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Abstract

We introduce a new proof-theoretic framework which enhances the expressive power
of bunched sequents by extending them with a hypersequent structure. A general cut-
elimination theorem that applies to bunched hypersequent calculi satisfying general rule
conditions is then proved. We adapt the methods of transforming axioms into rules to
provide cutfree bunched hypersequent calculi for a large class of logics extending the dis-
tributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The
methodology is then used to formulate new logics equipped with a cutfree calculus in the
vicinity of Boolean BI.

1 Introduction

The wide applicability of logical methods and their use in new subject areas has resulted in an
explosion of new logics. The usefulness of these logics often depends on the availability of an
analytic proof calculus (formal proof system), as this provides a natural starting point for investi-
gating metalogical properties such as decidability, complexity, interpolation and conservativity,
for developing automated deduction procedures, and for establishing semantic properties like
standard completeness [26]. A calculus is analytic when every derivation (formal proof) in the
calculus has the property that every formula occurring in the derivation is a subformula of the
formula that is ultimately proved (i.e. the subformula property). The use of an analytic proof
calculus tremendously restricts the set of possible derivations of a given statement to deriva-
tions with a discernible structure (in certain cases this set may even be finite). Gentzen [17]
presented the first analytic calculi, for classical and intuitionistic logic—in his sequent calculus
formalism—by proving the celebrated Hauptsatz. Subsequently the formalism was extended to
obtain analytic proof calculi for other logics. The key idea for obtaining an analytic calculus is
the use of generalised proof rules that preserve the subformula property and make the subfor-
mula property-violating cut rule redundant. The cut rule is itself a generalisation of the rule of
modus ponens, which is, of course, the crucial rule in a standard (Hilbert) axiomatisation of a
logic. By deleting the now redundant cut rule, an analytic calculus is obtained.
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Unfortunately there are many logics which do not support such cut-elimination in the se-
quent calculus formalism due to inherent technical restrictions in the formalism. In the last
three decades this has led to the introduction of many other formalisms; prominent examples
include the hypersequent and display calculus [3, 2, 12, 19, 6], labelled calculus [36, 28] and
bunched sequent calculus [14, 27]. These formalisms feature different expressive power and can
be useful for proving different computational and metalogical properties of the formalised logics.
In general, expressive formalisms support analytic calculi for more logics. Since this expressiv-
ity is typically obtained by the addition of new non-logical symbols (structural connectives), it
becomes harder to control the form of derivations in the calculus, making it more difficult to
prove metalogical properties and perform automated proof search. For this reason, the most
suitable formalism for investigating the properties of a logic is often the simplest one (in terms
of structure) which permits analyticity.

Bunched sequent calculi, also known as Dunn-Mints systems [14, 27, 31], were developed
to provide a cutfree formulation of logics lacking weakening/integrality but satisfying the dis-
tributivity axiom (p∧ (q∨r)) ( ((p∧q)∨ (p∧r)). The idea behind these systems is to consider
sequents of the form X ⇒ A where X is permitted to contain structural symbols for both
the additive/lattice conjunction (“;”) and multiplicative/monoidal conjunction (“,”). These
structural symbols correspond, respectively, to the logical symbols ∧ and ⊗.

Bunched calculi have been used to define analytic calculi for relevance logics and for the
logic of Bunched Implication BI [33] introduced to reason about dynamic data structures [30].
Although these logics can be formalised using the more powerful formalism of display calculi,1

the advantage of using a simpler formalism is evident, e.g., when searching for proofs of decid-
ability of the logic (see [18, 5, 22]). Unlike display calculi, bunched calculi do not require that
the structural connectives appear in residuated pairs, and the structural connectives occur in a
derivation only when the corresponding logical connectives appear in the formula to be proved.

In this paper we introduce the new proof theoretic framework of bunched hypersequents,
which generalises the bunched sequents. Bunched hypersequents are defined by extending
bunched sequents with a hypersequent structure. I.e. use a finite non-empty multiset of bunched
sequents rather than just a single bunched sequent. This allows the definition of new rules
which apply to several bunched sequents simultaneously, thus increasing the expressive power
of the framework. Although a bunched hypersequent is a more complex data structure than a
bunched sequent, it is simpler in structural terms than a display sequent. Indeed, by adapting
the method in [34], the bunched hypersequent formalism can be embedded into the display
calculus formalism. Our aim is to capture a large class of those logics that defy an analytic
bunched calculus while retaining much of the structural simplicity of the bunched calculus.

The expressive power of the new formalism is demonstrated by introducing cutfree bunched
hypersequent calculi for a large class of extensions of distributive commutative Full Lambek
calculus DFLe. The calculi are obtained by suitably extending the procedure in [8] for trans-
forming Hilbert axioms into structural rules. We then consider the case of extensions of the
logic of bunched implication BI. Aside from its theoretical interest, the recent applications [13]
of BI-related logics illustrates the importance of having available general methods for the con-
struction of analytic calculi. Extensions of BI by a certain class of axioms including restricted
weakening or contraction are presented. However, our attempt to extend the BI calculus to
obtain a simple analytic calculus for Boolean Bunched Implication BBI encountered a surpris-
ing obstacle: while a hypersequent structure extending the bunched calculus for BI can be

1A display calculus typically contains many structural connectives because the structural connectives come
in pairs [3, 19, 12]: whenever there is a structural connective corresponding to a logical connective, the calculus
will also contain a structural connective corresponding to the algebraic residual of that logical connective.
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defined (and hence also logics extending BI via the exploitation of the hypersequent structure),
there are technical difficulties associated with its interpretation. This demonstrates the the
importance of verifying the sequent-to-hypersequent, axioms-to-structural rules paradigm for
each framework of interest. In response, motivated by the perspective gained from the hyper-
sequent calculi for extensions of DFLe, we turn the investigation on its head and formulate an
analytic hypersequent calculus for a consistent extension of BI which derives a limited boolean
principle—1 ⇒ p ∨ (p → ⊥) but not > ⇒ p ∨ (p → ⊥)—and hence is not BBI, and whose
properties, including its decidability problem, invite further investigation.

