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Abstract

We perform an automated analysis of two devices developed by Yubico: YubiKey, de-
signed to authenticate a user to network-based services, and YubiHSM, Yubico’s hardware
security module. Both are analyzed using the Maude-NPA cryptographic protocol an-
alyzer. Although previous work has been done applying formal tools to these devices,
there has not been any completely automated analysis. This is not surprising, because
both YubiKey and YubiHSM, which make use of cryptographic APIs, involve a number
of complex features: (i) discrete time in the form of Lamport clocks, (ii) a mutable mem-
ory for storing previously seen keys or nonces, (iii) event-based properties that require
an analysis of sequences of actions, and (iv) reasoning modulo exclusive-or. Maude-NPA
has provided support for exclusive-or for years but has not provided support for the other
three features, which we show can also be supported by using constraints on natural num-
bers, protocol composition and reasoning modulo associativity. In this work, we have
been able to automatically prove security properties of YubiKey and find the known at-
tacks on the YubiHSM, in both cases beyond the capabilities of previous work using the
Tamarin Prover due to the need of auxiliary user-defined lemmas and limited support for
exclusive-or. Tamarin has recently been endowed with exclusive-or and we have rewritten
the original specification of YubiHSM in Tamarin to use exclusive-or, confirming that both
attacks on YubiHSM can be carried out by this recent version of Tamarin.

1 Introduction

Nowadays there exist several security tokens having the form of a smartcard or an USB device,
which are designed for protecting cryptographic values from an intruder, e.g, hosting service,
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email, e-commerce, online banks, etc. They are also used to ease authentication for the autho-
rized users of a service, e.g., if you are using a service that verifies your Personal Identification
Number (PIN), the same service should not be used for checking your flights, reading your
emails, etc. By using an Application Programming Interface (API) to separate the service from
the authentication system, such problems can be prevented.

Yubico is a leading company on open authentication standards and has developed two
core inventions: the YubiKey, a small USB designed to authenticate a user against network-
based services, and the YubiHSM, Yubico’s hardware security module (HSM). The YubiKey
allows for the secure authentication of a user against network-based services by considering
different methods: one-time password (OTP), public key encryption, public key authentication,
and the Universal 2nd Factor (U2F) protocol [5]. YubiKey works by using a secret value
(i.e., a running counter) and some random values, all encrypted using a 128 bit Advanced
Encryption Standard (AES). An important feature of YubiKey is that it is independent of
the operating system and does not require any installation, because it works with the USB
system drivers. YubiHSM is intended to operate in conjunction with a host application. It
supports several modes of operation, but the key concept is a symmetric scheme where one
device at one location can generate a secure data element in a secure environment. Although
the main application area is for securing YubiKey’s OTP authentication/validation operations,
the use of several generic cryptographic primitives allows a wider range of applications. The
increasing success of YubiKey and YubiHSM has led to its use by governments, universities and
companies like Google, Facebook, Dropbox, CERN, Bank of America etc., including more than
30,000 customers [4].

Cryptographic Application Programmer Interfaces (Crypto APIs) are commonly used to
secure interaction between applications and hardware security module (HSMs), and are used in
both YubiKey and YubiHSM. However, many crypto APIs have been subjected to intruder ma-
nipulation to disclose relevant information, as is the case for YubiHSM. In [19,20], Künnemann
and Steel show two kinds of attacks on the first released version of the YubiHSM API: (i) if the
intruder had access to the server running YubiKey, where AES keys are generated, then it was
able to obtain plaintext in the clear; and (ii) even if the intruder had no access to the server
running YubiKey, it could use previous nonces to obtain AES keys. However, there has not
been any completely automated analysis of these two attacks to date because both YubiKey
and YubiHSM involve a number of complex features: (1) discrete time in the form of Lamport
clocks, (2) a mutable memory for storing previously seen keys or nonces, (3) event-based prop-
erties that require an analysis of sequences of actions, and (4) reasoning modulo exclusive-or.
Maude-NPA [1] has provided support for exclusive-or for years but has not provided support for
the other three features, which we show can also be supported by using constraints on natural
numbers, protocol composition and reasoning modulo associativity.

This paper is the third in a series using Maude-NPA to analyze cryptographic APIs; earlier
work appeared in [17,18]. We find this problem area one of particular interest for two reasons.
First, these APIs often use exclusive-or and this gives us the opportunity to explore how well
Maude-NPA can be applied to protocols that use exclusive-or. Secondly, cryptographic APIs
offer a number of other challenging features and this allows us to explore how Maude-NPA can
handle them. Our analysis was carried out on generation 2 of YubiKey and version 0.9.8 beta
of the YubiHSM, as was the analysis of [19]. In order to facilitate comparison with earlier work,
our formal specifications of YubiKey and YubiHSM follow those of [19] as closely as possible.

Contributions

1. We automatically prove the secrecy and authentication properties of YubiKey and find
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both attacks on YubiHSM, beyond the capabilities of Tamarin [2] in the earlier analysis
in [19, 20], which was only able to find one attack due to limited support for exclusive-
or. Tamarin has recently been endowed with exclusive-or in [11]. In Section 6.1 we
have rewritten the original specification of YubiHSM in Tamarin to use exclusive-or and
checked that both attacks on YubiHSM can now be carried out by Tamarin.

