and
Ti is temperature of the system in the i − th step. The acceptance probability is assumed to
be equal to zero for negative temperatures.

2.1 Solution encoding

A solution is encoded as an Tmax × N table (further we call it as a schedule or a schedule
solution), where Tmax is predefined in time intervals meeting the following condition:

b < Lifetime(q) < Tmax << N × b, (3)

where Tmax should to be set greater than Lifetime(q) (2) and q should be less than complete
coverage provided by the network with all activated sensors. The upper bound N × b arises as
a maximal number of different subsets, each of which consists of one element (such elements
N) and, according to battery capacity requirement, can appear in the schedule b times.
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In the schedule the parameter Tmax is related to a number of columns. A number N is
a number of sensors in the sensor network and concerns the number of rows in the schedule
solution’s table. A column of the schedule contains a network of active sensors during the
certain time interval. Each row of the table is related to one of the sensors and represents its
schedule of activity over all period of time Tmax.

Binary coding is used, so that ”1”s value corresponds to active state of a sensor, ”0” corre-
sponds to a sleeping state. Cells of the table are filled by ”1”s and ”0”s values in such a way
that battery capacity restriction is met, i.e. each row of the table contains b ones and Tmax− b
zeros.

A schedule solution is associated with a sequence of Tmax numbers called a coverage string,
i.e

coverage string = {cov(1), ..., cov(Tmax)}, (4)

where for every i = 1, ..., Tmax cov(i) is counted according to (1) and |POIsobs| = | ∪j=1

POIsobs(sj)|.

Algorithm 2 Pseudocode - Encoding a ”one” solution

Input : Sol
for i← 1 to b do
for j ← 1 to N do

set i− th bit in the j-th row to be equal to 1,
j = j + 1,

end for
i = i+1,

end for
Output : Sol

2.2 Evaluation function

As evaluation function, which should be maximized, in MLCP is assumed Lifetime(q) metric
defined as a number of time intervals, during which coverage requirement is met, i.e.

Lifetime(q) =

Tmax∑
i=1

1|cov(i)≥q (5)

The whole timeline of a schedule is divided into two sequences: Redundant and Unsatisfactory.
All time units when active sensors cover more than q-th part of POIs constitute Redundant
Sequence (RS) of WSN schedule, the rest time units are included in Unsatisfactory Sequence
(US) [13].

2.3 Generating neighbouring solutions

The method of solutions generating is related to the search space’s definition and a structure
of MLCP’s solution. The first solution is created as ”one” solution such that the first b in each
row in the solution’s array are fulfilled by ”1” and the rest are filled by ”0” (see, Algorithm
2). Generating the sequential solutions is based on a swap of a pair of cells of opposite values.
A number of changing pairs, let us call it a neighbourhood size, relatively to a schedule’s size
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provides a probability of a cell’s change. For example, in case of changing two random cells, we
obtain a solution in 1-neighbourhood from a given solution.

In SA algorithm, we consider problem knowledge-wise scheme to generate neighbouring
solutions which consists in follows.

The pseudo code of the neighbours generating scheme is presented in Algorithm 3. The
additional information about solution is computed such as coverage of each time slot according
which the time line is divided on RS, ES and US.

Algorithm 3 Pseudocode - problem knowledge - wise neighbourhood

Input :
Sol
k
compute RS, US
for i← 1 to k do
for j ← 1 to RS.size() do

choose random ”1” gene from i− th RS column, the row of the gene let us denote as l
find the first ”0” gene from US and l − th row
change the values of the pair of chosen genes
j = j + 1

end for
i = i+ 1

end for
Output :
Chromosome

3 Experimental setup

In this section, we present some results of experimental study of the proposed SA algorithm to
solve MLCP.

SA need to be set up values of a set of parameters, which are influential in perfection of
algorithm’s performance to solve the given problem. In the same time the problem defines an
input parameters set, for which the algorithm provides the best results under the certain values
algorithm’s parameters. The algorithm was studied under the wide range of problem instances.

