
 Automatically Extracted Metrics for Diagnosis 

of Developmental Dysplasia of the Hip are 

Sensitive to Assumptions About Morphological 

Priors 

María José Bontá Suárez1, Emily Schaeffer2, Kishore Mulpuri2, 

Rafeef Garbi1, Antony J. Hodgson1 

1 University of British Columbia, Vancouver, BC, Canada 
2 Orthopedic Surgery, British Columbia Children’s Hospital, Vancouver, BC, Canada 

mbontas@student.ubc.ca 

Abstract 

 

Deep learning techniques for diagnosing Developmental Dysplasia of the Hip (DDH) 

in newborns from ultrasound (US) images of the hip have demonstrated improved 

reliability over manual annotations of US scans. While volumetric 3D US has been shown 

to better represent hip bone morphology, most of the proposed automatic diagnostic 

approaches to measure 3D equivalents of the commonly used 2D Graf angle rely on 

strong morphological (geometric) priors. We have found that a significant fraction of 

cases (~20%) result in metrics which expert assessors regard as incorrect or implausible. 

We hypothesize that the lack of robustness of existing algorithms is due to their 

assumption that selected morphological priors are always valid, and this may not hold in 

a number of cases. In this study, we evaluate the differences between extracted DDH 

metrics based on expert labels and automatic segmentations. We show that a metric 

extraction process that uses morphological priors is sensitive to relatively small variations 

in the segmentation results. 

1 Introduction 

Developmental Dysplasia of the Hip (DDH) refers to anatomical malformations of the hip joint 

ranging from mild dysplasia to full dislocation. Early diagnosis has been shown to improve prognosis 

and mitigate the long-term impact in the quality of life of the affected individuals [1, 2], while late 

presentations and missed diagnoses are estimated to be responsible for ~20%-40% of osteoarthritis in 
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young adult patients [3]. 2D ultrasound (US) of the hip in the coronal position is widely used to diagnose 

DDH, but it suffers from low specificity, especially in the hands of novice radiologists [4]. Comon 

DDH diagnostic metrics extracted from 2D US include the Graf alpha angle (𝛼) [5] and the femoral 

head coverage (𝐹𝐻𝐶 ) ratio [6]. Quader (2021) showed that 3D US can better represent the 3D 

morphology of the hip and that automatic diagnosis can significantly reduce inter-rater variability [7].  

The first intrinsically volumetric DDH metrics such as the 3D 𝛼 angle were based on hip bone voxel 

labeling from 3D US volumes of the hip, followed by extraction of geometric properties from these 

labels [8, 9, 10, 11]. In recent work by El-Hariri (2020), the author shows that using deep learning to 

segment 3D US volumes to obtain predictions for the pelvis and femoral head and a new method to 

extract 3D equivalents of the 𝛼 and 𝐹𝐻𝐶  from these segmentation predictions improved inter-scan 

repeatability, but the extraction step assumed certain morphological priors such as bounds on the 

relative location of the femoral head and acetabulum. At this point, it is unclear how sensitive the 

extracted dysplasia metrics are to differences in the segmentation of anatomical structures versus 

differences in the metric extraction process. In this study, therefore, we take the first step towards 

assessing the sensitivity of the calculated DDH metrics to the performance of the deep learning 

segmentation models. We qualitatively and quantitatively compare the 𝛼3𝐷  and 𝐹𝐻𝐶3𝐷  metrics 

calculated using El-Hariri's (2020) metric extraction method based on (1) expert segmentations of the 

pelvis and femoral head and (2) segmentations obtained using El-Hariri’s deep-learning-based 

segmentations. 

2 Methods 

We generate pelvis and femoral head segmentation predictions from an expert-labelled test set 

database of previously acquired 3D US volumes using trained 3D UNet models, as described by 

El-Hariri (2021) [12]. We then extract and compare the 3D alpha angles (𝛼3𝐷) and 3D FHC (𝐹𝐻𝐶3𝐷) 

from both segmentation predictions and expert labels using the method presented by 

El-Hariri (2020) [11]. 

