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Abstract

It is known that one can extract Craig interpolants from so-called local derivations. An
interpolant extracted from such a derivation is a boolean combination of formulas occurring
in the derivation. However, standard complete proof systems, such as superposition, for
theories having the interpolation property are not necessarily complete for local proofs.

In this paper we investigate interpolant extraction from non-local refutations (proofs of
contradiction) in the superposition calculus and prove a number of general results about
interpolant extraction and complexity of extracted interpolants. In particular, we prove
that the number of quantifier alternations in first-order interpolants of formulas without
quantifier alternations is unbounded. The proof of this result relies on a small number of
assumptions about the theory and the proof system, so it also applies to many first-order
theories beyond predicate logic. This result has far-reaching consequences for using local
proofs as a foundation for interpolating proof systems - any such proof system should deal
with formulas of arbitrary quantifier complexity.

To search for alternatives for interpolating proof systems, we consider several variations
on interpolation and local proofs. Namely, we give an algorithm for building interpolants
from resolution refutations in logic without equality and discuss additional constraints
when this approach can be also used for logic with equality. We finally propose a new
direction related to interpolation via local proofs in first-order theories.

1 Introduction

Craig interpolation [6] has found many application in formal verification, including bounded
model checking [23], invariant generation [17], testing [20] and concurrency [11]. Some of the
interpolation-based verification methods compute interpolants from proofs by restricting proofs
to so-called local (or split) proofs [14, 15]. In particular, [16, 7, 22, 4] apply theory-specific
transformations and generate quantifier-free interpolants from local SMT proofs in various
theories, whereas [17, 15] build quantified interpolants from local proofs in full first-order logic.
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While local proofs admit efficient interpolation algorithms, see e.g. [14, 15], local proofs do not
always exist.

In this paper we address limitations of local proof generation and discuss interpolation in
non-local proofs using the resolution and superposition calculus. We start with preliminaries
in Section 2 and introduce notions relevant to inference systems in Section 3.

McMillan’s result [17] on extracting interpolants from local proofs gives an idea of designing
local proof systems for various logics. Due to the generality of this result, it can be used for
essentially arbitrary first-order theories. This results poses a problem of finding powerful proof
systems producing local proofs for such theories, ideally complete proof systems.

Completeness of proof systems for theories having the interpolation property (such as first-
order predicate logic) can be defined as existence of local refutations for every unsatisfiable well-
colored formula (the precise definitions will be given below). For theories having no interpolation
property in general, we can still define completeness as existence of local refutations for all pairs
of formulas having a reverse interpolant.

It would be ideal to have such complete proof systems which can be used by existing effi-
cient theorem provers for these theories, or their simple modifications, for example, a suitable
modification of the superposition calculus for first-order predicate logic. In Section 4 we show
that there is, in a way, no such modification of the superposition calculus. To this end, we
prove that every complete proof system must deal with formulas having an unbounded number
of quantifier alternations (remember that the superposition calculus only deals with universal
formulas having no quantifier alternation at all).

We notice that this result relies on a small number of assumptions about the theory and
the proof system, therefore it applies to many first-order theories beyond predicate logic.

In Section 5 we consider so-called relational interpolants introduced in [12]. We give an
algorithm for building relational interpolants from arbitrary proofs in the superposition calculus
and show that the obtained relational interpolants are boolean combinations of formulas from
the proof. This result implies that relational interpolants exist for arbitrary axiomatizable
theories. Our proof and construction are simpler than that of [12].

We then note in Section 6 that for logic without equality one can turn relational interpolants
into interpolants by quantifying away colored terms occurring in relational interpolants. This
result is not original and was stated and proved in a number of other papers. It implies
that, although the size of an interpolant is, in general, non-elementary in the size of the input
formulas, it is polynomial in the size of the proof, if the interpolant is represented as a dag. Our
results thus yield an interpolation procedure for arbitrary proofs in the resolution calculus for
logic without equality. We also give an example showing that this way of building interpolants
fails for logic with equality.

Finally, in Section 7 we discuss new directions in interpolating proof systems. One interesting
avenue to exploit is to weaken the soundness property of proof systems. However, in this case
the result of [17] also does not apply. Therefore, we pose an open problem of extending results
on local proofs and interpolation to proof systems having this weaker property and also finding
a modification of the superposition calculus resulting in an interpolating proof system. We
outline one possible approach to efficiently build interpolants from superposition proofs by
using definitions (naming) and skolemization on the fly. It is especially interesting to have a
proof system that is a simple modification of the superposition calculus, since such a system
can potentially be implemented at low cost by modifying existing efficient first-order theorem
provers.

We believe that our results raise fundamental questions in first-order interpolation and
pose further questions for proof-based interpolant extraction in the presence of full first-order
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theories.

Contributions. We summarize our contributions below.

1. We prove that there is no bound on the number of quantifier alternations in interpolants
of universal formulas (Theorem 4.1) in first-order predicate logic.