2. Our analysis was completely automatic and either found an attack or terminated with
a finite search graph, showing that no attack of that kind exists. That is, Maude-NPA
did not need any human guiding or auxiliary lemmas. In contrast, both the earlier anal-
ysis in [19, 20] and our own analysis using the latest version of Tamarin in Section 6.1
involved some auxiliary user-defined lemmas in order to prove properties of YubiKey and
YubiHSM. Mutable state was considered a very difficult problem for a very long time until
Tamarin came along [22], and often enough requires manual intervention in the form of
auxiliary lemmas, i.e., those that are proven by Tamarin but are not security properties
themselves, and have to be specified by the savvy user. A push-button verifier, such as
Maude-NPA, has usually a much broader appeal for the general audience. In Maude-
NPA, system specification is described by state transitions manipulating strands; without
any possibility of incorporating properties, such as auxiliary lemmas, beyond the actual
equational properties of the protocol. The analysis of security properties in Maude-NPA
relies on various sound and complete state space reduction techniques that help to identify
unreachable and redundant states [13].

3. We implemented Lamport clocks, mutable memory, and event-based properties for the
first time in Maude-NPA, even though the tool does not support these natively, by using
constraints on natural numbers, protocol composition and reasoning modulo associativity.
These techniques should be applicable to protocols with similar properties.

Plan of the paper. In Sections 2 and 3 we give an overview of the YubiKey and YubiHSM,
respectively. In Section 4 we explain how Lamport clocks, mutable memory, and event-based
properties are implemented in Maude-NPA. In Section 5 we describe how we specified YubiKey
and YubiHSM in Maude-NPA. In Section 6 we describe our experiments. Finally, in Section 7
we discuss related work, and we conclude in Section 8.

2 The YubiKey Device

The YubiKey USB device [28] is an authentication device capable of generating One Time
Passwords (OTPs). The YubiKey connects to a USB port and identifies itself as a standard
USB device such as a keyboard, which allows it to be used in most computing environments
using the system’s native drivers.

We will focus on the YubiKey OTP mode, a mode that uses a button physically located
on the YubiKey. When this button is pressed, it emits a string that can be verified only once
against a server in order to receive the permission to access a service. Furthermore, a request
for a new authentication token is triggered also by touching the YubiKey button. As a result
of this request, some counters that are stored on the device are incremented and some random
values are generated in order to create a fresh 16-byte plaintext. An OTP has the following
concatenated fields [27]:
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Each OTP sent by the YubiKey is encrypted using an AES key. Thus, the YubiKey authen-
tication server accepts an OTP only if both it decrypts under the appropriate AES key and
the token counter stored in the OTP is larger than the token counter stored in the last OTP
received by the server. The token counter is used as a Lamport clock [21], i.e., it is used to
determine the order of events in a distributed concurrent system by using a counter that both
has a minimum value (e.g., 0) and has a minimum tick (increment of the counter).

The authentication protocol of YubiKey involves three roles: (i) the user, (ii) the service, and
(iii) the verification server. The user can have access to the service if it provides its own valid
OTP generated by the YubiKey; its validity is verified by the verification server as explained
before. The following example shows a user (Browser), a service (YubiCloud), and a verification
server running the YubiKey API.

Since both the YubiKey and the server need to store information, e.g., the last received
token counter, different predicates are defined in [19]: (i) SharedKey(pid,k) to represent the key
k that is shared with the Yubikey public ID pid, (ii) Y(pid,sid) that stores the corresponding
secret ID sid associated to the Yubikey public ID pid, (iii) Server(pid,sid,token-counter) that
links the Yubikey public ID pid with the secret ID sid and the value of the last received counter
token-counter, and (iv) YubiCounter(pid,token-counter) that represents that the current counter
value token-counter is stored on the Yubikey. Following [19], all predicates are stored together
in a shared global memory.

The YubiKey OTP generation scheme can be described by the following interaction.

1. The initialization of the YubiKey device takes place. A fresh public ID (pid), a secret
ID (sid) and a YubiKey key (k) are generated. Any interaction between the YubiKey
and the server will involve all three elements pid, sid and k. There are also two token
counters, one stored on the Server and another stored on the YubiKey. All predicates are
initialized in the global memory.

2. The YubiKey is plugged in. Every time the YubiKey is plugged in, the YubiKey token
counter must be increased. However, we consider the compromised scenario of [19] in
which the attacker has temporary access to the authentication server and it can produce
all counter values, thus adding a new token counter as an input to the command and
checking that it must be bigger than the old stored token counter. Figure 1 shows a
graphical representation of the plugin event, including the input, output, and updated
predicate.
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Figure 1: YubiKey Plugin API Command

3. The user pushes the YubiKey OTP generation button and generates a byte string formed
by the sid, the YubiKey token counter, and a random number. The byte string is en-
crypted using a symmetric encryption operator and the saved key k. The YubiKey token
counter is also increased. According to the compromised scenario, the YubiKey token
counter must be provided as input. Figure 2 shows a graphical representation of the
button-pressing event, including the input, output, and updated predicate.

Figure 2: YubiKey Press Button Command

4. Upon reception of the generated OTP string, the basic verification steps are:

4.1 The byte string is decrypted, and if it is not valid the OTP is rejected.

4.2 The token counter stored in the OTP is compared with the server token counter. If
smaller than or equal to the server token counter, the received OTP is rejected as
a replay. According to the compromised scenario, the server token counter must be
provided as input.