2 Preliminaries

The base logic we consider in this paper is the substructural logic called distributive commu-
tative Full Lambek calculus DFLe

2. A DFLe formula is built from propositional variables in a
countably infinite set V, using the binary connectives ∨,∧,⊗,( and the constants 1,0. The
algebraic semantics of DFLe (see [15]) are given by the class of algebras A = (A,∧,∨,⊗,(,1,0)
such that (A,∧,∨) is a lattice, (A,⊗,1) is a commutative monoid, 0 an arbitrary element of A
and x⊗ y ≤ z iff x ≤ y ( z for all x, y, z ∈ A. Let K be a class of algebras. Then |=K C ≤ D
denotes that for every A ∈ K and valuation V (i.e. the map from V to A lifted to formulae)
it is the case that CV ≤ DV holds on A. Distributive Full Lambek logic with exchange DFLe
is the logic of FLe-algebras satisfying distributivity x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z) (the reverse
inequality holds on all FLe-algebras).

The analytic sequent calculus for FLe is well-known. It can be obtained from Gentzen’s
sequent calculus LJ [17] for propositional intuitionistic logic by deleting the structural rules of
weakening and contraction. Then the structural connective “,” in the antecedent of sequents
stands for ⊗. As shown in [8], analytic calculi for many axiomatic extensions of FLe can be
defined in a modular way by adding structural rules to the sequent calculus for FLe. However,
an analytic calculus for DFLe cannot be obtained by structural rule extension in this way (see
Corollary 7.4 in [9]). Instead it is necessary to augment the structural symbol (“;”) in the
sequent calculus with a second symbol (“,”) thus leading to the bunched calculi. A bunch is a
finite term from the following grammar:

X := A is a formula | ∅m | (X,X) | (X;X)

A (bunched) sequent (denoted X ⇒ ψ) is an ordered pair where X (the antecedent) is a bunch
and ψ (the succedent) is a formula or Om. The structural constant ∅m (Om) will be interpreted
as 1 (resp. 0). Notice that Om appears only in the succedent. A context Γ[ ] is an extension of
the bunch grammar to permit the occurrence of a single ‘hole’ [ ]. When Γ[ ] is a context, then
Γ[∆] is the bunch obtained by filling the hole with the bunch ∆.

Example 1. Consider the bunch α; (β, γ). We may write this as Γ[∆] where ∆ is any one of the
following: α β γ β, γ α; (β, γ). These are the only possibilities. Then Γ[ ] is, respectively:
[ ]; (β, γ) α; ([ ], γ) α; (β, [ ]) α; [ ] [ ].

Definition 2 (Sequent calculus sDFLe). The rules of sDFLe are given in Fig. 1 by deleting the
hypersequent context “g |” and the rules (EW) and (EC).

A rule instance is obtained from a rule (schema) by suitably instantiating the various
metavariables with formulae/bunches/hypersequents. Following standard practice, we do not
explicitly distinguish between a rule and its instance.

2FLe is also known as Intuitionistic Linear Logic without the exponential connectives.
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Notation. C+r denotes the extension of the calculus C with rule r. Also |=DFLe+{Ai≤Bi}i∈I
denotes the semantic consequence relation restricted to DFLe algebras satisfying {AVi ≤ BVi }i∈I
under every valuation V .

Theorem 3. Let {Ai}i∈I and {Bi}i∈I be finite sets of DFLe formulae. Then C ⇒ D is derivable
in sDFLe + (cut) + {Ai ⇒ Bi}i∈I iff |=DFLe+{Ai≤Bi}i∈I C ≤ D.

Proof. Straightforward generalisation of the proof for FLe [15].

If |=DFLe+{1≤Bi}i∈I 1 ≤ D then D is said to be a theorem of the Hilbert calculus for DFLe [15]
extended with axioms {Bi}i∈I (henceforth denoted D ∈ DFLe + {Bi}i∈I).

The sequent calculus sDFLe + (cut) has cut-elimination: all instances of the cut rule in a
derivation can be eliminated to obtain a cutfree derivation of the same sequent. So sDFLe+(cut)
and sDFLe derive the same sequents. Nevertheless, in general, the calculus sDFLe + (cut) +
{∅m ⇒ Bi}i∈I does not have cut-elimination. It is precisely this failure of cut-elimination and
the desirability of the subformula property (typically a consequence of cut-elimination) that
motivates the work here on the bunched hypersequent formalism.

3 Bunched hypersequent calculi

Hypersequents [1, 32] extend the sequent formalism by considering multiple sequents rather than
just a single one. Although a hypersequent is a more complex data structure than a sequent, it
is not much more complicated, and it goes in fact just one step further. Nevertheless, the use
of hypersequents has yielded analytic calculi for many more logics of interest with respect to
sequents (see e.g. [2, 8, 26]). In this paper we extend the bunched sequent formalism to obtain
bunched hypersequents.

Definition 4. A bunched hypersequent is a multiset Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn of bunched
sequents. Each Γi ⇒ Πi is a component of the bunched hypersequent.

The hypersequent version of the bunched calculus sDFLe is obtained simply by adding a
context g to all sequents in sDFLe, and the rules (EW ) and (EC) which behave like weakening
and contraction over whole components of bunched hypersequents. More precisely:

Definition 5 (Bunched hypersequent calculus hDFLe). The rules of the hypersequent calcu-
lus hDFLe are given in Fig. 1.