2. As a corollary, we prove that any complete local proof system for first-order predicate logic
must have inferences dealing with formulas of an arbitrary quantifier complexity, even if
the input formulas have no quantifier alternations (Theorem 4.3). In a way, this implies
that there is no simple modification of the superposition calculus for logic with/without
equality in which every unsatisfiable formula has a local refutation.

3. We consider so-called relational interpolants, which are weaker than interpolants. We give
an algorithm for constructing relational interpolants from arbitrary superposition proofs
(Lemma 5.2).

4. We show that relational interpolants can be turned into interpolants for logic without
equality (Lemma 6.1). Under additional constraints on the signature of the input formulas,
this results also holds for first-order logic with equality (Theorem 6.2).

2 Preliminaries

We deal with the standard first-order predicate logic with equality. The equality symbol will
be denoted by '; instead of writing ¬(s ' t) we will simply write s 6' t. We allow all standard
boolean connectives and quantifiers in the language and, in addition, assume that it contains
the logical constants > for always true and ⊥ for always false formulas.

We will denote formulas by A,B,C,D, terms by r, s, t, variables by x, y, z, constants by
a, b, c, function symbols by f, g and predicates with p, q, possibly with indices. As usual, a
literal is an atomic formula or its negation and a clause is a disjunction (or a multiset) of
literals. Since clauses are multisets, we do not distinguish clauses obtained by a permutation
of literals. Let A be a formula with free variables x̄, then ∀A (respectively, ∃A) denotes the
formula (∀x̄)A (respectively, (∃x̄)A). A formula is called closed, or a sentence, if it has no
free variables. We call a symbol a predicate symbol, a function symbol or a constant. Thus,
variables are not symbols. We consider equality ' part of the language, that is, equality is not
a symbol. A formula or a term is called ground if it has no occurrences of variables. A formula
is called universal if it has the form (∀x̄)A, where A is quantifier-free. We write C1, . . . , Cn ` C
to denote that the formula C1 ∧ . . . ∧ Cn → C is a tautology. Note that C1, . . . , Cn, C may
contain free variables.

A signature is any finite set of symbols. If E is a set of expressions, for example, formulas,
and constants c1, . . . , ck do not occur in E, then we say that c1, . . . , ck are fresh for E. We will
less formally simply say fresh constants when E is the set of all expressions considered in the
current context.

To simplify the presentation, we will use colored signatures, in which every symbol is colored
in exactly one of the following three colors: red, blue and grey. We call a formula or a term grey
if it uses only grey symbols. A formula or a term is called red (respectively, blue) if it uses only
red and grey symbols and has at least one red (respectively, blue) symbol. Thus, every formula
is either grey, or red, or blue, or both red and blue.

The symbol 2 will denote the end of lemmas, theorems, proofs, definitions and examples.
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Theorem 2.1 (Craig’s Interpolation Theorem [6]). Let R be a red formula, B be a blue formula
and R ` B. Then there exists a closed grey formula I such that R ` I, I ` B and every free
variable of I is also a free variable in both R and B. 2

Every formula I satisfying Theorem 2.1 will be called an interpolant of R and B.
In the sequel, R will always denote a red formula and B a blue formula. For example, if we

write “let R,B are formulas”, we assume that R is read and B is blue.
A theory is any set of grey sentences. If T is a theory, we write C1, . . . , Cn `T C to denote

that the formula C1 ∧ . . . ∧ Cn → C holds in all models of T . When we work with a theory
T , we call symbols occurring in T interpreted while all other symbols uninterpreted. Note that
interpreted symbols are always grey.

In [15] we proved that the following result holds for interpolation in theories:

Theorem 2.2. Let R be a red sentence, B be a blue sentences, T be a theory and R `T B.
Then there exists a grey sentence I such that

1. R `T I and I ` B;

2. every interpreted symbol of I occurs in B.

Likewise, there exists a grey sentence I such that

1. R ` I and I `T B;

2. every interpreted symbol of I occurs in R. 2

In the sequel we will be interested in the interpolation property with respect to a given
theory T . For this reason, we will use `T instead of ` and relativize all definitions to T . To be
precise, we call an interpolant of R and B any grey formula I with the properties R `T I and
I `T B.

We call a reverse interpolant of R and B any interpolant of R and ¬B. Interpolation-based
verification papers call reverse interpolants simply interpolants, see e.g. [13, 14, 17], and change
the condition R ` B by R,B ` ⊥. This makes sense when we deal with proof systems based on
refutation, or satisfiability-checking, since R,B ` ⊥ means that the set {R,B} is unsatisfiable.
We use both notions to avoid ambiguous terminology. Note that any reverse interpolant I of
R and B has the properties R ` I and B ` ¬I.

3 Inference Systems and Proofs

We recall some terminology from [15], related to inference systems and adapted to our setting.
It is commonly used in the theory of resolution and superposition [2, 19].