4.3 A successful login must have been preceded by a button press for the same counter
value, and there is not a second distinct login for this counter value. In this paper we
omit this check and show (Section 5.1 below) that this property is always guaranteed,
assuming that the checks on the byte string and token counter succeed.

4.4 If all the checks succeed, the token counter stored in the OTP is stored as the server
token counter and the OTP is accepted as valid.

Figure 3 shows a graphical representation of the login event, including the input, output,
and updated predicate.

In [19,20], Künnemann and Steel were able to prove several properties:
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Figure 3: YubiKey Login Command

(a) Absence of replay attacks, i.e., there are no two distinct logins that accept the same counter.

(b) Correspondence between pressing the button on a YubiKey and a successful login. In other
words, a successful login must have been preceded by a button pressed for the same counter
value. Furthermore, there is no second distinct login for this counter value.

(c) Counter values are different over time, i.e., the counter values associated to logins are
monotonically increasing in time. Therefore, if one login has a smaller counter than the
other, then it must have occurred earlier.

Note that the verification of properties (b) and (c) in [20] using Tamarin involved additional
user-defined lemmas (see Section 6.1).

3 The YubiHSM Device

Yubico also distributes a USB device that works as an application-specific Hardware Security
Module (HSM) to protect the YubiKey AES keys. The YubiHSM [29] stores a very limited
number of AES keys so that the server can use them to perform cryptographic operations
without the key values ever appearing in the server’s memory. The YubiHSM is designed to
protect the YubiKey AES keys, when an authentication server is compromised, by encrypting
the AES keys using a master key stored inside the YubiHSM.

In addition, the YubiHSM can decrypt an indefinite number of YubiKey’s OTP’s with secure
storage of the AES keys on the host computer. The AES keys are only readable to the YubiHSM
through the use of Authenticated Encryption with Associated Data (AEAD). The AEAD uses a
cryptographic method that provides both confidentiality and authenticity. An AEAD consists
of two parts: (i) the encryption of a message using the cryptographic mode of operation, called
counter mode, and (ii) a message authentication code (MAC) taken over the encrypted message.
In order to construct, decrypt or verify an AEAD, a symmetrical cryptographic key and a piece
of associated data are required. This associated data, called a nonce in the rest of the paper,
can either be a uniquely generated handle or something that is uniquely related to the AEAD.

To encrypt a message using counter mode, one first divides it into blocks of equal length,
each suitable for input to the block cipher AES, e.g., data1 , . . . , datan . The counter mode
counter1 , . . . , countern is computed using an exclusive-or operator⊕, where counteri = nonce⊕i
modulo 2η and η is the length of a block in bits. The encrypted message is (senc(counter1 , k)⊕
data1 ); . . . ; (senc(countern , k)⊕datan), where senc is the encryption function and k the symmet-
rical cryptographic key; senc(counter1 , k); . . . ; senc(countern , k) is called the keystream. The
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MAC is computed over the encrypted message and appended to obtain senc(counter1 , k) ⊕
data1 ; . . . ; senc(countern , k) ⊕ datan); MAC . The MAC is of fixed length, so it is possible to
predict where it starts in an AEAD. However, since the two attacks considered below do not
involve most of the details about block cipher AES, we follow the generalization of [19] and con-
sider just messages of the form senc(cmode(nonce), k) ⊕ data; mac(data, k) where the counter
mode is reduced to cmode(nonce) for a chosen nonce, and the MAC is reduced to mac(data, k).

In [19, 20], Künnemann and Steel reported two kinds of attacks on version 0.9.8 beta of
YubiHSM API: (a) if the intruder has access to the server running YubiKey, where AES keys
are generated, then it is able to obtain plaintext in the clear; (b) even if the intruder has no
access to the server running YubiKey, it can use previous nonces to obtain AES keys. However,
they were only able to find the first attack in Tamarin due to the limited support for exclusive-or
in Tamarin at that time (see Section 6.1).

The first attack involves the YubiHSM API command depicted in Figure 4, which takes a
handle to an AES key and the nonce and applies the raw block cipher. In order to perform

Figure 4: YubiHSM Block Encrypt API Command

this attack the intruder compromises the server to learn an AEAD and the key-handle used
to produce it. Then, using the Block Encrypt command shown in Figure 4, an intruder is
able to decrypt an AEAD by recreating the blocks of the key-stream: inputting counteri (the
nonce) to the YubiHSM Block Encrypt API command. The intruder exclusive-ors the result
with the AEAD truncated by the length of the MAC and obtains the plaintext. Note that the
verification of this attack in [20] using Tamarin involved additional user-defined lemmas (see
Section 6.1).

The second attack involves the YubiHSM command depicted in Figure 5 that takes a nonce,
a handle to an AES key and some data and outputs an AEAD. An intruder can produce an
AEAD for the same handle kh and a value nonce that was previously used to generated another
AEAD. An intruder can recover the keystream directly by using the AEAD Generate command
to encrypt a string of zeros and then discarding the MAC. The result will be the exclusive-or
of the keystream with a string of zeros, which is equal to the keystream itself. This attack is
worse than the first one, because this command cannot be avoided or restricted (see [19]).