The experimental study was conducted in two steps. Firstly, several experiments were
made in order to estimate the best values for parameters of the algorithms. The next step of
experiments was to compare these algorithms with the best parameters sets. For this purpose
a set of problem instances was created, which are defined by target field, WSN instance and
required coverage level, i.e.

• Target field 100 × 100 (m2)

• Distance between POIs (g) {1, 5, 10} m
• A number of POIs {100, 400, 10000}
• A number of sensors (N) {100, 200, 300}
• Battery capacity b {20, 40, 60, 80, 100}
• Sensing range (Rs) {1, 2, 5, 10, 20} m
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Table 1: Parameter set for SA.

Parameter Values
Solution size

A size of a schedule (Tmax) 10 ×b
Algorithm parameters

Neighbourhood type {random, knowledge-wise}
Neighbourhood size kneigh {1, 5, 10, 20, 30, 40, 50}
Cooling schemes and linear (α = 0.5)
Initial temperature T0 = 100

Input data
Target field 100 × 100 (m2)
Distance between POIs (g) {1, 5, 10} m
A number of POIs {100, 400, 10000}
A number of sensors (N) {100, 200, 300}
Battery capacity b {20, 40, 60, 80, 100}
Sensing range (Rs) {1, 2, 5, 10, 20} m
Coverage ratio (q) {0.75, 0.8, 0.85, 0.9, 0.95, 1.0}

• Communication range (Rc) 42.5 m

• Coverage ratio (q) {0.75, 0.8, 0.85, 0.9, 0.95, 1.0}
• A size of a schedule (Tmax) 10 ×b

The whole parameter setup for the SA is summarized in Table 1.
For evaluating the solutions, we rely on our network simulator, written in Java. The exper-

iments were run on standard PC computer with two cores 1.66GHz CPU and 1GB RAM.
Let us denote SA algorithm for a chosen parameters set of values as SA-neighkneigh

-
coolingScheme, where neigh is K in case of knowledge-wise (Algorithm 3), kneigh is a neigh-
bourhood size from the set {1, 5, 10, 20, 30, 40, 50}, and a coolingScheme is lin in case of linear
with parameters such as indicated in Table 1. For example, SA-K10-lin is a denotion for SA al-
gorithm with knowledge-wise neighbours’ choice with linear cooling scheme and neighbourhood
size equal to 10. Let us assume default values as follows:

• Target field 100 × 100 (m2),

• Distance between POIs g = 10 (m),

• A number of POIs 100,

• A number of sensors N = 100,

• Battery capacity b = 20,

• Sensing range Rs = 20 (m),

• Coverage ratio q = 0.9.

3.1 Target field, POIs

Sensors are randomly deployed over the target field F of dimensions (L × L)m2, where in all
experiments we assume L = 100. POIs are uniformly distributed over the target field F in
every g m, where g = 20.
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3.2 WSN instances

We consider WSN consisting of a number N of sensors equal to 100, 200 and 300, respectively.
For each value of N , we created 3 instances, which differ by random allocation of sensors, so 9
instances were used in experimental study. Each instance is described as Instance num−sensors
instance− order − number, so e.g. Instance23 means the third instance with N=200 sensors.
Each sensor possess a sensing range Rs equal to 20m, and each node has a battery capacity
b from the set {20, 40, 60, 80, 100}. The size of an schedule solution depends on a number
of sensors N in the WSN instance and battery capacity b. These two parameters are strongly
impact on a lifetime of the WSN.

WSN density In order to prolong lifetime of WSN in the same target field a larger amount
of sensors is deployed. We created instances of with a number N of sensors in the range {100,
200, 300} distributed in the target field of the same size.

Sensing range The sensing range has an impact on a number of sensors which is necessary
to be activated in order to achieve required coverage level q. We assume a sensing range (Rs)
values in the range {1, 2, 5, 10, 20} m.

Battery capacity Battery capacity b parameter is defined in time units dependently on
initial battery capacity of a sensor and a number of time units during which the sensor is
activated. Therefore, we study the performance of the algorithm under the b ∈ {20, 40, 60, 80,
100}. In case of the same initial battery capacity the higher value of b corresponds to shorted
time unit value in the schedule timeline division.

