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Abstract 
Accurate, robust, and real-time segmentation of bone surfaces is an essential objective 

for ultrasound (US) guided computer assisted orthopedic surgery (CAOS) procedures. In 
this work, we present a convolutional neural network (CNN)-based technique for 
segmenting spine surfaces from in vivo US scans. Proposed design utilizes fusion of 
feature maps extracted from multimodal images to abate sensitivity to variations caused 
by imaging artifacts and low intensity bone boundaries. In particular, our multimodal 
inputs consist of B-mode US images and their corresponding local phase filtered 
counterparts. Validation studies performed on 261 in vivo US scans obtained from 10 
subjects achieved a mean localization accuracy of 0.1 mm with an F-score of 97%.  
Comparison against state-of-the-art CNN networks show an improvement of 89% in bone 
surface localization accuracy.  

 

1 Introduction 
Real-time, 2D/3D ultrasound (US) provides a safe and cost-effective alternative to fluoroscopy for 

intra-operative navigation during percutaneous pedicle screw insertion (PPSI) in spinal fusion surgery. 
Nonetheless, low signal-to-noise ratio (SNR), blurred and thick bone surface appearance, and imaging 
artifacts, present in the collected US scans, have hindered the design of an US-based PPSI system.  

In order to provide a solution to these difficulties, focus has been given to develop automated US 
bone segmentation and enhancement methods that are robust and computationally inexpensive for US 
guided CAOS procedures. Most-recently, various groups have investigated methods based on deep 
learning. In (Baka, Leenstra, & van Walsum, 2017), a network architecture based on U-net of 
(Ronneberger , Fischer , & Brox , 2015), was investigated for segmenting vertebra bone surfaces. 
Reported precision, recall, and F-score rates were 0.88, 0.94, and 0.90 respectively. Also based on 
(Ronneberger , Fischer , & Brox , 2015), a deep learning network architecture was developed by (Salehi, 
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Prevost, Moctezuma, & Navab, 2017) for segmentation of bone surfaces from US data. Although 
localization accuracy was not reported, the recall and precision rates for the proposed method were 0.87. 
In (Villa , et al., 2018 ), an algorithm based on fully convolutional networks (FCN), where B-mode US 
and local phase image features were used, was proposed. The reported recall, precision, and F-score 
values were 62%, 64%, 57%.  

In this work, we evaluate the performance of our newly proposed CNN architecture for segmentation 
of spine bone surfaces. Our design utilizes fusion of feature maps and employs multi-modal images to 
abate sensitivity to variations caused by imaging artifacts and low intensity bone boundaries (Alsinan, 
Patel, & Hacihaliloglu, 2019).We perform quantitative and qualitative validation on in vivo spine US 
data collected from 10 subjects.  

 

2  Methods  
 

2.1 Data Acquisition  
After obtaining institutional ethics board approval, a total of 261 B- mode US images, from 10 

subjects, were collected. Data augmentation (by means of image rotation) was performed on this dataset 
to obtain 1,044 B-mode US images in total. All bone surfaces were manually segmented by an expert 
ultrasound technician. 
 

2.2 Multi-feature guided CNN Architecture   
We developed our proposed CNN architecture based on the common contractive-expansive design. 