4 Maude-NPA

We begin by giving a brief overview of Maude-NPA. Then, in Sections 4.1, 4.2, and 4.3, we
show how we used special features of Maude-NPA and Maude to model mutable memory, event
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Figure 5: YubiHSM AEAD Generate API Command

lists, and Lamport clocks, respectively.
In Maude-NPA [1], as in most formal analysis tools for cryptographic protocols, a protocol

is modeled as a set of rules that describe the actions of honest principals communication across
a network controlled by an intruder. Given a protocol P, states in Maude-NPA are modeled as
elements of an initial algebra TΣP/EP , where ΣP = ΣSS ∪ΣC is the signature defining the sorts
and function symbols (ΣC for the cryptographic functions and ΣSS for all the state constructor
symbols), EP = EC ∪ESS is a set of equations where EC specifies the algebraic properties of the
cryptographic functions and ESS denotes properties of state constructors. The set of equations
EC may vary depending on different protocols, but the set of equations ESS is always the same
for all protocols. Therefore, a state is an EP -equivalence class [t]EP ∈ TΣP/EP with t a ground
ΣP -term, i.e. a term without variables.

In Maude-NPA a state pattern for a protocol P is a term t of sort State which has the
form {S1 & · · · &Sn & {IK}}, where & is an infix associative-commutative union operator with
identity symbol ∅. Each element in the set is either a strand Si or the intruder knowledge {IK}
at that state.

The intruder knowledge {IK} belongs to the state and is represented as a set of facts using
comma as an infix associative-commutative union operator with identity element empty. There
are two kinds of intruder facts: positive knowledge facts (the intruder knows m, i.e., m ∈ I),
and negative knowledge facts (the intruder does not yet know m but will know it in a future
state, i.e., m /∈ I), where m is a message expression.

A strand [15] specifies the sequence of messages sent and received by a principal executing
the protocol and is represented as a sequence [msg±1 ,msg±2 ,msg±3 , . . . ,msg±k−1,msg±k ] with msg±i
either msg−i (also written −msgi) representing an input message, or msg+

i (also written +msgi)
representing an output message. Note that each msgi is a term of a special sort Msg.

In Maude-NPA, variables of sort Fresh will never be instantiated [1] during the analysis
and, thus, are considered as constants. This ensures that if nonces are represented using
variables of sort Fresh, they will never be made equal to each other and thus each nonce remains
unique. Strands are extended with all the fresh variables f1, . . . , fk created by that strand, i.e.,
:: f1, . . . , fk :: [msg±1 ,msg±2 , . . . ,msg±k ] .

Strands are used to represent both the actions of honest principals (with a strand specified
for each protocol role) and the actions of an intruder (with a strand for each action an intruder
is able to perform on messages). In Maude-NPA strands evolve over time; the symbol | is used
to divide past and future. That is, given a strand [ msg±1 , . . . , msg±i | msg±i+1, . . . , msg±k ],

messages msg±1 , . . . ,msg±i are the past messages, and messages msg±i+1, . . . ,msg±k are the future

messages (msg±i+1 is the immediate future message). A strand [msg±1 , . . . ,msg±k ] is shorthand

for [nil | msg±1 , . . . ,msg±k , nil]. An initial state is a state where the bar is at the beginning for
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all strands in the state, and the intruder knowledge has no fact of the form m ∈ I. A final state
is a state where the bar is at the end for all strands in the state and there is no intruder fact
of the form m /∈ I.

Since the number of states in TΣP/EP is in general infinite, rather than exploring concrete
protocol states [t]EP ∈ TΣP/EP , Maude-NPA explores symbolic state patterns [t(x1, . . . , xn)]EP ∈
TΣP/EP (X ) on the free (ΣP , EP)-algebra over a set of variables X . In this way, a state pat-
tern [t(x1, . . . , xn)]EP represents not a single concrete state (i.e., an EP -equivalence class) but
a possibly infinite set of states (i.e., an infinite set of EP -equivalence classes), namely all the
instances of the pattern [t(x1, . . . , xn)]EP where the variables x1, . . . , xn have been instantiated
by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that describe how
a protocol transitions from one state to another via the intruder’s interaction with it. One
uses Maude-NPA to find an attack by specifying an insecure state pattern called an attack
pattern. Maude-NPA attempts to find a path from an initial state to the attack pattern via
backwards narrowing (narrowing using the rewrite rules with the orientation reversed). That
is, a narrowing sequence from an initial state to an attack state is searched in reverse as a
backwards path from the attack state to the initial state. Maude-NPA attempts to find paths
until it can no longer form any backwards narrowing step, at which point it terminates. If
at that point it has not found an initial state, the attack pattern is shown to be unreachable
modulo the equations EP . Note that Maude-NPA places no bounds on the number of sessions,
so reachability is undecidable in general. Note also that Maude-NPA does not perform any data
abstraction such as a bounded number of nonces. However, the tool makes use of various sound
and complete state space reduction techniques that help to identify unreachable and redundant
states [13], and thus make termination more likely.