Randomness of deployment For each WSN density we created three random deployments.
For each value of N , we created 3 instances, which differ by random allocation of sensors. Each
instance is described as Instance num−sensors instance−order−number, so e.g. Instance23
means the third instance with N=200 sensors.

3.3 Coverage ratio q

Preserving complete area coverage is a desirable objective, but, sometimes, to achieve high
coverage ratio may be more practical interest. Analysis and simulations in [18] [16] [17] and
[14] have shown that network coverage lifetime can be greatly prolonged if only preserving
partial coverage. As we have discussed above, full coverage is not achievable by arbitrary
instance of WSN. Therefore, in experimental study we use required coverage ratio q ∈ {0.75,
0.8, 0.85, 0.9, 0.95}for WSN with Rs ∈ {10, 20} and full coverage for Rs = 20.

4 Experimental Study

4.1 Influence of neighbourhood size on the lifetime of WSN

Table 2 contains the results of Lifetime(0.9) averaged over the 25 runs of each of the algorithms.
For the algorithm seven variants of neighbourhood size for SA algorithms were studied with
linear cooling scheme. Table 2 presents maximal, average with standard deviation of values of
Lifetime(0.9), a number of times of maximum achieved and average performance time per run
of SA-Kk-lin, where k ∈ {1, 2, 3, 4, 5, 10, 15} for Instances 1, 21 and 31 and battery capacity
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b = 20. Among the different neighbourhood size the best one is provided by SA-N1 − lin
independently on WSN instance. Therefore, in next experiments we assume one-neighbourhood.

4.2 Impact of a density of WSN deployment on the lifetime of WSN

Table 4 contains the result of Lifetime(0.9) averaged over the 25 runs of each of the SA with one-
neighbourhood and linear cooling scheme. To compare impact of density of WSN deployment
on the lifetime of WSN the results obtained for instances with higher density N equal to 200
and 300 are compared with the results provided for Instance1 with twice and three times taken,
respectively. In such a way, the best Lifetime(0.9) obtained for Instance 21 and Instance 31 by
SA-N1-lin are better 5,5% and 4,9% than for Instance1. Therefore, increasing WSN size with
random distribution allows improve Lifetime(q) against with increased number of sensors with
the same localization.

4.3 Coverage ratio requirement and lifetime of WSN

In this experiment, we would like to study relation between coverage ratio q requirement and
lifetime of the network provided by SA algorithm. Maximal, average with standard deviation
values of Lifetime(q), a number of times of maximum achieved and average performance time
per run obtained by SA-K1-lin, where q ∈ {0.75, 0.8, 0.85, 0.9, 0.95} for Instance 1 and b = 20
are presented in Table 3. From Table 3 a linear decrease of Lifetime(q) with growth q can be
observed, where reducing coverage requirement by 5% allows to improve network lifetime by 20
time units.

4.4 Impact of a randomness of WSN deployment on the lifetime of
WSN

The task of these series of experiments is to study the influence of randomness of the WSN
deployment on the quality of the SA algorithm performance. For this purpose, nine instances
1, 2, 3, 21, 22, 23 and 31, 32, 33 with random distribution of 100, 200 and 300 sensors were
created.

Table 4 contains summarized results of Lifetime(0.9) obtained by SA-K1-lin for three WSN
instances with initial battery b = 20. The values are averaged over the 25 runs provided by the
algorithm.

4.5 Impact of an initial energy charge of sensors on the lifetime of
WSN

The aim of this experiment is to study the impact of the parameter b of the MLC problem
on the results obtained by the SA algorithm. To achieve this goal, 25 runs of SA-K1-lin for
instance 1 with five values of battery capacity parameter b ∈ {20, 40, 60, 80, 100} were made.
The results are presented in Table 5.

Table 5 contains summarized results: maximal, average with standard deviation values of
Lifetime(0.9) and number of times of maximum achieved by each of SA algorithms with linear
cooling scheme.

