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Abstract

Interacting systems such as gene regulatory networks have the ability to respond to in-
dividual component changes, propagate these changes throughout the network, and affect
the temporal trajectories of other network elements. Causality techniques are frequently
employed to investigate the interconnection between variables in complex dynamical sys-
tems. However, the vast majority of causality models are rooted in regression techniques
such as Vector Autoregression Models and Bootstrap Elastic net regression from Time Se-
ries framework, and there is very limited research in the space of deep learning, particularly
graph neural networks. In this paper, we explore in more depth the concept of Granger
causality in deep learning and propose Granger causality deep learning framework using
graphs convolutions, LSTM, and nonlinear penalties for the objective of learning causal
relationships between temporal elements in gene regulatory networks. The deep learn-
ing architecture proposed here for studying causality in dynamic networks has achieved
high results on simulated networks as well as on more challenging Dream3 gene regulatory
networks time-series datasets.

1 Introduction

The advances in the field of mRNA sequencing have been opening the doors for a wide range
of applications in the research and medical communities. mRNA sequencing and analysis hold
the potential to unlock great insights into disease causes and progression, carrier status, cancer,
and infectious diseases research, as well as other fields such as agrigenomics. Understanding the
causes that lead to changes in gene regulatory expression levels over time and across conditions
is vital in studying the genesis, progression, and ultimately treatments of diseases.

Gene regulatory network inference methods seek to uncover these complex relationships
among gene pathways and predict the consequences of perturbations. Existing causality frame-
works focus on studying the associations between elements in an interacting system using sta-
tistical quantitative techniques that require apriori assumptions on the data. Moreover, these
models are not able to fully capture the nonlinearities hidden in the latent variables, and the
vast amounts of available data that are idiosyncratic to the mRNA analysis can generate high
levels of false positives. Data science on the other hand can overcome these limitations while
learning latent structural properties in connected networks. More specifically, graph neural
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networks have been proven an essential tool in studying networks, encoding and reconstructing
structural characteristics of nodes, and predicting network linkage.

This work extends causality inference to graph neural networks and combines them with ex-
isting LSTM causality frameworks introduced by [20], with the aim of learning causal relation—
ships from transcriptomal time series data based on Granger causality. Graph Granger Causal-
ity (GGC) framework proposed here also incorporates nonlinearities hidden in the data as weight
initializers and model penalties in the unsupervised task of learning latent causal structure in
temporal gene regulatory networks. The concept of node-node similarities in graph networks
have been extensively used in graph neural networks by [7, 3, 12, 17]. In the field of causality,
correlation-based similarity measures have been used by [9] and [4].

2 Related Work

Interacting biological systems such as neurons, proteins, and genes have a strong interdepen-
dence expressed through various mechanisms that propagate individual component perturba-
tions across the entire network. However, the latent causal relationships between components
of these systems are hidden. To understand network dynamics one must infer causal relations
from the available time-based observational data [24]. Time series causality inference quantifies
the degree to which one variable evolution in time impacts another variable trajectory. Such a
causal relationship can be translated into the ability of the first variable to explain or predict
the the second variable[23], [6]. A variable Z is considered Granger causal of variable X if
the past values of Z; ;1 improves the prediction accuracy of future values of X;;; when
compared with a model in which Z;  ,_; is not included.

In the gene regulatory networks (GRN) research, the Granger causality space has been
mostly focused around regression techniques. For instance, Bootstrap Elastic net regression
from Time Series (BETS) infers causal relationships in gene regulatory networks using elastic net
regression and stability selection from bootstrapped samples. In addition to causal relationships
prediction, BETS also infers the directionality of effect, namely whether causal effects are
activating or inhibitory [11]. Sliding Window Inference for Network Generation (SWING) is
another time series windowed network inference approach based on Granger causality. SWING
identifies associations between genes by applying an ensemble of regression-based models over
time-series gene expression data using flexible time-series windows [5]. For each time window,
SWING infers a ranked list of time-delayed causal edges between variables.

The alternative techniques used for Granger causality are based on prior information and
conditional probabilities such as transfer entropy [22] and models based on maximum likelihood
estimation [13]. A more advanced method such as Gene regulatory networks on transfer entropy
(GRNTE) is implemented to infer gene regulatory interactions by [2]. This method uses partial
mutual information between pairs of genes and higher values of transfer entropy correspond
to stronger interaction. Prior knowledge-driven Granger causality model [25] uses the prior
knowledge as the directed or undirected weighted graph between the gene. This conditional
Granger causality model also incorporates ridge regularization to resolve the problem of data
size limitation.