4.1 Modeling Mutable Memory by means of Maude-NPA Strand Com-
position

Strands can be extended with synchronization messages [26] of the form
{Role1 → Role2 ; ; mode ; ; w} where Role1, Role2 are constants of sort Role provided by
the user, mode can be either 1-1 or 1-* representing a one-to-one or one-to-many synchroniza-
tion (whether an output message can synchronize with one or many input messages), and w is
a term representing the information passed along in a synchronization message. Synchroniza-
tion messages are limited to the beginning (resp. end) of a strand and are called input (resp.
output) messages. Although originally intended for a different use, they are very useful for
representing a strand of unspecified length as a concatenation of different fixed-length strands.
For example, consider a module that receives i pieces of data, and then exclusive-ors them, i.e.,
[−(M1), . . . ,−(Mi),+(M1 ⊕ · · · ⊕Mi)] for i ≥ 1. This can be specified in Maude-NPA using
three strands with synchronization messages:

1. [ −(M1), {role⊕ → role⊕ ; ; 1-1 ; ; M1} ]

2. [{role⊕ → role⊕ ; ; 1-1 ; ; M},−(M2), {role⊕ → role⊕ ; ; 1-1 ; ; (M ⊕M2)}]
3. [{role⊕ → role⊕ ; ; 1-1 ; ; M},+(M) ]

Composition is then performed by unifying output synchronization messages with input syn-
chronization messages of instances of these three strands.

For the YubiKey and YubiHSM APIs, if each event is represented by a strand, then an
execution (e.g., Plugin followed by Press followed by Login) can be represented by the concate-

408



YubiKey and YubiHSM Verification González-Burgueño et al.

nation of the strands associated to the execution. However, the YubiKey and YubiHSM APIs
also require different information to be stored from one API command to the next. Some infor-
mation is read-only, but other information is updated, such as the YubiCounter(pid,counter).
Maude-NPA, unlike Tamarin, does not natively support mutable memory; but it can be modeled
using synchronization messages. That is, the old data will appear in the input synchronization
message of an API strand, and the new information will appear in the output synchronization
message of that strand, which will then become the input synchronization message of the next
API strand.

We model the mutable memory used by YubiKey as a multiset of predicates, where we
define a new multiset union symbol @, which is an infix associative-commutative symbol with
an identity symbol empty. Thus, for the strand describing the YubiKey button press, the input
synchronization message is as follows:

{yubikey -> yubikey ;; 1-1 ;; Y(pid,sid) @ YubiCounter(pid,c1) @

Server(pid,sid,c2) @ SharedKey(pid,k)}

Updating the counter of the YubiKey after a button press is represented by updating the
second argument of the YubiCounter(pid,c1) predicate in the multiset. This updated multiset
becomes the output synchronization of the strand.

4.2 Modeling Event Lists by Means of Maude Built-in Lists

The YubiKey and YubiHSM APIs also keep a rigid control of the ordering of events, where
an event is a state transition in the system, and a proper analysis of actions is mandatory.
Maude-NPA, unlike Tamarin, does not natively support the representation and analysis of
event sequences; but we have implemented it by storing event sequences in the synchronization
messages. This is helped by the fact that Maude-NPA, via the Maude language, has recently
been endowed with built-in lists (using any associative symbol provided by the user). We have
defined a new infix associative symbol ++ with an identity symbol nil to represent an event
list and also a new auxiliary infix symbol |> where the left-hand side contains the mutable
memory and the right-hand side contains the event list. The input synchronization message for
the button press strand has now the form:

{yubikey -> yubikey ;; 1-1 ;; Y(pid,sid) @ YubiCounter(pid,c1) @

Server(pid,sid,c2) @ SharedKey(pid,k) |> Plugin(pid,c3) ++ Press(pid,c4)}

Every time a new event occurs, it is inserted as a new element at the end of the event list. The
leftmost elements are the oldest ones, whereas the rightmost elements are the newest. Thus, if
we want to say that event e1 must occur before event e2, we can express this with the event
pattern L1 ++ e1 ++ L2 ++ e2 ++ L3, where any of the Li variables could be empty.

Unification modulo associativity is infinitary [6], e.g., the unification problem a : X
?
= X : a

where : is an associative symbol, X is a variable, and a is a constant has an infinite number of
most general solutions {X 7→ an} for an being a list of n consecutive a constants. However, the
implementation of unification modulo associativity in Maude is guaranteed to terminate with
a finite and complete set of most general unifiers for a fairly large class of unification problems
occurring in practice [12]. For any problem outside this class, the algorithm returns a finite
set of unifiers together with a warning that such set may be incomplete. The reader should
be aware that no warning showed up during the experiments of Section 6 and, thus, all the
analyses were complete, which is especially important for the security properties of YubiKey.
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4.3 Modeling Lamport Clocks in Maude-NPA Using Constraints

Lamport clocks require the testing of constraints: i.e., whether one counter is smaller than an-
other. This is simple to do when the counters have concrete values. However, since Maude-NPA
does not consider concrete protocol states but symbolic state patterns (terms with logical vari-
ables), the equality and disequality constraints handled by Maude-NPA are predicates defined
over variables, whose domain, in the case of Lamport clocks, is the natural numbers.

In Maude-NPA strands can be extended with equality and disequality constraints [14] of the
form “Term1 eq Term2 ” and “Term1 neq Term2 ”. Whenever an equality constraint is found
during the execution of a strand, the two terms in the equality constraint are unified modulo
the set EP of equations of the protocol and a new state is created for each possible unifier.
Whenever a disequality constraint is found during the execution of a strand, it is simply stored
in an internal repository of disequality constraints associated to each protocol state; but every
time a new state is going to be generated during the state space exploration, all the disequality
constraints in the internal repository are tested for satisfiability (see [14] for details).