As with bunched sequent calculi, the rules of bunched hypersequent calculi consist of initial
bunched hypersequents (i.e. axioms), the cut rule as well as logical and structural rules. These
inference rules are usually presented as rule schemata. A rule instance is obtained by instanti-
ating the schematic variables. The structural rules are divided into internal and external rules.
The former deal with formulae within one component of the conclusion, e.g. in Fig. 1 (m-ex),
(ex), (c) and (w) are internal structural rules, while (EW ) and (EC) are external ones.

A derivation is defined in the usual way as a finite tree of bunched hypersequents constructed
from the rules starting with the initial sequents.

Definition 6 (Interpretation). The interpretation hI of a bunched hypersequent s1| . . . |sn+1 of
hDFLe is the formula sI1 ∨ . . .∨ sIn+1, where (X ⇒ A)I is XI ( A, (X ⇒ Om)I is XI ( 0 and
the interpretation of bunches is

AI := A ∅Im := 1 (Γ; ∆)I := ΓI ∧∆I (Γ,∆)I := ΓI ⊗∆I
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Remark 7. The interpretation of s1| . . . |sn+1 in the hypersequent version hFLe of the calculus
for FLe is instead the formula (sI1 ∧ 1) ∨ . . . ∨ (sIn+1 ∧ 1) [10].

We may apply (EC), (EW),(∅ml),(∅ml′) rules without explicit mention.

g |X ⇒ A g |Γ[A]⇒ ψ
(cut)

g |Γ[X]⇒ ψ
(init)

A⇒ A

Units:

g |Γ[∅m]⇒ ψ
(1l)

g |Γ[1]⇒ ψ
(1r)∅m ⇒ 1

(0l)
0⇒ Om

g |Γ⇒ Om
(0r)

g |Γ⇒ 0

Multiplicatives:

g |X ⇒ A g |Γ[B]⇒ ψ
((l)

g |Γ[X,A( B]⇒ ψ

g |A,X ⇒ B
((r)

g |X ⇒ A( B

g |Γ[A,B]⇒ ψ
(⊗l)

g |Γ[A⊗B]⇒ ψ

g |X ⇒ A g |Y ⇒ B
(⊗r)

g |X,Y ⇒ A⊗B
Additives:

g |Γ[A;B]⇒ ψ
(∧l)

g |Γ[A ∧B]⇒ ψ

g |X ⇒ A g |X ⇒ B
(∧r)

g |X ⇒ A ∧B

g |Γ[A]⇒ ψ g |Γ[B]⇒ ψ
(∨l)

g |Γ[A ∨B]⇒ ψ

X ⇒ Ai
(∨r)

X ⇒ A1 ∨A2

Internal and external structural rules:

g |Γ[X]⇒ ψ
(∅ml)

g |Γ[∅m, X]⇒ ψ

g |Γ[X]⇒ ψ
(w)

g |Γ[X;Y ]⇒ ψ

g |Γ[X;X]⇒ ψ
(c)

g |Γ[X]⇒ ψ

g
(EW)

g |X ⇒ ψ

g |Γ[∅m, X]⇒ ψ
(∅ml′)

g |Γ[X]⇒ ψ

g |Γ[X,Y ]⇒ ψ
(m-ex)

g |Γ[Y,X]⇒ ψ

g |Γ[X;Y ]⇒ ψ
(ex)

g |Γ[Y ;X]⇒ ψ

g |X ⇒ ψ |X ⇒ ψ
(EC)

g |X ⇒ ψ

Figure 1: The bunched hypersequent calculus hDFLe + (cut) for DFLe.

Remark 8. A bunched sequent calculus can be viewed trivially as a bunched hypersequent cal-
culus. The added expressive power of the latter is due to the possibility of defining new external
structural rules that can act simultaneously on several components of a bunched hypersequent
(see Section 5).

3.1 Soundness and Completeness of hDFLe + (cut)

In the absence of further external structural rules, a sequent is derivable in hDFLe if and only if
is it derivable in sDFLe; Theorem 3 then guarantees the soundness and completeness of hDFLe
w.r.t. DFLe. In this section we prove the stronger result that for any set of hypersequents gj
(j ∈ J) hDFLe + (cut) + {gj}j∈J derives precisely the theorems of DFLe + {gIj } (Cor. 11); this
result will be used in Section 5 to extract bunched hypersequent rules from axioms.

Notation. For a formula A, let A∧1 to denote the formula A ∧ 1.

Lemma 9. Let g be a bunched hypersequent, X a bunch, Γ[ ] a context and A,B and C formulae.
Then

(i) Add context to antecedent and succedent of a disjunct
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If ∅m ⇒ gI ∨ (X ( A)I∧1 is derivable in sDFLe + (cut) then so is the bunched sequent
∅m ⇒ gI ∨ (Γ[X]I ( Γ[A]I)∧1.

(ii) Transitivity of ( under disjunction

The following sequent is derivable in sDFLe.

(gI∧1 ∨ (A( B)∧1), (gI∧1 ∨ (B ( C)∧1)⇒ gI ∨ (A( C) (1)

(iii) Modus ponens for ( inside context

If below left is derivable in sDFLe + (cut) then so is below right.

∅m ⇒ gI∧1 ∨ (XI ( Γ[A⊗ (A( B)]I)∧1 ∅m ⇒ gI ∨ (XI ( Γ[B]I)

(iv) Add ∧1 to disjuncts

Let A1, . . . , An+1 be arbitrary formulae. If ∅m ⇒ A1 ∨ . . .∨An+1 is derivable in sDFLe +
(cut) then so is ∅m ⇒ A1

∧1 ∨ . . . ∨An+1
∧1 .

Proof. In this proof we will write the interpretation of a bunch dropping the superscript “I”
e.g. we write XI ( A as X ( A. This slight abuse of notation is employed to avoid clutter
and aid readability. The identity of the object as bunch or formula will be inferable from the
context. Similar conventions will be applied to the hypersequent g and context Γ[ ].