More recently [24],[15] and [18] proposed causality frameworks that account for network
nonlinearities. Large-scale nonlinear Granger causality (1SNGC) [24] models high dimensional
limited-time series interval data with nonlinear dimensionality reduction techniques using ra-
dial basis functions to identify statistically significant casual relations. IsSNGC is applied
to functional Magnetic Resonance Imaging (fMRI) data to detect causality in brain tissues.
Hilbert—Schmidt independence criterion Lasso Granger causality (HSIC-Lasso-GC) [15] extracts
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Figure 1: GGC Model per one predictor variable.

nonlinear time series intimation using stationarity test and state-space reconstruction functions
and applies a HSIC-Lasso model to learn the causality structure. Backward-in-Time Selection
Conditional Granger Causality index (BTS-CGCI), defines Granger causality as the logarithm
of the ratio of the error variances of leave-one-variable-out and the unrestricted ordinary least
squares (OLS) models. BTS-CGCI incorporates the assumption that the variables at smaller
lags are more explanatory to the response variable than variables at larger lags. Thus condi-
tioning on the variables at smaller lags the variables at larger lags may only enter the model if
they have genuine contribution not already contained in the selected variables of smaller lags
[18].

All previous models mentioned above either face problem of a data size limitation or are
not able to capture linear dependencies or curse of dimensionality. Tank, A. et all. were the
first to introduce a time series causality inference deep learning architecture. Their model titled
Neural Granger Causality (NGC) combines fully connected layers and long-short term memory
convolutions (LSTM) with group-lasso penalties to extract the Granger causal structure from
network parameters without any supervised causality loss measures [20]. Our models build on
this deep learning framework by integrating graph neural networks with LSTM convolutions
to better capture network structure, connectivity, and time series interaction patterns in gene
regulatory networks. We also extend the notion of penalties to include nonlinear similarities
between variables, and to offer the model data-driven weights initialization. The framework of
our model is shown in Figure 1.

3 Methodology

Graph Granger Causality (GGC) model combines graph neural networks over temporal data
with Granger causality principle to measure the causal effects in a series of data points. Given
a model with N variable of size p and time points 7', Granger causality defines a causal relation
between a pair of variables Ny, ...,r; and Nyj, ...,p; by minimizing the reconstruction error of
My, .. N,,..,n, models. The model applies LSTM and graph convolutions over a set of variables
expressed as a sequence of time points, by learning to reconstruct the sliding window in the
time series.
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Each model corresponds to one output variable, thus the number of variables Ny ., dictates
the total number of models My, the network will learn over as in [20]. Since recurrent models
perform impressively for modeling time series data even with longer time series dependencies,
we applied component-wise models with graph neural network to the recurrent neural net-
work (RNN) and long-short term memory network (LSTM) and term those as Graph Granger
Causality-component wise models such as GGC-cRNN and GGC-CLSTM models respectively.
For each variable, the network convolves over the entire time-series and graph datasets and
outputs the reconstruction values for one variable.

We also implemented a leave-one-out variation of the model (GGC-LOO), which includes
an additional global model, thus in total the network having My, , + 1 models. The global
model computes the loss over all variables and predicts each variable, while the remaining M
models masks each of the Ni,...,p variable at a time to predict each variable. If we train
separate models for all variables except jth variable to predict each variable ¢ and the loss of
the global model is less than the loss for jth variable IN; of the masked models, then we can
conclude that the masked variable IV; is causal of IV; since its presence in the network reduces
the reconstruction error. The input to this model is two streams of data: a time series dataset
and a graph adjacency matrix of the variables.

The graph dataset is defined as a weighted undirected graph G = (V,Ey,), where V =
{vy,...,vp} is a set of vertices, and E,, = e,; represents the set of edges. Each node in the
graph v, € V corresponds to a gene and each weighted edge encodes the normalized gene
expression values. The structure of the graph is represented by its symmetric adjacency matrix
A € RP*P, where A,; = W, (Wqj is the edge weight between vertices), if the two genes, 25,
are expressed together otherwise A,; = 0.

The normalized adjacency matrix is defined as a weighted Laplacian adjacency matrix de-
rived from the time-series incidence matrix as follows:

A=NTN
. (1)
Ay =Y NNy wherei, j = 1,...p
’U:l

where 23:1 represents the weights of the edges ¢ and j if there is a common vertex v
incident these edges. The edges are aggregated over all time points T . The resulting adjacency
matrix values are then normalized.