Definition 3.1. An inference rule is an n-ary relation on formulas, where n ≥ 0. The elements
of such a relation are called inferences and usually written as

A1 . . . An
A

.
(1)

The formulas A1, . . . , An are called the premises, and the formula A the conclusion, of this
inference. An inference system is a set of inference rules. An axiom of an inference system is
any conclusion of an inference with 0 premises. Any inferences with 0 premises and a conclusion
A will be written without the bar, simply as A.
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A derivation in an inference system is a tree built from inferences in this inference system.
If the root of this derivation is A, then we say it is a derivation of A. A derivation of A is called
a proof of A if it is finite and all leaves in the derivation are axioms. A formula A is called
provable in I if it has a proof. We say that a derivation of A is from assumptions A1, . . . , Am if
the derivation is finite and every leaf in it is either an axiom or one of the formulas A1, . . . , Am.
A formula A is said to be derivable from assumptions A1, . . . , Am if there exists a derivation of
A from A1, . . . , Am. A refutation is a derivation of ⊥. 2

Note that a proof is a derivation from the empty set of assumptions. Any derivation from
a set of assumptions S can be considered as a derivation from any larger set of assumptions
S′ ⊇ S.

An inference (1) is called sound with respect to a theory T if T ` A1∧. . .∧An → A. In other
words, the conclusion of the inference is a logical consequence of its premises with respect to T .
When T is empty, that is, the conclusion of the inference is a logical consequence of its premises
in first-order predicate logic, we will simply say that the inference is sound. A derivation or
an inference system is called sound (with respect to a theory T ), if so is every inference in this
derivation or this system. Evidently, if an inference system is sound, then every derivation in
this inference system is sound too.

In the sequel we use the standard notion of substitutions as mappings from variables to terms,
and denote substitutions by σ, possibly with indices. We write the application of a substitution
σ to an expression E (e.g., a term or a formula) as Eσ. A unifier of two expressions E1 and
E2 is a substitution σ such that E1σ = E2σ. It is known that if two expressions have a unifier,
then they have a so-called most general unifier (mgu) [21].

4 Interpolation and Local Proofs

In this section we are especially interested in a special kind of derivation introduced in [14] and
called local (they are also sometimes called split-proofs). We call an inference local if does not
contain both a red and a blue formula. A derivation is called local if every inference in this
derivation is local too.

It is known that from a local sound refutation of R,B (with respect to a theory) one can
extract a reverse interpolant of R and B [14, 15] (with respect to this theory). Moreover,
algorithms of [14, 15] give interpolants that are boolean combinations of certain grey formulas
occurring in the refutation.

In this paper we restrict our attention to the resolution and superposition system, simply
called the superposition calculus, which is both sound and refutationally complete. As we show
later, by restricting the calculus to local proofs we lose completeness. Even more, we will prove
that there exist no simple modification of the superposition calculus that is complete for local
proofs.

The superposition calculus is a family of inference systems parametrized by a selection
function on literals and a simplification ordering � on terms, literals and clauses, see [19] for
details.

For a literal L and term s, we write L[s] to mean that s is a subterm of L. Further, L[s]p
denotes that the subterm of C at position p is s. With these notations at hand, the inference
rules of the superposition calculus for logic with equality are given in Figure 1. All inference
rules in this calculus work with clauses. Note that superposition calculi used in theorem provers
have extra conditions on inferences rules not shown here, however these extra conditions are
irrelevant for our purpose.
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Binary Resolution (BR):

A ∨ C ¬A′ ∨D
(C ∨D)σ

(i) σ is an mgu
of A and A′.

Superposition (Sup):

s ' t ∨ C L[s′]p ∨D
(C ∨D ∨ L[t]p)σ

(i) σ is an mgu
of s and s′,

(ii) s′ is not a
variable,

(iii) tσ�sσ.

Factoring (F):

A ∨A′ ∨ C
(A ∨ C)σ

(i) σ is an mgu
of A and A′.

Equality Factoring (EF):

s ' t ∨ s′ ' t′ ∨ C
(s ' t ∨ t 6' t′ ∨ C)σ

(i) σ is an mgu
of s and s′,

(ii) tσ�sσ,
(iii) t′σ�s′σ,
(iv) t′σ�tσ.

Equality Resolution (ER):

s 6' s′ ∨ C
Cσ

(i) σ is an mgu
of s and s′.

Figure 1: The Superposition Calculus

We consider all formulas used in the superposition calculus implicitly universally quantified.
If we use this convention, the conclusion of every rule is a logical consequence of its premises,
so the calculus is a sound inference system.

We implemented search for local proofs and the algorithm of [15] in our superposition-based
theorem prover Vampire [9]. In some cases interpolation in Vampire however fails to find a
local derivation, even in the case when a non-local derivation exists. Let us give an example.