Proof of (i). Induction on the structure of Γ[ ]. The base case, when Γ[ ] is [ ], is trivial.
Now suppose that Γ[ ] is U, V [ ]. By the IH we have that ∅m ⇒ g ∨ (V [X] ( V [A])∧1 is

derivable in sDFLe. The result then follows by cut on the following derivation (we have omitted
some steps).

U ⇒ U V [X], V [X] ( V [A]⇒ V [A]

V [X] ( V [A], U, V [X]⇒ U ⊗ V [A]

(V [X] ( V [A])∧1 ⇒ U ⊗ V [X] ( U ⊗ V [A]

(V [X] ( V [A])∧1 ⇒ (U ⊗ V [X] ( U ⊗ V [A])∧1

g ∨ (V [X] ( V [A])∧1 ⇒ g ∨ (U ⊗ V [X] ( U ⊗ V [A])∧1

Finally suppose that Γ[ ] is U ;V [ ]. By the IH we have that ∅m ⇒ g ∨ (V [X] ( V [A])∧1 is
derivable in sDFLe. The result then follows by cut on the following derivation.

1, U ⇒ U

(V [X] ( V [A])∧1, U ∧ V [X]⇒ U

V [X] ( V [A], V [X]⇒ V [A]

(V [X] ( V [A])∧1, U ∧ V [X]⇒ V [A]

(V [X] ( V [A])∧1, U ∧ V [X]⇒ U ∧ V [A]

(V [X] ( V [A])∧1 ⇒ U ∧ V [X] ( U ∧ V [A]

(V [X] ( V [A])∧1 ⇒ (U ∧ V [X] ( U ∧ V [A])∧1

g ∨ (V [X] ( V [A])∧1 ⇒ g ∨ (U ∧ V [X] ( U ∧ V [A])∧1

Proof of (ii). Omitting some steps for brevity:

· · ·

A,A( B,B ( C ⇒ C

A( B,B ( C ⇒ A( C

A( B,B ( C ⇒ g ∨ (A( C)

(g∧1 ∨ (A( B)∧1), (g∧1 ∨ (B ( C)∧1)⇒ g ∨ (A( C)
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Proof of (iii). It is easy to see that A ⊗ (A ( B) is derivable in sDFLe + (cut). From (i)
we have that Γ[A ⊗ (A ( B)] ⇒ Γ[B] and hence ∅m ⇒ g∧1 ∨ (Γ[A ⊗ (A ( B)] ( Γ[B])∧1
is derivable in sDFLe + (cut). Then by (ii) we have that ∅m ⇒ g ∨ (X ⇒ Γ[B]) is derivable
in sDFLe + (cut).

Proof of (iv). From ∅m ⇒ A1∨ . . .∨An+1 we have ∅m ⇒ (A1∨ . . .∨An+1)∧1. Now apply
cut with

· · ·

Aj ⇒ Aj 1⇒ 1

Aj ; 1⇒ Aj∧1

Aj ; 1⇒ A1
∧1 ∨ . . . ∨An+1

∧1 · · ·
(A1 ∨ . . . ∨An+1); 1⇒ A1

∧1 ∨ . . . ∨An+1
∧1

(A1 ∨ . . . ∨An+1) ∧ 1⇒ A1
∧1 ∨ . . . ∨An+1

∧1

As usual, the height of a derivation is the number of rules on its longest branch.

Lemma 10. Let A be a formula and {gj}j∈J a finite set of hypersequents. Then ∅m ⇒ A is
derivable in H = hDFLe+(cut)+{gj}j∈J iff ∅m ⇒ A is derivable in S = sDFLe+(cut)+{∅m ⇒
gIj }j∈J .

Proof. The result follows from the following two statements.

(a) If the sequent X ⇒ ψ is derivable in S then X ⇒ ψ is derivable in H.

(b) If the hypersequent h is derivable in H then ∅m ⇒ hI is derivable in S.

In particular, if ∅m ⇒ A is derivable in H, then (b) implies that ∅m ⇒ 1 ( A is derivable
in S. It follows then that ∅m ⇒ A is derivable in S.

Proof of (a). It is straightforward to simulate each of the rules of S in H. Every initial
sequent ∅m ⇒ gIj in S can be derived in H starting from the hypersequent gj . The idea is to

rewrite every component Y ⇒ φ in gj as ∅m ⇒ Y I ( φ using (∧l) and (⊗l) and ((r). The
result then follows from repeated use of (∨r) and (EC).

Proof of (b). Induction on the height of the H-derivation of h. If the derivation is an initial
sequent then the argument is trivial. Otherwise consider the last rule in the derivation. By the
induction hypothesis, we may assume that the result holds for the premises of the rule. Let us
illustrate some of the cases.

(cut). Suppose that ∅m ⇒ gI ∨ (X ( A) and ∅m ⇒ gI ∨ (Γ[A] ⇒ C) are derivable in S.
By Lemma 9(iv) we have that ∅m ⇒ gI∧1 ∨ (X ( A)∧1 and ∅m ⇒ gI∧1 ∨ (Γ[A] ⇒ C)∧1 are
derivable in S. Applying Lemma 9(i) to the former we obtain ∅m ⇒ gI∧1 ∨ (Γ[X] ( Γ[A])∧1.
Now obtain the required ∅m ⇒ gI ∨ (Γ[X]⇒ C) by (cut) on (1) (Lemma 9(ii)).

(⊗r). Suppose that ∅m ⇒ gI ∨ (X ( A) and ∅m ⇒ gI ∨ (Y ( B) are derivable in S. It
follows from Lemma 9(iv) that we have a derivation of

∅m ⇒ (gI∧1 ∨ (X ( A)∧1)⊗ (gI∧1 ∨ (Y ( B)∧1)

The result follows from an application of cut with the following derivation.