First, we resize the input B-mode US image 𝑈𝑆(𝑥, 𝑦) and its complementary local phase filtered image 
𝐿𝑃(𝑥, 𝑦)  based on (Hacihaliloglu, Enhancement of bone shadow region using local phase-based 
ultrasound transmission maps, 2017). In our proposed design, each input image would connect to an 
independent primary network, and a secondary network (Alsinan, Patel, & Hacihaliloglu, 2019). In each 
network, the input image is convolved in the encoder by convolutional layers with 3×3 filters (same 
padding convolutions) each followed by a rectified linear unit (ReLU) and a 2×2 maxpooling. Whereas 
in the decoder path, transposed-convolutions of same kernel size and paddings are applied and 
upsampled. The encoder maps the input image into a low-dimension latent space, and the decoder maps 
the latent representation into the original space. The proposed network layers specifications are depicted 
in Figure 1. In the primary network, the input image is a B-mode US image 𝑈𝑆(𝑥, 𝑦), while in  the  
secondary network, the input is a local phase filtered image𝐿𝑃(𝑥, 𝑦)  that proceeds through the 
aforementioned convolutional, and max pooling layers. Feature maps extracted from both networks are 
fused in a late fusion stage. This classifier level model was implemented in which high-level features 
from each network are concatenated. A 3×3 convolution with sigmoid activation is performed on the 
output of the fused layer to generate the final segmented probability distribution. (Hazirbas, Ma, 
Domokos, & Cremers, 2016) 
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Figure 1. Proposed multi-modal fusion architecture.  

 
 

2.3 Training and Testing 
The performance of our proposed design was compared against the U-net network proposed in 

(Ronneberger , Fischer , & Brox , 2015) with its depth increased to a scale close to our proposed design. 
We have also trained the U-net network by using same input image features, B-mode US and local 
phase images. The networks were trained using a training set of 912 B-Mode US images and their 
corresponding local phase filtered images. The remaining 132 B-mode US images were reserved for 
testing the performance of the networks. During the random split of the dataset, the training and testing 
data did not include the same patient scans. This process was repeated five times, with each training 
and testing data randomized from our dataset. All the networks were trained to minimize the cross-
entropy loss. Based on (Rand, 1971), and (Cernazanu-Glavan & Holban, 2013), five error metrics were 
calculated in our testing set; namely, F-score, Rand error, Hamming Loss, as well as the IoU and average 
Euclidean distance (AED) error as the bone localization error. Bone localization was achieved by 
thresholding the estimated probability segmentation map and using the center pixels along each US 
scanline as a single bone surface. AED error was calculated between the automatically segmented bone 
surfaces and the manual expert segmentation.  

3 Results 
3.1 Bone Segmentation Quantitative Results 

Investigating Figure 2-(a) we can observe that the proposed CNN architecture outperforms the 
state-of-the-art in all error metrics investigated. A paired t-test, at a %5 significance level, between our 
designed network and the two U-net designs investigated achieved p-values less than 0.05 indicating 
that the improvements of our method are statistically significant.  

 

3.2 Bone Segmentation Qualitative Results 
Qualitative results of our method show high prediction scores (red pixels) for the segmented bone 

surfaces while the investigated U-net designs have low prediction scores (light blue pixels) (Fig.2 (b-
2)-(b-4). In addition, bone localization results against expert manual localization, are presented in 
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Figure 2 (b-5) to (b-7). Compared to U-net, our proposed design achieved significantly improved 
alignment with the expert bone localization.  
 

 
Figure 2: (a) Table showing quantitative results. (b-1) Two US B-mode images of in vivo spine bones. 
(b-2) Network segmentation output obtained from U-net trained with B-mode US images only. (b-3) 
Network segmentation output obtained from U-net trained with B-mode US images and Local-phase 
filtered images. (b-4) Network segmentation output obtained from proposed design. (b-5), (b-6), (b-7) 
Bone localization in (red) overlaid with manual expert localization (green): (b-5) U-net trained with B-
mode US image, (b-6) U-net trained with B-mode US image and Local-phase image, (b-7) our proposed 
localization.   

4 Discussion and Future Work 
In this study, a multimodal CNN architecture was proposed for B-mode US bone segmentation. Our 

network incorporated local phase images in conjunction with B-mode US data. Quantitative and 
qualitative validation were performed against state-of-the-art U-net (Ronneberger , Fischer , & Brox , 
2015). It was demonstrated that incorporating local phase bone image features improves the 
performance of the segmentation task. Particularly, it was observed that the late fusion of spatial-phase 
features resulted in higher bone segmentation probability outcomes. Our future work will involve 
further validations prior to utilizing the proposed method clinically. In addition, improving the 
computational cost of local phase feature extraction would be essential.  
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