We deal with Lamport clocks symbolically by representing the relations between clocks as
constraints in Presburger Arithmetic. Although various Satisfiability modulo theories (SMT)
[24] solvers such as CVC41, Yices2, and Microsoft Z33 could be used for this purpose, we decided
to avoid the complexities of invoking an external tool while executing Maude-NPA. Instead, we
have used the variant-based decision procedure for Presburger Arithmetic already available in
Maude [23]; but considered only positive numbers without zero.

Adding two natural numbers i and j is written as i + j. Checking whether a natural number
i is smaller than another natural number j is represented in Maude-NPA by a constraint of the
form j eq i + k, where k is an auxiliary variable. Disequality constraints are not needed.

5 Formal Specifications in Maude-NPA

5.1 Formal Specifications of YubiKey in Maude-NPA

In our specification, each command of the YubiKey API (Figures 1, 2, and 3) plus the initial-
ization are specified in Maude-NPA as a strand.

The initialization strand is defined as follows. Three new Fresh values are defined: a YubiKey
public ID (rpid), a secret ID (rsid), and a key ‘rk’ shared with the server. Variables of sort
Fresh are wrapped by symbol Fr as in [19].

:: rk,rpid,rsid ::

[ +(init),

{yubikey -> yubikey ;; 1-1 ;;

YubiCounter(Fr(rpid), 1) @ Server(Fr(rpid),Fr(rsid),1) @

Y(Fr(rpid),Fr(rsid)) @ SharedKey(Fr(rpid),Fr(rk))

|> Init(Fr(rpid),Fr(rk)) ++ ExtendedInit(Fr(rpid),Fr(rsid),Fr(rk))}]

The API command represented in Figure 1 shows what happens when a YubiKey is being
plugged in. This command checks that the new received counter is smaller than the previous
one, by using an equality constraint, and updates the predicate YubiCounter.

:: nil ::

[{yubikey -> yubikey ;; 1-1 ;; YubiCounter(pid,otc) @ mem |> EL },

1Available at http://cvc4.cs.stanford.edu/web/.
2Available at http://yices.csl.sri.com.
3Available at https://github.com/Z3Prover/z3.
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-(tc), (tc eq (otc + extra)),

{yubikey -> yubikey ;; 1-1 ;; YubiCounter(pid,tc) @ mem |> EL ++ Plugin(pid,tc)} ]

Note that the parameter mem denotes the rest of the mutable memory and the parameter EL

denotes the previous event list. The variable extra is an auxiliary variable used just for testing
the numerical constraint.

The command shown in Figure 2 represents what happens when the YubiKey button is
pressed and the OTP is sent. The OTP is represented by message senc(sid ; tc ; Fr(rnpr),k)

where senc denotes symmetric encryption using key k and symbol ; denotes message concate-
nation4.

:: rnpr,rnonce ::

[{yubikey -> yubikey ;; 1-1 ;;

YubiCounter(pid,tc) @ Y(pid,sid) @ SharedKey(pid,k) @ mem |> EL },
-(tc),

+(pid ; Fr(rnonce) ; senc(sid ; tc ; Fr(rnpr),k)),

{yubikey -> yubikey ;; 1-1 ;;

YubiCounter(pid,tc + 1) @ Y(pid,sid) @ SharedKey(pid,k) @ mem |> EL ++ YubiPress(pid,tc)}]

Finally, the command shown in Figure 3 represents what happens when the server receives a
login request. This request is accepted if the counter inside the encryption is larger than the
last counter stored on the server, by using an equality constraint.

:: nil ::

[ {yubikey -> yubikey ;; 1-1 ;; Server(pid,sid,otc) @ SharedKey(pid,k) @ mem |> EL },
-(pid ; nonce ; senc(sid ; tc ; pr, k)), -(otc), (tc eq (otc + extra)),

{yubikey -> yubikey ;; 1-1 ;; Server(pid,sid,tc) @ SharedKey(pid,k) @ mem

|> EL ++ Login(pid,sid,tc,senc(sid ; tc ; pr, k)) ++ LoginCounter(pid,otc,tc) } ]

5.2 Formal Specification of YubiHSM in Maude-NPA

We consider only the two commands associated to the attacks, which were shown in Figures 4
and 5 above. Each command is specified in Maude-NPA as a strand. YubiHSM makes extensive
use of exclusive-or, denoted by the symbol ∗, which satisfies the following equations:

x ∗ (y ∗ z) = (x ∗ y) ∗ z (associativity)

x ∗ y = y ∗ x (commutativity)

x ∗ null = x (identity element)

x ∗ x = null (self-cancellation)

The YubiHSM command of Figure 4 is defined as follows.

:: nil ::

[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },
-(kh), -(nonce),

+(senc(cmode(nonce),k)),

{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL ++ SEnc(kh,nonce) } ]

We use two alternative definitions of the YubiHSM command of Figure 5, one to represent
what happens when the command processes plaintext from the intruder, and another to rep-
resent what happens when the command processes plaintext from a legitimate principal. This

4Note that ; is not an associative symbol and it is used as “message cons” symbol using Maude label “gather
(e E)” that concatenates a single element to the left of a list.
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is possible because, in contrast to the traditional Dolev-Yao model, honest principals commu-
nicate with the YubiHSM devices directly, not through the intruder. This means that we can
represent an honest principal’s input data as internal to the system. Moreover, in this instance
such a representation is necessary, since we are asking whether the intruder can learn the input
data. We maximize the intruder’s advantage, however, by giving it control over the other input
data.