X ( A, Y ( B,X, Y ⇒ A⊗B
(X ( A)∧1, (Y ( B)∧1 ⇒ X ⊗ Y ( A⊗B

(gI∧1 ∨ (X ( A)∧1)⊗ (gI∧1 ∨ (Y ( B)∧1)⇒ gI ∨ (X ⊗ Y ( A⊗B)

(gI∧1 ∨ (X ( A)∧1)⊗ (gI∧1 ∨ (Y ( B)∧1)⇒ gI ∨ (X ⊗ Y ( A⊗B)
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((l). We have derivations of gI ∨(Y ( A) and gI ∨(Γ[B]⇒ C) in sDFLe +(cut). From the
former, by Lemma 9(iv) and (i) we obtain a derivation of gI∨(Γ[Y ⊗A( B] ( Γ[A⊗A( B]).
Then by Lemma 9(iv) and (iii) we obtain a derivation of gI ∨ (Γ[Y ⊗ A ( B] ( Γ[B]). From
Lemma 9(iv) and (ii) using gI∧1 ∨ (Γ[B]⇒ C)∧1 we derive gI ∨ (Γ[Y ⊗A( B]⇒ C).

Notation. Let A =DFLe B denote (A( B) ∧ (B ( A) ∈ DFLe.

Corollary 11. Let {Aj}j∈J and {gj}j∈J be finite sets of formulae and hypersequents such that
Aj =DFLe g

I
j for each j ∈ J . Then for every formula B:

B ∈ DFLe + {Ai}i∈I iff ∅m ⇒ B derivable in hDFLe + (cut) + {gj}j∈J

Proof. From Theorem 3 B ∈ DFLe +{Ai}i∈I iff ∅m ⇒ B is derivable in sDFLe +(cut)+{∅m ⇒
Aj}j∈J iff sDFLe + (cut) + {∅m ⇒ gIj }j∈J . From Lemma 10 we have the latter iff ∅m ⇒ B
derivable in hDFLe + (cut) + {gj}j∈J .

4 Cut-elimination for structural rule extensions of hDFLe

We present a uniform cut-elimination proof applying to structural rule extensions of hDFLe
(sDFLe is then a special case of the theorem). Our proof applies to structural rules satisfying
conditions inspired by Belnaps [3] conditions for cut-elimination in the display calculus.3 The
advantage of presenting a general cut-elimination theorem is that it enables the readers to
check that it holds for a structural rule extension of their choice by simply verifying on sight
the (sufficient) conditions given below.

The parametric ancestors [3] of a formula occurrence A in the conclusion of a rule instance
are those occurrences of A in the premises occurring in the same position i.e. instantiating the
same schematic variable in the same position.

Example 12. A formula occurrence and its parametric ancestors (highlighted with Â):

C, (A; (Â, B))⇒ D

A; (Â, B)⇒ C ( D

B; (C,D)⇒ Â

B;C ⊗D ⇒ Â

Â, A⇒ Om | Â, A⇒ Om
Â, A⇒ Om

Definition 13 (Permutative). Let r be a bunched hypersequent rule instance and Â an occur-
rence of a non-principal formula in the conclusion. The rule r is permutative if the premises
and conclusion have the same context g and:

(C4) Polarity preserving: If Â is in the antecedent (succedent) then all its parametric an-
cestors (if any) are also in the antecedent (resp. succedent).

(C6) Substitution closed: If Â is in the antecedent, substituting Â and also all its parametric
ancestors (if any) in the premise(s) with an arbitrary bunch X is a legal rule instance
of r.

(C7) Closed under arbitrary contexts: If Â is in the succedent, replacing every component
of the form U ⇒ Â in the premise and conclusion of r with Γ[U ] ⇒ ψ yields a legal rule
instance of r for any context Γ[ ] and ψ.

3Although the rule conditions are inspired by the display calculus, the same cut-elimination argument cannot
be used here. Display calculi are equipped with ‘enough’ structural connectives to allow the isolation of any
formula as the whole of the antecedent (succedent) in a sequent. This is called the display property and it
simplifies the cut-elimination argument.
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The labels C4, C6, C7 correspond to Belnap’s [3] conditions in the display calculus which
are used to permute a cut upwards in a derivation.

Lemma 14. Every rule in hDFLe + (cut) and sDFLe + (cut) is permutative.

Proofs of cut-elimination in (bunched) hypersequent calculi are similar to those for (bunched)
sequent calculi; the additional difficulty arises due to the (EC) rule which duplicates components
that should be handled in parallel, see e.g. [26, 12]. A solution is to consider generalisations of
Gentzen’s multicut rule in which one of the premises necessarily contains a single occurrence of
the cut formula (every indicated occurrence of A in the rules below is called a cut-formula):

h |X ⇒ A h |Γ1[[A]]⇒ ψ1 | · · · |ΓM+1[[A]]⇒ ψM+1
(cut⇒•)

h |Γ1[[X]]⇒ ψ1 | · · · |ΓM+1[[X]]⇒ ψM+1

h |X1 ⇒ A | · · · |XN+1 ⇒ A h |Γ[A]⇒ ψ
(cut•⇒)

h |Γ[X1]⇒ ψ | · · · |Γ[XN+1]⇒ ψ

The subscript •⇒ (⇒•) identifies that the single occurrence is in the antecedent (resp. succe-
dent). Since (cut) can be viewed as a special instance of either of these rules, cut-elimination
follows from elimination of (cut⇒•) and (cut•⇒).