Example 4.1. Let R be the universal atomic formula (∀x)p(r, x), and B be (∀y)¬p(y, b). The
constant r is red, b is blue, and the predicate p is grey. A reverse interpolant I of R and B is
(∃y)(∀x)p(y, x). Note that, while R and B are universal formulas, so they contain no quantifier
alternations, yet their reverse interpolant I contains quantifier alternations. One can prove that
every interpolant of this formula must have at least one quantifier alternation.

The reverse interpolant I cannot be computed using existing methods and provers, including
Vampire, as there is no local proof of R,B ` ⊥ in the resolution/superposition calculus. No
inference rule of the superposition calculus can be applied on R and B without mixing colored
symbols from R and B. While a local proof does not exist, note that the following proof is a
non-local derivation in the substitution superposition (resolution) calculus:

p(r, x) ¬p(y, b)
⊥ (BR)

2

Example 4.1 shows that local proofs do not necessarily exist for complete proof systems,
such as superposition. It also shows that the reverse interpolant of a universally quantified
formula is not always a universal interpolant, and the use of quantifier alternations in reverse
interpolants is unavoidable. Example 4.1 thus poses the following two questions:

(Q1) Is there a (simple, natural) modification of the superposition calculus which is complete
also for local proof generation?
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(Q2) Is there a bound on the number quantifier alternations in reverse interpolants of formulas
without quantifier alternations?

In what follows we address these questions and study interpolation in the superposition calculus.
To this end, we prove some results showing that there is no complete “simple” modification of
the superposition calculus. We start by addressing question (Q2) and show that there is no
lower bound on the number of quantifier alternations in an interpolant of universal sentences.

Theorem 4.1. There is no lower bound on the number of quantifier alternations in interpolants
of universal sentences. That is, for every positive integer n there exist universal sentences R,B
such that {R,B} is unsatisfiable and every reverse interpolant of R and B has at least n
quantifier alternations.

Proof. For this proof we need a skolemization algorithm with the following property: given any
sentence F it converts F into a universal sentence F ′, possibly using some fresh symbols with
the following properties:

(a) F ′ ` F ;

(b) for every sentence G not using the fresh symbols of F ′, the set {F,G} is unsatisfiable if
and only if {F ′, G} is unsatisfiable.

To obtain F ′ one can use the standard skolemization algorithm: first, convert F to the
negation normal form, then replace every subformula of F of the form ∃x(G[x]) by the formula
G[f(ȳ)], where f is a fresh function symbol and ȳ are all free variables of G[x].

Let n be a positive integer. Take any grey sentence A with n quantifier alternations which is
not equivalent to any sentence with n−1 quantifier alternations. Apply skolemization to A and
color every fresh symbol of the skolemized formula in the red color. Denote the resulting formula
by R. Likewise, apply skolemization to ¬A and color every fresh symbol of the skolemized
formula in the blue color. Denote the resulting formula by B. We know that R and B are
universal sentences, R ` A and B ` ¬A. It follows that {R,B} is unsatisfiable, so R and B
has a reverse interpolant. We claim that every reverse interpolant I of R and B has at least n
quantifier alternations.

Take any such reverse interpolant I. We know that R ` I, so {R,¬I} is unsatisfiable. By
the properties of the skolemization algorithm, {A,¬I} is also unsatisfiable, and so ` A→ I. In
the same way we can prove that {¬A, I} is unsatisfiable, so ` I → A. But then A is equivalent
to I, so I must have at least n quantifier alternations.

Example 4.2. Note that one can use formulas of the form ∀x1∃y1∀x1∃y2 . . . p(x1, y1, x2, y2, . . .)
as A in the proof. In this case we have

R = ∀x1∀x2 . . . p(x1, r1(x1), x2, r2(x1, x2), . . .)
B = ∀y1∀y2 . . .¬p(b1, y1, b2(y1), y2, . . .)
I = ∀x1∃y1∀x2∃y2 . . . p(x1, y1, x2, y2, . . .)

Interestingly, the resolution refutation consists of a single step deriving the empty clause from
R and B. The formula I is a reverse interpolant of R and B with the smallest number of
quantifier alternations among all such reverse interpolants. 2

Evidently, one can easily modify the proof of Theorem 4.1 to work with ordinary interpolants
instead of reverse ones, so we have the following result.
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Theorem 4.2. There is no lower bound on the number of quantifier alternations in interpolants
of formulas without quantifier alternations. That is, for every positive integer n there exist a
universal sentence R and an existential sentence B such that ` R → B and every interpolant
of R and B has at least n quantifier alternations.

Our original motivation for investigating interpolation for local and non-local derivations
was similar to that of [17]: find a modification of the superposition calculus that is complete
for local proofs. Theorem 4.1 shows that there is, in fact, no such modification, answering also
question (Q1) above. Even more, we have the following result.

Theorem 4.3. Let S be an inference system with the following property: for every red formula
R and blue formula B, if {R,B} is unsatisfiable, then there is a local refutation of R,B in S.
Then the number of quantifier alternations in refutations of universal formulas of S is not bound
by any positive integer.