It should be noticed, for some battery capacities, for example for b = 80 and b = 100 the
Lifetime(0.9) values are better than linearly increased Lifetime(0.9) obtained for b = 20. So,
if we increase average Lifetime(0.9) for b = 20 which is 76 four and five times respectively, we
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Table 2: Maximal, average with standard deviation values of Lifetime(0.9), a number of times
of maximum achieved and average performance time per run by SA-Kk-log and SA-Kk-lin,
where k ∈ {1, 2, 3, 4, 5, 10, 15} for Instances 1, 21 and 31 and b = 20.

WSN Algorithm Max Avg ± σ Times Texec
of Max [s]

SA-K1-log 81 76.0 ± 2.23 1 66
Instance SA-K2-log 81 75.0 ± 2.23 1 68
1 SA-K3-log 81 76.0 ± 2.23 1 69

SA-K4-log 79 74.0 ± 2.23 1 46
SA-K5-log 78 74.0 ± 1.73 1 68

SA-K10-log 77 73.0 ± 2.0 5 69
SA-K15-log 76 72.0 ± 1.73 1 76

SA-K1-lin 80 76.0 ± 2.0 1 66
Instance SA-K2-lin 79 76.0 ± 1.41 2 102
1 SA-K3-lin 78 74.0 ± 2.0 2 104

SA-K4-lin 77 74.0 ± 1.41 2 79
SA-K5-lin 79 75.0 ± 1.73 1 68

SA-K10-lin 79 73.0 ± 2.0 1 66
SA-K15-lin 77 72.0 ± 2.0 1 68

SA-K1-log 171 164.0 ± 2.82 1 305
Instance SA-K2-log 168 162.0 ± 2.23 1 256
21 SA-K3-log 167 161.0 ± 2.44 1 402

SA-K4-log 163 159.0 ± 2.64 3 242
SA-K5-log 162 158.0 ± 2.64 1 241

SA-K10-log 161 154.0 ± 3.0 1 283
SA-K15-log 161 153.0 ± 3.60 1 242

SA-K1-lin 167 163.0 ± 2.44 3 250
Instance SA-K2-lin 166 161.0 ± 2.23 1 245
21 SA-K3-lin 166 161.0 ± 2.23 1 245

SA-K4-lin 163 159.0 ± 2.44 3 260
SA-K5-lin 163 158.0 ± 2.23 1 238

SA-K10-lin 161 154.0 ± 3.0 1 340
SA-K15-lin 157 152.0 ± 2.23 1 287

SA-K1-log 255 248.0 ± 2.82 1 409
Instance SA-K2-log 251 246.0 ± 3.46 3 519
31 SA-K3-log 249 245.0 ± 2.64 2 420

SA-K4-log 248 242.0 ± 3.16 2 414
SA-K5-log 247 240.0 ± 3.31 1 414

SA-K10-log 242 235.0 ± 2.82 1 586
SA-K15-log 237 231.0 ± 2.82 2 569

SA-K1-lin 255 248.0 ± 3.31 1 548
Instance SA-K2-lin 254 246.0 ± 2.82 1 538
31 SA-K3-lin 251 244.0 ± 3.16 2 561

SA-K4-lin 247 243.0 ± 2.64 6 755
SA-K5-lin 246 240.0 ± 3.60 2 545

SA-K10-lin 238 233.0 ± 2.64 1 550
SA-K15-lin 239 230.0 ± 4.24 1 656
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Table 3: Maximal, average with standard deviation values of Lifetime(q), a number of times of
maximum achieved and average performance time per run by SA-K1-log and SA-K1-lin, where
q ∈ {0.75, 0.8, 0.85, 0.9, 0.95} for Instance 1 and b = 20.

q Algorithm Max Avg ± σ Times Texec
of Max [s]

0.95 SA-K1-lin 59 54.0 ± 1.73 1 49
SA-K1-log 58 54.0 ± 1.73 1 51

0.9 SA-K1-lin 80 76.0 ± 2.0 1 66
SA-K1-log 81 76.0 ± 2.23 1 66

0.85 SA-K1-lin 100 95.0 ± 2.23 2 85
SA-K1-log 100 95.0 ± 2.0 1 86

0.8 SA-K1-lin 119 115.0 ± 2.0 1 114
SA-K1-log 119 115.0 ± 1.41 1 105

0.75 SA-K1-lin 140 135.0 ± 1.73 1 120
SA-K1-log 140 136.0 ± 2.23 3 119

would obtain 304 and 380 for b = 80 and b = 100. These values are smaller than those that
provided by SA algorithm.