Algorithm description: (1) Choose a topmost cut. (2) Permute cut⇒• (cut•⇒) upwards
in its right (resp. left) premise until some cut-formula in the right (resp. left) premise of cut⇒•
becomes principal. (3) Cut all the non-principal occurrences by shifting the cut upwards.
(4) Cut the remaining (principal) occurrence using cut•⇒ (resp. cut⇒•). Notice we have
switched the cut rule! (5) Permute the cut upwards—this time in the left (resp. right) premise
derivation—and repeat argument. (6) When the cut is principal in both left and right premise,
transform into cuts on smaller subformulae as in Gentzen’s original proof.

Notation and terminology. The cut-height is the sum of the heights of the derivations
ending in the premise of the cut. We write Γ[[X]] to mean the bunch Γ[X] · · · [X] containing
some number of occurrences of X.

Theorem 15. The rule (cut) is eliminable in hDFLe + (cut) + {ri}i∈I for any set {ri}i∈I of
permutative rules.

Proof. We prove the stronger statement that the rules (cut•⇒) and (cut⇒•) are eliminable in
hDFLe+(cut•⇒)+(cut⇒•)+{ri}i∈I . As usual, it suffices to eliminate topmost cuts. For cut⇒•,
set e = 0 if some cut-formula in the right premise is principal else set e = 1. For cut•⇒, set
e = 0 if some cut-formula in the left premise is principal else set e = 1. The elimination of
(cut•⇒) and (cut⇒•) is by primary induction on the size of the cut formula, secondary induction
on the e-value of the cut and tertiary induction on its cut-height.

Consider an arbitrary topmost instance of (cut⇒•) (the case of (cut•⇒) is symmetric).
First suppose that none of the occurrences of the cut-formula in the premise h |Γ1[[A]] ⇒
ψ1 | · · · |ΓM+1[[A]] ⇒ ψM+1 is principal. Let rR be the rule above this sequent (we illustrate
with a unary rule, below left). Identify the parametric ancestors of the cut-formula in the
premises of rR. Proceed as below right (applications of (EW ) are not indicated).

h |X ⇒ A

g[[Â]]
rR

h |Γ1[[Â]]⇒ ψ1 | · · · |ΓM+1[[Â]]⇒ ψM+1
(cut⇒•)

h |Γ1[[X]]⇒ ψ1 | · · · |ΓM+1[[X]]⇒ ψM+1

h |X ⇒ A h | g[[A]]
(cut⇒•)

†
h | g[[X]]

rR
h |Γ1[[X]]⇒ ψ1 | · · · |ΓM+1[[X]]⇒ ψM+1
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The (cut⇒•)
† has lesser cut-height than the original and hence is eliminable by the induction

hypothesis. Note that the new instance of rR is legal due to permutativity (condition C6).
Next suppose that a cut-formula A∗ in h |Γ1[[A]]⇒ ψ1 | · · · |ΓM+1[[A]]⇒ ψM+1 is principal

by rR (we illustrate with a unary rule). There are two subcases.
(i) The cut formula is not principal in h |X ⇒ A (below left). Proceed below right:

h |X ⇒ A

g′[[A]]
rR

h | g[[A]][A∗]
(cut⇒•)

h |Γ1[[X]]⇒ ψ1 | · · · |ΓM+1[[X]]⇒ ψM+1

h |X ⇒ A

h |X ⇒ A h | g′[[A]]
(cut⇒•)

†

h | g′[[X]]
rR

h | g[[X]][A∗]
(cut•⇒)‡

h |Γ1[[X]]⇒ ψ1 | · · · |ΓM+1[[X]]⇒ ψM+1

The (cut⇒•)
† has lesser cut-height than the original cut hence eliminable by induction hypoth-

esis. Also rR is legal as it is permutative. Observe that we switched from the original (cut⇒•)
where the left premise was not principal to (cut•⇒)‡ where right premise is principal. Thus
the new cut has lesser e-value and is hence eliminable via the induction hypothesis.

(ii) The cut formula is principal in h |X ⇒ A. First cut the non-principal occurrences
of Â as in (cut⇒•)

† in subcase (i). What remains then is the familiar case of a principal-
principal cut encountered in cut-elimination for the sequent calculus. The idea is to apply cuts
to the subformulae of A. The cut will be eliminable via the induction hypothesis because the
cut-formula has smaller size.

5 From axioms to rules for extensions of DFLe

We now turn to the task of obtaining cutfree calculi for axiomatic extensions of DFLe. We adapt
the method introduced in [8] and applied to various other formalisms e.g. [11], to compute
permutative structural rules from axioms. We then identify the class of axioms amenable to
this algorithm. We advise the reader that from an applicative perspective, it is straightforward
to apply the algorithm ‘by hand’ to an axiom of interest and so determine if a permutative
structural rule can be obtained from it or not.

Lemma 16 (Ackermann Lemma). Let C be an extension of hDFLe + (cut). Then C + r1 and
C + r′1 (resp. C + r2 and C + r′2) derive the same set of bunched hypersequents.

h1 · · · hn r1
g1 | g2 |X ⇒ A

h1 · · · hn g1 |∆[A]⇒ ψ
r′1g1 | g2 |∆[X]⇒ ψ

h1 · · · hn r2
g1 | g2 |Γ[A]⇒ ψ

h1 · · · hn g1 |Σ⇒ A
r′2g1 | g2 |Γ[Σ]⇒ ψ

In the right column above ∆[ ],Σ and ψ are (meta)variables not appearing in ri.

Proof. We prove the first claim. The proof of the second is similar.
First suppose that we are given concrete instances of the premises {hi}1≤i≤n of r1. Apply r′1

with premises {hi}1≤i≤n and g1 |A ⇒ A (so ∆[ ] := [ ]) to obtain g |X ⇒ A. This is the
conclusion of r1, as required.