The following strand represents the intruder learning an honest principal’s input plaintext
data. We assume that the plaintext data is a Fresh value. In this way, we can later ask whether
the intruder is able to learn that Fresh value. We use the following macro: aead(n,k,d) =

(senc(cmode(n),k) * d) ; mac(d,k).

:: data ::

[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },
-(kh), -(nonce),

+(aead(nonce,k,Fr(data))),

{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem

|> EL ++ GenerateAEAD(Fr(data),aead(nonce,k,Fr(data)))}]

In the second strand we represent the Fresh value (data) associated to the plaintext data
by an input from the intruder.

:: nil ::

[ {YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem |> EL },
-(data), -(kh), -(nonce),

+(aead(nonce,k,data)),

{YubiHSM -> YubiHSM ;; 1-1 ;; HSM(kh,k) @ mem

|> EL ++ GenerateAEAD(data,aead(nonce,k,data)) }]

6 Experiments

We have been able to automatically prove secrecy and authentication properties (a,b,c below)
of YubiKey and to find both attacks (d,e below) on YubiHSM:

(a) Absence of replay attacks in YubiKey, i.e., there are no two distinct logins that accept the
same counter.

(b) Correspondence between pressing the button on a YubiKey and a successful login. In other
words, a successful login must have been preceded by a button pressed for the same counter.

(c) Counter values of YubiKey are different over time, where a successful login invalidates
previous OTPs.

(d) If the intruder has access to the server running YubiKey, it can use previous YubiHSM
nonces to obtain AES keys.

(e) If the intruder has no access to the server running YubiKey, it can use previous YubiHSM
nonces to decrypt a previously generated AEAD.

Table 1 summarizes the result of the analyses of the YubiKey and YubiHSM APIs specified in
Maude-NPA showing the number of generated nodes in each step. In addition to the attacks (a)-
(e), we analyzed a standard login sequence of the YubiKey API. The notation “(1)” represents
that the tool found 1 solution to the question asked by the attack pattern. When the number
of generated nodes is 0, the attack pattern is unreachable.
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Attack Pattern
Depth

1 2 3 4 5 6 7 8 9

YubiKey (a) 4 4 9 21 88 160 0
YubiKey (b) 4 7 16 14 2 2 5 0
YubiKey (c) 4 4 6 18 55 80 0
YubiKey Login 1 1 2 1 1 1 1 1 1(1)

YubiHSM (d) 1 2 3 4 7 13 24 40 76(1)
YubiHSM (e) 4 6 11 26(1)

Table 1: Output YubiKey and YubiHSM Experiments

All the details on how the attack patterns are specified and which was the returned output
are available at http://personales.upv.es/sanesro/Maude-NPA-YubiKey-YubiHSM. The
analyses were completely automatic and we obtained finite search graphs for all the attack
patterns. This was achieved thanks to Maude’s associative unification (i.e., event list expres-
sions are included within the attack patterns) and the variant-based SMT solving for Lamport
clocks (i.e., specific counter constraints are included). Note that Maude-NPA uses a full speci-
fication of exclusive-or, an unbounded session model, and an active Dolev-Yao intruder model.
Moreover, it does not perform any data abstraction such as a bounded number of nonces, so
there are no false positives or negatives.

6.1 Experiments using Tamarin

In [19, 20], the authors needed some user-defined lemmas to prove properties (b) and (c) of
YubiKey and property (d) of YubiHSM, and they could not find the attack of property (e) due
to the limited support for exclusive-or in Tamarin at that time. However, Tamarin has recently
been endowed with exclusive-or in [11]. In this section, we report on some experiments that
we have performed with it. In summary, nothing has changed for properties (b) and (c), and
property (e) can now be carried out by Tamarin using a lemma.

The latest version of Tamarin with exclusive-or (version 1.4.0) is now available at https://
github.com/tamarin-prover/tamarin-prover. Both YubiKey and YubiHSM specifications
are also available at path “examples/related_work/YubiSecure_KS_STM12”. Property (b) of
YubiKey is specified as follows:

lemma one_count_foreach_login[reuse,use_induction]:

"∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@#t2 →
( ∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2 )"

whereas property (c) of YubiKey is specified as follows:

lemma Login_invalidates_smaller_counters:

"∀ pid otc1 tc1 otc2 tc2 #t1 #t2 #t3 .

LoginCounter(pid,otc1,tc1)@#t1 ∧ LoginCounter(pid,otc2,tc2)@#t2

∧ Smaller(tc1,tc2)@#t3 → #t1<#t2 "

Both properties (b) and (c) use a constraint Smaller(tc1,tc2) where tc1 and tc2 are token
counters; for property (b) the constraint is not written explicitly but it is also necessary. In
order for Tamarin to prove these two properties the following user-defined lemmas are necessary
(called axioms in Tamarin).
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axiom smaller:

"∀ #i a b. Smaller(a,b)@#i → Ex z. a+z=b"

axiom transitivity:

"∀ #t1 #t2 a b c. IsSmaller(a,b)@#t1 ∧ IsSmaller(b,c)@#t2

→ ∃ #t3 . IsSmaller(a,c)@#t3 "

axiom smaller_implies_unequal:

" ¬ (∃ a #t . IsSmaller(a,a)@#t)"

Since these properties do not require exclusive-or, nothing changes from the earlier version of
Tamarin to the latest one and, when proving properties (b) and (c) without these axioms either
Tamarin is not able to terminate or terminates but without finding a proof.