5 Conclusion

In this paper, we have proposed a novel simulated annealing algorithm to solve MLCP in
WSN. The proposed algorithm is studied under different parameter setup assumptions and
using problem specific knowledge about the current solution in order generates the next one in
a effective way.

Results of experimental study of the algorithm and comparison of them with ones obtained
by applying recently proposed centralized algorithms show that despite its simplicity and limited
local information it is able to achieve similar results as centralized algorithms in terms of
Lifetime(q) metric. The purpose of current and future studies is more detailed study of the
proposed algorithm for different parameters of GCA and WSN densities and using it for different
variants of MLCP problem.
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A Appendix

A.1 Initial temperature setup

Temperature level has a high impact on acceptance the solution during each stage of SA. The
higher temperature, the lower probability of acceptance the solution worse than the current
one. With decreasing temperature level, the probability of acceptance of worse solution is
increasing. Optimal value of initial temperature depends on the range of difference between
evaluation function’s values of the current solution and its neighbourhood in the problem. The
initial temperature should be set under consideration of acceptance probability during the first
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(a) (b)

Figure 1: Dynamics of acceptance probability e−
∆
T with temperature level T for difference

between current and neighbouring solutions ∆ ∈ {1, 2, 5, 10, 20} (a) and with ∆ for temperature
T ∈ {5, 10, 25, 50, 75, 100} (b)

stage of the algorithm performance.

A.2 Cooling scheme

We consider cooling schemes linear scheme and linear scheme with heating. Heating condition
allows to prevent convergence to local minima and occurs when there is no improvement of
solution for a predefined number of iterations. Temperature is arisen in case of all the following
conditions are met:

• all steps in the internal cycle are performed L times, where L is a temperature cycle length,

• during the current temperature level at least one change of accepted solution was made,

• the termination condition is violated.

The temperature level is increased, if all the following statements is true:

• all steps in the internal cycle are performed L times, where L is a temperature cycle length,

• during the current temperature level no one change of accepted solution was made,

• the termination condition is violated.

In further experiments, we will study two different cooling schemes with heating: (1) linear
with α = 0.5 and initial temperature T0 = 100 and (2) logarithmic initial temperature T0 = 50.
The first scheme is characterized by a high acceptance probability of worse solutions during
the first stage of SA algorithm, quick fall of the acceptance probability in the second stage
and stagnation process with zero acceptance probability during the third stage, when the new
solution can be accepted only if it is strictly better than previous one. The second logarithmic
scheme can be described by two phases. During the first phase lasted during the first 50
iterations, the worse new solution is accepted with high probability changing from 0.95 to 0.7.
During the second phase the worse solution can be accepted with probability around 0.6. A
number of iterations we restrict by 200 in order to expand the linear scheme by the third
stage and observe the effects of dynamics of the solution under the neighbouring modification
algorithm.
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For termination condition we assume the following values:

1. exceeding a number of iterations accepted as minimal waiting value fmin times fifty.

2. achieving the temperature level around 0, given by a small value θ equal to 5,

3. a lack in solution improvement after a predefined number of iteration LTerm = 50 under
the condition of the evaluation function is not less than minimal waiting value fmin

A.3 Impact of sensing range on the lifetime of WSN

As one can see from Table 6, the upper bound of timeline Tmax in WSN schedules varies highly
and depends on the sensing range value. The very low values of Lifetime(1.0) upper bound were
obtained for small sensing ranges such as Rs equal to 1, 2 and 5. This fact can be observed in
Figure 2 on the example of WSN Instance1 distribution with different sensing ranges Rs ∈ {1, 2.
5, 10} and distances between POIs equal to 10 (Figure 2). As one can observe from the Table,
too small values of sensing range Rs relatively to the distance between POIs g follows the fact
that there exist sensors which have no any POIs within their sensing ranges. The less sensing
range of sensors is, the greater number of sensors covering no POIs appears, as a consequence,
possible achieved coverage by WSN is low. However, the probability of that a greater number
of POIs are covered is increased with increasing WSN density. For high sensing ranges such
that each sensor covers all target field, the MLCP becomes trivial and leads to switching on
one sensor during each time interval. In that case Lifetime(q) for all q is equal to a number of
sensors times battery capacity, i.e.