Proof. Take a positive integer n and formulas R,B satisfying the conditions of Theorem 4.1.
Take any local refutation of R,B in S. Then the algorithm of [15] extracts from this refutation
a reverse interpolant I of R and B such that I is a boolean combination of formulas occurring
in this refutation. This implies that the refutation contains at least one formula with n or more
quantifier alternations.

Theorems 4.1 and 4.3 imply that the number of alternations in an interpolant is not bound
by any integer and that local refutations in simple modifications of the superposition calculus
cannot be used for interpolant extraction. These results answer our two questions above on
interpolation.

Theorem 4.3 is a serious obstacle to creating complete inference systems producing local
proofs: indeed, modern methods of first-order theorem proving rely upon inference systems
dealing only with universal formulas, such as superposition.

Let us analyze what assumptions and properties of first-order predicate logic we used for
proving the theorems above.

1. The proof of Theorem 4.1 used the existence of a skolemization procedure converting F
to F ′. This procedure can be used for an arbitrary theory T .

2. We used is soundness on the underlying inference system: in all inferences of our proof
system the conclusion is a logical consequence of the premises. This property is required
for extracting interpolants from local proofs.

Let T be a first-order theory. We say that T has quantifier complexity n, where n ≥ 0, if
n is the smallest number such that every formula of the language of T with n + 1 quantifier
alternations is equivalent in T to a formula with n quantifier alternations. If there is no such
number n, then we say that the quantifier complexity of T is ω. First-order predicate logic has
quantifier complexity ω. Evidently, any complete theory T has quantifier complexity 0, since
every formula is equivalent either to > or to ⊥. The last property we used in Theorem 4.1 is

3. First-order predicate logic has quantifier complexity ω.

By inspecting the proof of Theorem 4.1 we can conclude the following:

Theorem 4.4. Let T be a theory with the quantifier complexity ω. There is no lower bound
on the number of quantifier alternations in interpolants of universal formulas with respect to
T in the following sense. For every positive integer n there exist universal formulas R,B, using
symbols in T and fresh function symbols such that
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1. {R,B} is T -unsatisfiable;

2. there exists a reverse interpolant of R and B with respect to T ;

3. every reverse interpolant of R and B with respect to T has at least n quantifier alterna-
tions. 2

While quantifier complexity is an intrinsic property of a theory and therefore cannot be
changed, we next consider variations of local proofs and interpolation where we weaken some
of the notions used in this paper, namely soundness and the notion of interpolant.

5 Interpolants and Non-Local Proofs

In this section we use a notion of relational interpolant and show later that it can be used
to extract interpolants from arbitrary (and not just local) resolution proofs for logic without
equality. Relational interpolants use a weaker condition on colors, allowing mixing red and blue
colors in function symbols but not in predicate symbols.

The notion of relational interpolant can already be found in [12] and was used in a number
of publications, including [1] and [3]. In this section we will use an arbitrary first-order theory
T , whenever possible.

A formula F is said to be greyish if all predicate symbols occurring in F are grey. Note that
a greyish formula can contain red and blue function symbols.

Definition 5.1 (Relational Interpolant). Let R be a red formula, B be a blue formula and
R `T B. Then we call a relational interpolant of R and B (with respect to T ) any formula I
such that:

1. R `T I and I `T B;

2. all free variable of I are also free variables in both R and B;

3. I is greyish.

We call a relational reverse interpolant of R and B (with respect to T ) any relational interpolant
of R and ¬B (with respect to T ).

Our next aim is to show how to extract reverse interpolants from arbitrary, possibly non-
local superposition refutations in predicate logic with or without equality. To this end we will
first show how one can extract relational reverse interpolants from such refutations. After that,
in Section 6 we turn our attention to logic without equality and show that relational reverse in-
terpolants can be turned into reverse interpolants. Interestingly, for relational interpolants there
is a bound on the number of quantifier alternations. Our technique is based on a generalization
of the notion of C-interpolant from [15].

Let C be a clause. By C(r) (respectively, C(b)) we denote the multiset of all literals in C
whose predicate symbols are red (respectively blue). By C(g) we denote the multiset of literals
in C which belong to neither C(r) not C(b), that is all literals with a grey predicate symbol and
equalities. Evidently, C is equal to C(r) ∨ C(b) ∨ C(g).

Definition 5.2 (C-interpolant). Let R be a red sentence, B be a blue sentence and R,B ` ⊥.
Let C be a clause. A formula I is called a C-interpolant of R and B if it has the following
properties.
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Resolution (BR):

A ∨ C ¬A ∨D
C ∨D

Superposition (Sup):

s ' t ∨ C L[s]p ∨D
C ∨D ∨ L[t]p

(ii) s′ is not a variable,
(iii) t � s.

Factoring (F):

A ∨A ∨ C
A ∨ C

Equality Factoring (EF):

s ' t ∨ s ' t′ ∨ C
s ' t ∨ t 6' t′ ∨ C

(ii) t � s,
(iii) t′ � s,
(iv) t′ � t.