For properties (d) and (e) of YubiHSM, we have rewritten the original specification to use
exclusive-or following the examples published in [11]. The following axioms were necessary
to find the attack of property (d) in [20], and they are still necessary when using the new
specification of YubiHSM and the latest version of Tamarin.

axiom theory_before_protocol:

"∀ #i #j. Theory() @ i & Protocol() @ j ==> i < j"

axiom onetime:

"∀ #t3 #t4 . OneTime()@#t3 & OneTime()@t4 ==> #t3=#t4"

We encoded property (e) as follows:

lemma auth_intruder_obtain_AES[use_induction]: exists-trace

"∃ data ks k mac #t1 #t2 .

GenerateAEAD(data,<senc(ks,k),mac>)@#t1 ∧ K(senc(ks,k))@#t2 ∧ #t1<#t2"

We checked that the latest version of Tamarin was able to find the corresponding attack of the
new specification of property (e), though our automated analysis in Maude-NPA was done [16]
before [11] appeared.

7 Related Work

There is a vast amount of research on the formal analysis of APIs, so in this related work
section we will concentrate on the work that is closest to ours, namely, the formal analysis of
the YubiKey and YubiKey-like systems. Further related work on APIs and exclusive-or can be
found in [17,18].

Besides the work on formalizing and verifying YubiKey that we have already discussed,
there has been further work focused on building tools for analyzing policies for YubiKey and
YubiKey-like systems.

In [3], Yubico presents some security arguments on their website. An independent analysis
was given by blogger Fredrik Björck in 2009 [7,8], raising issues that Yubico responded to in a
subsequent post. Oswald, Richter, et al. [25] analyze the YubiKey, generation 2, for side-channel
attacks. They show that non-invasive measurements of the power consumption of the device
allow retrieving the AES-key within approximately one hour of access. The authors mentioned
a more recent version of the YubiKey, the YubiKey Neo which employs a certified smart-card
controller that was designed with regard to implementation attacks and is supposed to be more
resilient to power consumption analysis.

Künnemann et al. [19] performed a deep analysis of the different properties of YubiKey,
but unlike our analysis using the Maude-NPA tool, they needed to use different lemmas, e.g.,
axioms smaller, transitivity or smaller implies unequal shown in Section 6.1, to check
some properties that cannot be done automatically by the Tamarin prover, whereas these
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properties can be checked out in an automatic way by the Maude-NPA tool. Some properties
were not proved due to limited support for exclusive-or. Mutable global state memory can be
used in protocols that provide end-to-end encryption for instant messaging [9] as well as at the
Trusted Platform Module (TPM) [10] that is a hardware chip designed to enable commodity
computers to achieve greater levels of security than is possible by software alone.

8 Conclusions

The main contributions of this paper are to both prove properties of YubiKey generation 2 and
find the known attacks on version 0.9.8 of YubiHSM in a completely automated way beyond
the capabilities of previous work in the literature. This allowed us to perform the analysis of
these APIs in a fully-unbounded session model making no abstraction or approximation of fresh
values, and with no extra assumptions. These APIs involve several challenges: (1) handling of
Lamport clocks, (2) modeling of mutable memory, (3) handling of constraints on the ordering
of events, and (4) support for symbolic reasoning modulo exclusive or.

The main goal of this work has been to investigate whether Maude-NPA could complement
and extend the formal modeling and analysis results about YubiKey and YubiHSM obtained
in [19]. This is a non-obvious question: on the one hand, Maude-NPA has provided support
for exclusive-or for years, so it is well-suited for meeting Challenge (4). But, on the other
hand, previous applications of Maude-NPA have not addressed Challenges (1)-(3). The main
upshot of the results we present can be summarized as follows: Challenge (2) can by met by
expressing mutable memory in terms of synchronization messages, a notion used in Maude-NPA
to specify protocol compositions [26], Challenge (3) can by met by the recently added unification
modulo associativity, allowing an easy treatment of lists, and Challenge (1) can be met by a
slight extension of Maude-NPA’s current support for equality and disequality constraints [14],
namely, by adding also support for constraints in Presburger Arithmetic. In this way, we show
how challenges (1)-(4) can all be met by Maude-NPA, and how these results in automated
formal analyses of YubiKey and YubiHSM substantially extend previous analyses. Very few
tools are well equipped to simultaneously handle all these challenges.

What remains to be seen is how generally applicable these tools are to YubiKey and similar
APIs. We note that previous work on analyzing API protocols in Maude-NPA did not achieve
termination of the search space: the IBM CCA API in [17] and the PKCS#11 in [18]. In
this work we have been able to achieve termination of many properties thanks to the use of
Lamport clocks, mutable memory, and event lists. But more secure API case studies are needed
to further test and advance the techniques presented here.
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