Other direction: suppose that are given the premises {hi}1≤i≤n and g |∆[A] ⇒ ψ of r′1.
Apply r1 with premises {hi}1≤i≤n to obtain g1 | g2 |X ⇒ A. Apply the cut rule to this and
g1 |∆[A]⇒ ψ to obtain g1 | g2 |∆[X]⇒ ψ as required.

Note: the proof of the above lemma establishes an even stronger proof-theoretic property:
the inter-derivability of ri and r′i (i ∈ {1, 2}) in hDFLe +(cut). For our purposes here, it suffices
that the set of derivable bunched sequents is identical.
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Obtaining a structural rule from an axiom

The invertible logical rules of hDFLe are those logical rules whose premises are derivable when-
ever the conclusion is derivable. Applying such a rule backwards to a hypersequent thus pre-
serves derivability. The rules are: (1l) (0r) ((r) (⊗l) (∧l) (∧r) (∨l)

PREPROCESSING Let A be an axiom of the form B1 ∨ . . . ∨ Bn+1. Then define h0 as
∅m ⇒ B1 | . . . |∅m ⇒ Bn+1 so hI0 = (1 ( B1)∨ . . .∨ (1 ( Bn+1). Now A =DFLe h

I
0. By

Cor. 11 we have that hDFLe + (cut) + h0 is a calculus for DFLe + A. Then the calculus
hDFLe + (cut) + g|h0 derives exactly the same hypersequents. Context g is required for
cut-elimination.

Example 17. Set A = (p ( 0) ∨ (p ( 0) ( 0. Then we have that g |h0 is the hypersequent
g |∅m ⇒ p( 0 |∅m ⇒ (p( 0) ( 0.

STEP 1 Repeatedly apply all possible invertible logical rules backwards i.e. from conclusion
to premise(s), starting with g |h0 and collect the set of hypersequent premises (it will be
a singleton set only if a binary invertible rule is not applied). Then proceed with Step 2
on each hypersequent in the set.

For illustration, suppose that we complete Step 1 obtaining the singleton set {g |h1}.

Example 17 (cont.). Applying ((r) to g |h0 we get below left. Applying ((r) again we get
below center. Indeed, we want to apply all possible invertible rules and that ultimately yields
below right (g |h1).

g | p⇒ 0 |∅m ⇒ (p( 0) ( 0 g | p⇒ 0 | p( 0⇒ 0 g | p⇒ Om | p( 0⇒ Om

STEP 2 Compute a rule from each hypersequent in the set obtained in Step 1 by replacing
every formula therein with a fresh structure variable via Ackermann’s lemma (thereby
adding a new premise).

For illustration, suppose that we obtained the set {g |h1} in Step 1. Then let ρ2 denote
the rule computed at the end of Step 2. Then DFLe+(cut)+∅m ⇒ A and DFLe+(cut)+ρ2

derive the same hypersequents.

Example 17 (cont.). A single application of Ackermann’s lemma to g |h1 yields below left.
Ackermann’s lemma once more yields ρ2 below right.

g |Σ⇒ p

g |Σ⇒ Om | p( 0⇒ Om
g |Σ⇒ p g |Π⇒ p( 0

ρ2
g |Σ⇒ Om |Π⇒ Om

STEP 3 Apply all possible invertible logical rules backwards to the premises of ρ2 to decom-
pose the formulae occurring in the premises, to ultimately obtain ρ3 (binary invertible
rules result in more premises in the rule). Then DFLe + (cut) + ρ2 and DFLe + (cut) + ρ3

derive the same hypersequents.

Example 17 (cont.). Applying the invertible rules ((r) and (0r) to the premise of ρ2 we get
the rule below (ρ3).

g |Σ⇒ p g | p,Π⇒ Om ρ3
g |Σ⇒ Om |Π⇒ Om
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The ρ3 rule is not structural as its premises contain formulae (specifically, propositional vari-
ables). A prerequisite for obtaining a structural rule is that every formula in the premise of ρ3

is a propositional variable (else the procedure fails).

STEP 4 Remove all the propositional variables that appear in the premises and not in the
conclusion. When those variables appear only in the antecedent (or only in the conse-
quent) of different premises we simply remove such premises. Otherwise apply cut in ‘all
possible ways’ among the premises of ρ3 (analogous to the procedure and proof detailed
in [8, 11]). This means selecting a propositional variable p and applying (cut) to all
premises of ρ3 containing p. The step succeeds if none of the bunched hypersequents thus
obtained contains p. Consider all the p-free bunched hypersequents as the new premises
of the rule, select a new propositional variable and repeat.

Example 17 (cont.). There is just a single cut that can be made to the premises of ρ3, yielding
the structural rule ρ4 below.

g |Σ,Π⇒ Om ρ4
g |Σ⇒ Om |Π⇒ Om

Rules ρ3 and ρ4 are equivalent in hDFLe + (cut): the set of derivable hypersequents is the same
under the addition of either rule. Indeed, the rule ρ4 is at least as powerful as ρ3: apply cut to
concrete instances of the premises of ρ3 followed by ρ4 to obtain the conclusion of ρ3. For the
other direction, suppose we are given a concrete instance of the premise of ρ4. Apply ρ3 to this
sequent using the derivable hypersequent Σ⇒ ΣI as the other premise to obtain Σ⇒ Om |Π⇒
Om. Then B ∈ DFLe + (p( 0) ∨ (p( 0) ( 0 iff ∅m ⇒ B is derivable in hDFLe + r.

If applying cuts in all possible ways does terminate in a structural rule ρ4, then we say that r
is the structural rule computed from ∅m ⇒ A.

Note. The procedure also applies to sDFLe by omitting the preprocessing.

The success of the procedure depends on

(I) Every formula in the rule obtained after Step 3 being a propositional variable, and

(II) Termination of ‘cut in all possible ways’.