The models consists of 3 layers: LSTM layer, GNN layer, and a Conv1lD unit. The LSTM
layer initiates its initial hidden states to the distance correlation of the data, which measures
the nonlinear dependencies between variables and is computed as:

& if V2 V2 >0
C*(X,Y) = VX XVEY) (z,2)V(y,y) @
0 else 0

By taking the square root of C%(X,Y), distance correlation C(X,Y) is calculated. C(X,Y)
is between 0 and 1 when the variables have a level of interdependence, and C(X,Y) = 0 when
the variables are independent. v?(z,y) is the distance covariance between a pair of variables as
defined in [19]. All other LSTM components are as per [16].

Graph convolution layer integrates the structural properties of the network with the LSTM
embeddings, which are then passed to the ConvlD layer. This last layer concatenates the
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embeddings of all variables into one vector (which is representative of the gene time-series) the
respective model is being optimized over. The complete model takes the following form:

P
hﬁ(k) = ZAU h;(k_l) where i = 1,..,p (3)

j=1
where hf(k) is the k window of time t output for ¢ gene in the network, h;(kfl) is the

LSTM hidden state for time t window of & — 1, A,; is the graph adjacency matrix described

in equation 1, and Xp: is summation over all variables which is nothing but genes. This last
=1

layer is convolutionjlayer which condenses the dimensionality of the data from N variables to

1 variable window series that is being reconstructed for each k window.

In the optimization task, the loss function applies to mean squared error(MSE) between net-
work predictions and output values for each time-series window and for each variable. Similar
to [20], we optimize the models simultaneously by adding group lasso penalty. To further opti-
mize the networks to learn the latent Granger structure, we add two additional loss constraints
in the form of the distance correlation matrix described in equation 2, and Triplet loss [21].
Distance correlation also serves as the LSTM hidden input weights initialization as discussed
earlier. Triplet loss minimizes the distance between similar samples and increases the distance
between negative and positive samples. The complete loss function is computed as:

P

T p
. Ak 2 j
L = min E (vf —97)" + X\ E AR E Yn - (log yn — ) +maz(d(a, po)—d(a,ne)+R)
t=2

j=1 n=1
(4)
where Y (yf — Qf)Q is the MSE loss, A [|W/|]3 is the Lasso penalty, (log, —z,) is
the Kullback-Leibler divergence between the distance correlation and the reconstructed la-
tent Granger causality matrix. Maxz(d(a,po) — d(a,ne) + R) defines the Triplet loss, with
d(z;,y; = ||zi — yi||p, measuring the relative similarity between the anchor a, positive examples
po and negative examples ne, and R = 1 is the soft margin distance between positive and
negative examples. A; is regularization parameters and controls the sparsity of Granger causal
connections whereas Ao controls tradoff between observed and predicted non-linear dependence.
The time-series dataset for these proposed models is segmented into p X p sliding windows
with a lag of 1 timepoint for each window. For each variable in the dataset, a model convolves
over all variables and all windows and outputs the reconstruction time-series values for the next
window in the series.

4 Experimental Results

We conducted experiments on 1 simulated Lorenz-96 dataset [10] and 5 gene regulatory network
datasets that were published as part of the Dream3 challenges [1]. The Lorenz-96 model is used
to simulate non-linear time series data with p=10 and data time series length, T=1000. The
forcing constant used is 10. The Dream3 simulated data mimics gene expression and regulation
dynamics, encoding latent nonlinear causal relationships, as described in [20]. The Dream
challenge datasets include three sets of data, each with two E. Coli data sets and three Yeast
networks. This dataset includes 10 and 100 genes spanning over 966 timepoints each and it is
specifically designed to be a more challenging non-linear dataset [14].
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The weighted adjacency matrices of the 5 gene networks and 1 simulated dataset are shown
in Figures 3, 4, 15, 9, 10, and 18. By looking at these adjacency matrices Aipz10, We can
interpret that if there is an edge or not from node N; to N;. If value is zero that means there
is no edge connecting N; and N;. Convolution operators compute time series embeddings by
infusing the global structural properties of each graph encoded in the adjacency matrices into the
calculations. The graphical representations 5, 7, 16, 11,13, and 19 are force-directed drawing
which applies the ForceAtlas2 algorithm to learn the connections between nodes in order to
create a structural map of the network. The generated visual graphs can be interpreted as
structural similarity densities. The closer the nodes are, the weaker the attraction force is,
subject to the edge weights factor. The repulsion force decreases when distances increase [8].
Figures 5, 7, 16, 11,13, and 19 display network weight initial values modeled as the distance
correlation plots derived from the time series data. These figures are distance correlation
matrix Cigz10 where each row and column corresponds to a gene. Higher values closer to 1
represents dependence between different genes whereas lower values closer to 0 denote genes are
independent. As with the graphical data, distance correlation values capture similar dynamics
between variables across time points.