Substitution (Subst):

C
Cσ

Equality Resolution (ER):

s 6' s ∨ C
C

Figure 2: The Substitution Superposition Calculus

(C1) I is greyish.

(C2) R,¬I `T C(r) ∨ C(g);

(C3) B, I `T C(b) ∨ C(g).

Note that the notion of relational reverse interpolant is a special case of the notion of
C-interpolant. Indeed, take C to be ⊥: then we have R,¬I `T ⊥ and B, I `T ⊥.

The following obvious lemma demonstrates why dealing with relational interpolants and
C-interpolants is easier than dealing with interpolants.

Lemma 5.1. Let I be a C-interpolant of sentences R and B and σ be an arbitrary substitution.
Then Iσ is a Cσ-interpolant of R and B. 2

This lemma does not hold for standard interpolants, since applying a substitution to a grey
formula I may introduce red and/or blue colors in I. However, the lemma holds for relational
interpolants since applying a substitution to a formula cannot change the colors of predicate
symbols in it.

In the sequel we will simply say “C-interpolant” instead of “C-interpolant of R and B”
when R and B are clear from the context. We will now consider an alternative formulation of
the superposition calculus, where substitution application is separated from other inferences.
It is called the substitution superposition calculus and shown in Figure 2.

Evidently, this calculus is sound and any derivation in the superposition calculus can be
changed into a derivation in the substitution superposition calculus by replacing applications
of an mgu to inferences using (Subst).
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Example 5.1. The non-local derivation of Example 4.1 can be changed into

p(r, x)

p(r, b)
(Subst)

¬p(y, b)
¬p(r, b)

(Subst)

⊥ (BR)

Note that the formulas p(r, b) and ¬p(r, b) used in this refutation are greyish but mix red and
blue colors, so the derivation is not local.

We are interested in resolution and superposition refutations from a set of clauses derived
from R and B. We call a clause C an R-clause if C is implied by R and C contains no blue
predicate symbols. Likewise, a clause C is said to be a B-clause if C is implied by B and C
contains no red predicate symbols. Consider again the above non-local derivation. The formula
p(r, b) is an R-clause, whereas ¬p(r, b) is a B-clause.

Based on Figure 2, the next lemma shows how to build C-interpolants from proofs in the
substitution superposition calculus.

Lemma 5.2. Given a derivation of a clause C in the substitution superposition calculus from
a set of R-clauses and B-clauses, one can build a C-interpolant I of R and B.

Proof. The proof is by induction on the number of inferences in the derivation, by case distinc-
tion on the inference rules.
Base case. Let us start with the base case where C is an R-clause. We show that ⊥ is
a required C-interpolant. The conditions (C1) and (C3) are obvious. The condition (C2)
becomes R `T C(r) ∨ C(g) and follows from the fact that C is an R-clause, so C is equal to
C(r) ∨ C(g). Similarly, we conclude that > is a C-interpolant for every B-clause C.
Substitution rule. Consider the substitution rule

C
Cσ

.

and let I be a C-interpolant. Then by Lemma 5.1, Iσ is a Cσ-interpolant.
Resolution rule. Consider a propositional resolution inference

A ∨ C1 ¬A ∨ C2

C1 ∨ C2

.

and suppose that I1 is a (A∨C1)-interpolant and I2 is a (¬A∨C2)-interpolant. It is easy to see
that I1 is a also a (A∨C1∨C2)-interpolant and I2 is a (¬A∨C1∨C2)-interpolant. Denote by C
the clause C1 ∨C2. It follows that I1 is a (A∨C)-interpolant and I2 is a (¬A∨C)-interpolant,
and we should find a C-interpolant. Consider the three possible cases, depending on the color
of the predicate symbol of A.
(a) A is greyish. In this case we claim that (A ∨ I1) ∧ (¬A ∨ I2) (that is, if A then I2 else I1)
is a C-interpolant.
(b) A has a red predicate symbol. In this case we claim that I1 ∨ I2 is a C-interpolant.
(c) A has a blue predicate symbol. In this case we claim that I1 ∧ I2 is a C-interpolant.
Superposition rule. Consider a propositional superposition inference. Similar to the resolu-
tion rule, we can assume that it has the form

s ' t ∨ C L[s] ∨ C
L[t] ∨ C

,
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where L is an arbitrary literal. Consider, again, the three possible cases.
(a) L is greyish. In this case we claim that (s ' t ∨ I1) ∧ (s 6' t ∨ I2) (that is, if s ' t then I2
else I1) is a C-interpolant.
(b) L has a red predicate symbol. In this case we claim that (s 6' t∧ I1)∨ I2 is a C-interpolant.
(c) L has a blue predicate symbol. In this case we claim that (s ' t∨I1)∧I2 is a C-interpolant.
Factoring rule, equality factoring rule, and equality resolution rule. For all of these
rules the conclusion C ′ is a logical consequence of its premise C, so every C-interpolant is also
a C ′-interpolant.