2.1 Dataset 

Our dataset consists of 115 expert-labeled 3D US volumes of the hip from 34 newborns (average 

age 7 weeks, 2-15 weeks) acquired at BC Children’s Hospital under ethics approvals H14-01448, 

H18-00131, and H18-02024. The volumes were collected using the SonixTouch Q+ machine and a 

4DL14-5/38 Linear 4D probe at its default penetration settings (7.5MHz with an image depth of 4cm). 

The mechanically swept B-mode slices acquired over an angle of 30° were reconstructed into 38mm3 

volumes. The volumes were then annotated by a graduate student under the supervision and review of 

our collaborating orthopaedic surgeon to obtain pelvis and femoral head expert labels. Both healthy and 

dysplastic infant hips were included in this dataset. 

2.2 Bone Segmentation 

We trained two 3D UNet networks for the tasks of pelvis and femoral head segmentation following 

El-Hariri's (2021) guidelines on a subset of 64 US volumes from 20 participants. The volumes were 

down-sampled to 128×128×128 voxels and, given the small data size available, we applied random 

classical augmentations (such as scaling, rotation, flipping, etc.). In both tasks we optimized the 

combined BCE Loss and Dice Loss. We evaluated the trained models on the separate test set of 51 

volumes from 14 participants to generate pelvis and femoral head segmentation predictions - see Figure 

1B. 
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2.3 DDH Metric Extraction 

The metric extraction algorithm presented by El-Hariri (2020) first identifies a region of interest 

(ROI) composed of the intersection of two voxel spaces (𝑅𝑂𝐼 = 𝑅𝑂𝐼𝐴𝑃 ∩ 𝑅𝑂𝐼𝑆) defined by (1) the 

voxels within the slices in the anteroposterior plane within 3.5mm from the center of mass (COM) of 

the femoral head (𝑅𝑂𝐼𝐴𝑃), and (2) the voxels within a sphere of 15mm radius centered around the 

femoral head (𝑅𝑂𝐼𝑆) - see Figure 1A. Within this 𝑅𝑂𝐼, the point of maximum Gaussian curvature is 

found, and used to define the voxels from the straight portion of the ilium (𝐼) and acetabulum (𝐴). 

Planes are fitted to both 𝐼 and 𝐴, and the angle between the normal to the planes is calculated to obtain 

𝛼3𝐷. Finally, 𝐹𝐻𝐶3𝐷 is calculated as the proportion of the femoral head points medial to the plane of 𝐼 

relative to the total points assigned to the femoral head.  

2.4 Evaluation Metrics 

For each volume in the test set we calculated 𝛼3𝐷 and 𝐹𝐻𝐶3𝐷 from both the expert labels and the 

segmentation predictions and compared them. We also calculated the Dice coefficient between expert 

labels and segmentation predictions for the pelvis and femoral head - see Figure 1C. To quantify the 

correlation between segmentation performance and DDH metric variability, we calculated the Pearson 

correlation coefficient between the extracted DDH metrics and the calculated Dice values. Finally, for 

qualitative evaluation, we identified examples of coronal slices from US volumes with large 𝛼3𝐷 

differences between segmentation predictions and expert labels. 

 
Figure 1. Overview of DDH diagnosis and evaluation framework. A. Region of interest (ROI) defined from 

morphological priors involving the relative position of the femoral head with respect to the pelvis used by the 

metric extraction approach proposed by El-Hariri (2020) [11]. The points from the pelvis inside a sphere centered 

at COM with a radius extending to the point of maximum gaussian curvature (*) are assigned to 𝐴 while the points 

outside the sphere are assigned to 𝐼. B. Example of coronal US slice with expert bone segmentations along with a 

corresponding 3D visualization and deep learning segmentation prediction. C. Example of Dice evaluation and 

plane estimates used for measuring 𝛼3𝐷 and 𝐹𝐻𝐶3𝐷.  