Lifetime(q) = N × b, ∀q ∈ (0, 1) (6)

Due to the fact, the the high coverage, i.e coverage greater than 90%, is achievable by WSN
instance with sensing range higher than 10, in the experiments we study WSN with Rs ∈ {10,
20}.

A.4 Impact of POIs density on the lifetime of WSN

Increasing resolution of target field, increasing a number of POIs in the target field, allows to
improve possible achieved coverage by WSN under the condition that all sensors are switched
on. Table 6 represents the percentage of covered POIs computed for 9 Instances, NPOIs ∈
{100, 400, 1000}, Rs ∈ {1, 2, 5, 10, 20}. Increasing POIs density in most cases follows a slight
increase of percentage of covered POIs. As one can see from Table 6 this phenomena occurs in
39 from 45 cases. As an example of such exception is Instance 1 with Rs ∈ {5,10}, Instance 22
with Rs ∈ {1,2} and Instance 32 with Rs ∈ {1, 5}. Because of that the percentage of covered
POIs for different density of the target field does not vary highly, further we assume g equal to
5 as default value.

A.5 Impact of WSN density on the lifetime

As one can observe from Table 6, for small values of sensing range percentage of covered POIs
grows with increasing WSN density. This is visible for Rs ∈ {1, 2, 5}, while this affect is not
high for Rs equal to 10 and is not observed for Rs equal to 20. The impact of WSN density on
Lifetime(q) will be study in the following chapter.
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(a) Rs = 1 (b) Rs = 2

(c) Rs = 5 (d) Rs = 10

Figure 2: Instance1 of WSN distributed in the target field with distance between POIs g=10
and sensing range Rs is equal to 1 (a), 2 (b), 5 (c) and 10 (d).

310



SA to MLCP in WSN A. Tretyakova F. Seredynski

Table 6: Percentage of covered POIs computed for 9 Instances, NPOIs ∈ {100, 400, 1000}, Rs ∈
{1, 2, 5, 10, 20}.

Rs

Instance NPOIs 1 2 5 10 20
N=100

100 0.01 0.07 0.45 0.92 1.0
1 400 0.0325 0.085 0.525 0.9175 1.0

10000 0.0306 0.1183 0.5187 0.9295 1.0
100 0.01 0.07 0.44 0.89 1.0

2 400 0.0325 0.1125 0.5025 0.92 1.0
10000 0.0309 0.1129 0.51 0.9301 1.0
100 0.02 0.11 0.45 0.92 1.0

3 400 0.0225 0.115 0.5 0.9225 1.0
10000 0.0297 0.116 0.5115 0.9259 1.0

N=200

100 0.03 0.14 0.65 0.98 1.0
21 400 0.055 0.2075 0.7425 0.9875 1.0

10000 0.0603 0.2157 0.7553 0.9939 1.0
100 0.07 0.18 0.76 0.95 1.0

22 400 0.0725 0.2275 0.7775 0.9675 1.0
10000 0.0629 0.2186 0.7856 0.9789 1.0
100 0.04 0.17 0.7 0.95 1.0

23 400 0.0525 0.2 0.755 0.9825 1.0
10000 0.0601 0.2162 0.7579 0.9956 1.0

N=300

100 0.07 0.25 0.78 0.99 1.0
31 400 0.085 0.3 0.855 0.9925 1.0

10000 0.0904 0.3046 0.8726 0.9964 1.0
100 0.09 0.23 0.86 0.96 1.0

32 400 0.0925 0.305 0.855 0.9775 1.0
10000 0.0899 0.3015 0.872 0.9877 1.0
100 0.07 0.25 0.84 0.98 1.0

33 400 0.0775 0.28 0.87 0.995 1.0
10000 0.0889 0.3093 0.8782 0.9994 1.0
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