Example 5.2. Consider the non-local proof of Example 5.1. Each clause in this proof is either
an R-clause or a B-clauses. Using the construction of Lemma 5.2, we obtain p(r, b) as the
relational reverse interpolant of R and B.

Lemma 5.2 yields an algorithm to build a C-interpolant from an arbitrary, possibly non-local
derivation of C in the substitution superposition calculus. Thus, we can also build a relational
reverse interpolant I of R and B from a refutation. In the next section we show that this result
in logic without equality can be extended to building a reverse interpolant by applying so-called
greying to I.

The result of extracting relational reverse interpolants from superposition refutations was
also proved in [12] and [3]. Our proof is considerably shorter and simpler than either of these
proofs.

6 Interpolation for Logic Without Equality Using Rela-
tional Interpolants

In this section we investigate extraction of interpolants from arbitrary resolution refutations in
logic without equality. Using Lemma 5.2, we already know how to build relational interpolants.
In what follows, we discuss the result of [1] showing how to turn relational interpolants into
interpolants in logic without equality by quantifying away colored terms occurring in relational
interpolants.

This problem is addressed also in [12] and [3], however in both papers for logic with equality.
We will comment on the relation of our result to the results proved in these related papers after
Theorem 6.1 below.

Lemma 6.1. Let I,R,B be sentences without equality and I be a reverse relational interpolant
of R and B. Let t be a non-variable term occurring in I with the following properties: (i) the
top-level function symbol of t is red (respectively blue); (ii) t is not a proper subterm of any term
whose top-level symbol is either red or blue. Consider the formula I ′ obtained by replacing all
occurrences of t by a fresh variable x. Then ∃xI ′ (respectively ∀xI ′) is also a reverse relational
interpolant of R and B. 2

We do not prove this lemma since it is a special case of Theorem 6.1 below.
Let I,R,B be sentences without equality and I be a reverse relational interpolant of R and

B. Let us call greying the process of quantifying away colored subterms in I as in Lemma 6.1
in an arbitrary order until it is not more applicable. For example, by applying greying to
the greyish formula p(r(b), r(r(b)), b) we first obtain ∃x(p(r(b), x, b)), then ∃y∃x(p(y, x, b)) and
finally the formula ∀z∃y∃x(p(y, x, z)). It is not hard to argue that greying always terminates
and that the final formula of greying is grey. Therefore, we obtain the following result.
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Theorem 6.1. Let I,R,B be sentences without equality and I be a reverse relational inter-
polant of R and B. Let I ′ be obtained by applying greying to I. Then I ′ is a reverse interpolant
of R and B. 2

A proof of this theorem can be found in the book by Baaz and Leitsch [1], the theorem is
Lemma 8.2.2 in that book.

Paper [3] proves the result of Theorem 6.1 for logic with equality but only for the case when
colored symbols are constants. That is, it is shown that reverse interpolants can be extracted
from arbitrary superposition refutations provided that all colored symbols are constants. In
this case, the correctness of greying is obvious (for example, because each greying step is,
effectively, a skolemization steps, where colored symbols are considered as Skolem functions)
and hence Theorem 6.1 holds also in the setting of [3]. We will comment on this result below
in Theorem 6.2. Note however that our Theorem 6.1 addresses arbitrary resolution proofs in
logic without equality, without restricting colored symbols to only constants; that is, we work
with arbitrary colored function symbols.

On the other hand, [12] claims that Theorem 6.1 holds for arbitrary proofs in logic with
equality without any restriction on the input sentences R and B and concludes that using it
one can extract interpolants from superposition proofs for logic with equality. Let us show that
this result of [12] for logic with equality is incorrect.

Example 6.1. Consider the formula a ' b ∧ r(a) 6' r(b). The formula is unsatisfiable. Since
r(a) is a term satisfying Lemma 6.1, the lemma claims that ∃x(a ' b∧x 6' r(b)) is unsatisfiable
too. However, this formula is trivially satisfiable (it even has a model of size 2). The problem
here is that the red inequality on larger terms r(a) 6' r(b) implies an inequality on smaller
terms, moreover not containing the red color. 2

We conclude this section with a note related to the case when only constants are colored.

Theorem 6.2. Let R,B be formulas (with or without equality) in a language in which all
colored function symbols are constants (but which can contains arbitrary colored predicate
symbols) and R∧B is unsatisfiable. Then there exists a reverse interpolant of R and B having
at most one quantifier alternation.

Proof. Extract a reverse relational interpolant I from a superposition refutation of R ∧ B as
in the proof of Lemma 5.2. Then apply greying to I so that all red constants are quanti-
fied away first, followed by all blue constants. The resulting reverse interpolant has the form
∀x1 . . . ∀xn∃∀y1 . . . ∃ymI ′, where I ′ is quantifier-free.

Note that Example 4.1 shows that at least one quantifier alternation in this theorem is
necessary, even if there is no equality and no colored predicate symbols.