                                                          

        

    

          

                    

     

                              

       

                                

               

                 

                 

           

                         

    

     

                      

 
 

 

   
 

                      

Automatically Extracted Metrics for Diagnosis of Developmental Dysplasia of... M. J. Bonta et al.

27



3 Results 

Figure 2A shows the difference in 𝛼3𝐷 and 𝐹𝐻𝐶3𝐷 obtained when comparing metrics extracted from 

deep learning segmentations and expert labels. The mean differences in 𝛼3𝐷  and 𝐹𝐻𝐶3𝐷  using El-

Hariri's (2020) metric extraction were -2.0° (SD: 9.8°) and -1.9% (SD: 13.1%) respectively (N=48, 3 

samples failed to be calculated). The Pearson correlation coefficients between the absolute 𝛼3𝐷 

difference and the pelvis and femoral head Dice were significant at 𝜌 =  −  0.45 (p =  0.0020) and 

𝜌 = −0.341 (p = 0.019) respectively, while the Pearson correlation coefficients between the absolute 

𝐹𝐻𝐶3𝐷  difference and the pelvis and femoral head Dice were not significant at 𝜌 =  − 0.244 (p =
0.098) and 𝜌 = −0.049 (p = 0.74) respectively.  

Figure 2B shows examples of 2D coronal slices of volumes with discrepancies in 𝛼3𝐷 greater than 

10°. 

  

 
Figure 2. A. Comparison of 𝛼3𝐷 and 𝐹𝐻𝐶3𝐷 obtained from expert segmentations and deep learning predictions 

where the hue indicates pelvis Dice. The black dotted line shows 𝑦 = 𝑥. (Right) The background color change in 

the 𝐹𝐻𝐶3𝐷 plot indicates the delimitation between a healthy hip (𝐹𝐻𝐶 > 50%) against a potentially unstable hip 

(𝐹𝐻𝐶 < 50%) [6]. B. Coronal slices of US volumes from 4 different participants with large discrepancies in 𝑎3𝐷 

values between the two segmentation approaches (expert vs deep-learning-based) showing pelvis and femoral head 
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masks with the extracted 𝐼 and 𝐴 planes and calculated 𝛼3𝐷 and 𝐹𝐻𝐶3𝐷. We also show the pelvis Dice (𝐷𝑆𝐶𝑃) and 

the femoral head Dice (𝐷𝑆𝐶𝐹𝐻) values. 

4 Discussion & Conclusion 

We evaluated El-Hariri's (2020) [11] automatic DDH diagnosis method on 3D US volumes of 

newborn’s hips and found that, for a given US volume, there were significant discrepancies between 

the DDH metrics calculated from expert labels and deep learning bone segmentations, leading to a 

diagnostic category change in 11/48 (23%) hips based on the Graf classification scheme [5]. Some of 

the discrepancies in the calculated metrics can be attributed to significant differences between the 

manual and automatic segmentations of the pelvis and femoral head (e.g., as indicated by low Dice 

values), but there remains a considerable number of cases where the discrepancy in 𝛼3𝐷 is above 10° 

even though the Dice score is well above 0.80. 

Although 𝛼3𝐷 is indicative of pelvis geometry, the small but significant correlation of this value 

with femoral head Dice presumably arises from the reliance on morphological priors used to find the 

apex of the pelvis - see Figure 1A. This reliance on morphological priors appears to make the metric 

extraction process sensitive to the segmentations. This study is the first to note that, even in situations 

where the test-retest repeatability of a deep-learning-based algorithm appears to be quite good, the 

deviations between the expert labels and deep-learning segmentations can produce significant 

discrepancies in the resulting metrics  [8, 9, 10, 11]. In future, we intend to develop methods to 

automatically identify the apex of the hip from 3D US in a manner that does not rely on use of 

morphological priors in hopes of improving robustness to variations commonly encountered in the 

clinical setting, which would make these automatic metric extraction algorithms more suitable for 

clinical deployment. 
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