We implemented GGC-cLSTM, GGC-cRNN, and GGC-LOO with 10 hidden units to de-
tect complex non-linear dependencies in Dream3 10-gene datasets and Lorenz-96 datasets and
compared our GGC approach with previously published results of models GC-cLSTM (Granger
Causal-cLSTM) and GC-cRNN (Granger Causal-cRNN) [20]. accuracies for all models for all
datasets are shown in Table 1. In terms of accuracy, our models GGC-cLSTM outperforms GC-
cLSTM and GC-cRNN across all six datasets by a wide margin. GGC-cRNN follows a similar
architecture with GGC-cLSTM, replacing the LSTM layer with a Recurrent Neural network
(RNN) layer. This model outperformed all other models on the Yeast2 data (Table 1). These
results indicate that including graphical interactions and non-linear dependencies as input to
GGC-cLSTM networks boost the performance in recovering the interpretable non-linear inter-
actions. The reason behind GGC-LOO not performing well might be the presence of a masked
variable in inter-dependencies between remaining variables which are not masked.

In Figures 20 and 21, we also compute the AUROC and AUPR for all models across all
five Dream 10-gene datasets since these performance metrics are commonly used for Dream
datasets. As expected, the AUROC plot and the AUPR plot indicate that the GGC-cLSTM
and GGC-cRNN perform better than the other models. Except for the yeast-2 dataset where
GGC-cRNN slightly underperforms GC-cRNN.

To check the performance of GGC-cLSTM model on a higher dimensional time series dataset
with a larger number of hidden units, we implemented 100 hidden units for the GGC-cLSTM
for five 100-gene Dream Dataset. The results in Table 2 reveals that a higher number of hidden
units improves the performance of GCC-cLSTM across all five 100-gene datasets as compared
to 10-gene datasets. We also observed the computational cost of models increases with the
number of variables with the 10-variable models being the most efficient.

5 Conclusions

Graph Granger Causality framework discussed here combines LSTM and graph convolutions
with the objective of learning latent causal relationships in gene regulatory networks. Causal
dynamics in networks are oftentimes rooted in interaction patterns that can be captured through
various nonlinear functions such as distance correlation metrics. GGC captures these intra-
gene nonlinearities through initialization and penalties strategies. First, the input weights of
the LSTM layers are given more informative initialization values by sharing them with the
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Model Lorenz | Ecolil | Ecoli2 | Yeastl | Yeast2 | Yeast3
GGC-cLSTM .99 .70 .64 71 .56 .60
GC-cLSTM .97 .56 .42 Y .55 .46
GGC-cRNN .90 .68 .60 .60 .59 .57
GC-cRNN .95 .56 .56 .58 .55 51
GGC-LOO .60 .69 .54 .52 .54 .58

Table 1: Graph Ganger Cusality accuracy on the 5 Dream3 10-gene datasets and 1 simulated
dataset. Comparable results from GC-cLSTM and GC-cRNN [20] are listed.

Model ‘ Ecolil ‘ Ecoli2 ‘ Yeastl ‘ Yeast2 ‘ Yeast3 ‘
GGC-cLSTM | 93 | 93 | 94 | 89 | 79 |

Table 2: Graph Ganger Causality cLSTM accuracy on the 5 Dream3 100-gene datasets.

distance correlation function. And secondly, the optimization step penalizes these weights if
they steer too far away from these values. We found that using informative network weights,
the model tends to better capture the true causality structure behind the time-series data.
The deep learning architecture proposed here for studying causality in dynamic networks was
able to reconstruct the Lorenz-96 simulated dataset to 99% accuracy and has achieved good
results on more challenging Dream3 gene regulatory networks time-series datasets. Future
work can include the use of complex models with more hidden layers to detect the large-
range dependencies in the high-dimensional setting to further enhance the performance and
interpretation of the Granger causality framework. To resolve computation issues in high-
dimensional and large dataset settings, parallel and distributed cloud computing can be helpful.
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