7 New Directions

The main results of this paper on the unbounded quantifier complexity of interpolants and
non-existence of local proofs with a bounded quantifier complexity seem to demonstrate that
the approach to building interpolants using local proofs fails for first-order logic.

However, we have already seen that for logic without equality one has an alternative way of
extracting interpolants from refutations by building a relational interpolant and then applying
greying. The interesting open question is what can be done for logic with equality. Paper [18]
actually gives such a construction by using several techniques, including translation of logic
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with equality into logic without equality. The disadvantage of this technique is the large size of
the interpolant as compared to the size of the refutation, which probably makes it unrealistic for
applications of interpolation in program analysis and verification. On the contrary, interpolants
extracted from local proofs are linear in the size of proofs1 if they are represented as dags and
if the number of premises of inference rules is bounded [15].

Interpolants can have an arbitrary number of quantifier alternations, which seems to exclude
building a complete simple modification of the superposition calculus. Dealing efficiently with
formulas with arbitrary quantifier alternations in a first-order theorem prover seems to be out
of the question.

However, our results on quantifier complexity of interpolants rely on the soundness of the
inference system. What we conjecture here is that one can define a relatively simple inter-
polating modification of the superposition calculus by relaxing the soundness property. One
possible approach would be to introduce definitions or skolemization on the fly. Such calculi
are routinely used in modern theorem proving. For example, Vampire uses the AVATAR ar-
chitecture [24], where one can introduce propositional names for clauses during proof-search,
though AVATAR does not let one handle arbitrary quantifier alternations. The geometric reso-
lution calculus of [8] actually allows one to skolemize while applying resolution. If we introduce
skolem functions (or even just constants) on the fly and implicit definitions corresponding to
these functions or constants, we can still have an inference system using only clauses, but these
clauses will denote formulas with quantifier alternations. If the resulting inference system is a
simple modification of the superposition calculus, it should also be possible to adapt modern
theorem provers to give practically efficient proof procedures for such calculi.

Note that the result of skolemization is a formula that can be stronger than the premise,
so we lose the soundness property for the inference system, but not the soundness property for
refutations: any set of formulas having a refutation is still unsatisfiable. In order to implement
the approach described above, one will have to modify the notion of local proofs and related
results to deal with fresh symbols and a weaker soundness property.

8 Related Work

Most of the interpolation-based verification methods, for example [16, 5, 7, 22, 4], require
explicit construction of local proofs in the combined quantifier-free theory of linear arithmetic
with uninterpreted function symbols. While local proofs in such proof systems can always be
found, the construction of local proofs is theory specific, and thus cannot be easily extended to
other theories, especially those with quantifiers. Unlike these methods, we address full first-order
interpolation with theories and do not restrict ourselves to theory-specific reasoning. We show
that there is no simple modification of the superposition calculus for local proof generation
in first-order predicate logic with equality, and discuss limitations of a complete local proof
generation in logic with equality.

First-order interpolation using local proofs in the superposition calculus is also studied in [3].
The interpolant extraction algorithm of [3] for non-ground refutations is proved to be complete
if the only colored function symbols are constants. A related result is given in the interpolation
algorithm of [10]: it is shown that non-local proofs can always be changed into local ones if all
colored symbols are uninterpreted constants. Our results from Section 3 show that one cannot
do better than [3, 10], that is there exist no complete local proof system using any calculus
that is sound and deals with clauses. The works [1, 3] also relational interpolants (called

1The formulation in [15] does not mention that the number of rules must be bounded, if we do not use this
condition, then it can become quadratic, as pointed out by Ken McMillan (private communications).
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weak interpolants). We believe that our algorithm for a construction of relational interpolants
and related proofs are simpler than those of [1, 3]. We show that interpolants can always be
computed from relational interpolants in logic without equality, which is not discussed in [3].
As pointed out in [3], our result also holds for logic with equality under the restriction that all
colored symbols are constants.

The notion or relational interpolants was originally introduced in [12]. The work of [12]
claims that relational interpolants can always be turned into interpolants for superposition
proofs in first-order logic with equality by greying. Our Example 6.1 shows however that this
result is incorrect.

9 Conclusions

We addressed interpolation in first-order logic with equality and proved a number of new results
on the (non-)existence of complete interpolation algorithms based on local proofs. We also
proved a new result that for every positive integer n, there exist formulas with no quantifier
alternations all whose interpolants have at least n quantifier alternations.

Our results imply that there is no simple modification of the superposition calculus that is
complete for local proof generation. We noted however that by weakening the notion of inter-
polants, interpolants can always be computed for logic without equality and, under additional
constraints, also for logic with equality. We also conjecture that by weakening the soundness
requirement for inference systems one can obtain an efficient interpolating theorem prover for
first-order logic with equality using a modification of the superposition calculus.
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works on relational interpolants and discussing proof-theoretic approaches on constructing such
interpolants. We also thank Bernhard Gleiss for stimulating discussions.
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