Set N d
0 and Pd0 as the set of propositional variables. Then define:

Pdn+1 ::= 1 | N d
n | Pdn+1 ⊗ Pdn+1 | Pdn+1 ∧ Pdn+1 | Pdn+1 ∨ Pdn+1

N d
n+1 ::= 0 | Pdn | N d

n+1 ∧N d
n+1 | Pdn+1 ( N d

n+1

The positive classes Pi (the negative classesNi) contain formulae whose most external connective
is invertible on the left (resp. right).

Following [8], we can identify those axioms that satisfy (I):

Lemma 18. Every axiom in N d
2 satisfies (I) for sDFLe. Furthermore, every disjunction of N d

2

axioms satisfies (I) for hDFLe.

Proof. The first claim states that every formula in the rule ρ3 obtained after Step 3 is a propo-
sitional variable when the procedure in sDFLe is applied to a N d

2 formula. Applying all possible
invertible rules (Step 1) to 1 ⇒ A for A ∈ N d

2 , we obtain sequents where every antecedent
(succedent) formula is in Pd2 (resp. N d

2 ). If α is a (non-invertible, Pd2 ) formula in the an-
tecedent that is not a propositional variable, then α must be either 0 or β ( γ. It must be the
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case then that α ∈ N d
1 since the P-classes do not have a 0,(-constructor. Similarly, if α is a

(non-invertible, N d
2 ) formula in the succedent that is not a propositional variable, then α must

be either 1 or β⊗γ or β∨γ, and α ∈ Pd1 since the N -classes do not have a 1, ⊗, ∨-constructor.
Applying Ackermann’s Lemma (Step 2) to these formulae, we ultimately obtain a rule ρ2

whose conclusion contains no formulae, and every antecedent (succedent) formula in the premises
is in Pd1 (resp. N d

1 ). Apply all possible invertible rules to each of the premises (Step 3) we
ultimately obtain sequents whose only formulae are propositional variables. Indeed, if α is a
(non-invertible) formula in the antecedent of this sequent that is not a propositional variable,
then α = 0 or α = β ( γ and α ∈ N d

0 but this is a contradiction because N d
0 is the set of

propositional variables. Similarly, if α is a (non-invertible) formula in the succedent of this
sequent that is not a propositional variable, then α is either 1 or β ⊗ γ or β ∨ γ, and α ∈ Pd0 .
This is a contradiction because Pd0 is the set of propositional variables.

The second claim states that property (I) holds in hDFLe when the axiom is a disjunction
of N d

2 formulae. The preprocessing step takes a formula B1 ∨ . . . ∨ Bn+1 and returns the
hypersequent g |∅m ⇒ B1 | . . . |∅m ⇒ Bn+1. If each Bi ∈ N d

2 , using the argument above we
obtain a rule ρ3 such that every formula in the rule is a propositional variable, as claimed.

The above lemma tells us that axiomatic extensions of DFLe by finite disjunctions of N d
2

formulae can be presented over hDFLe whenever property (II) holds. Of course, it suffices that
the logic is expressible as an axiomatic extension of finite disjunctions of N d

2 formulae. The
following lemma shows that this is the case for extensions of DFLe axiomatised by formulae
from the grammar Pd′3 below.

Pd′3 ::= 1 | N d
2 ∧ 1 | Pd′3 ⊗ Pd

′

3 | Pd
′

3 ∨ Pd
′

3

Lemma 19. Let L be an extension of DFLe. Then every extension of L by Pd′3 axioms is
equivalent to an extension by a finite set of disjunctions of N d

2 axioms.

Proof. First we claim that the formula β obtained by augmenting every subformula A in α ∈ Pd′3

as A∧ 1 satisfies α =DFLe β. Induction on the size of the axiom. Since 1 =DFLe 1∧ 1, the claim
holds for the base cases 1 ∧ 1 and N d

2 ∧ 1. If the axiom is A ⊗ B, then by the induction
hypothesis we obtain A′ and B′ such that A =DFLe A

′ ∧ 1 and B =DFLe B
′ ∧ 1. It may then be

verified that A′∧1 ⊗ B′∧1 =DFLe (A′∧1 ⊗ B′∧1)∧1. If the axiom is A ∨ B, then by the induction
hypothesis we obtain A′ and B′ such that A =DFLe A

′ ∧ 1 and B =DFLe B
′ ∧ 1. It may then

be verified that A′∧1 ∨ B′∧1 =DFLe (A′∧1 ∨ B′∧1)∧1. Let us suppose that we have obtained β as
above. It suffices to show that the addition of β to L is equivalent to the extension of L by
a finite set of disjunctions of N d

2 axioms. Proof by induction on the size of the axiom. If β
is a disjunction of N d

2 formulae we are already done. Otherwise β is (A∧1 ⊗ B∧1)∧1 ∨ γ∧1 for
some γ. By inspection, L+ β is equivalent to L+A∧1 ∨ γ∧1 +B∧1 ∨ γ∧1 using the observation
that ((A∧1 ∨ γ∧1) ⊗ (B∧1 ∨ γ∧1)) ( α ∈ DFLe. The result follows by applying the induction
hypothesis to A∧1 ∨ γ∧1 and B∧1 ∨ γ∧1.

The proofs above simplify the argument in [8, Lem. 3.5, Thm. 5.6] as they alleviate the need
to introduce a N2-normal form.

Property (II) holds when cuts on the premises of the rule ρ3 obtained in Step 3 do not
lead to bunched hypersequents containing components of the form Γ[X, p] ⇒ p. However, in
the presence of the internal weakening rule for sequents (below left) and hypersequents (below
right) such bunched (hyper)sequents are derivable and hence can be deleted from the premises
of the computed rules.
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Γ[X]⇒ ψ

Γ[X,Y ]⇒ ψ

g |Γ[X]⇒ ψ

g |Γ[X,Y ]⇒ ψ

The presence of the weakening rule thus guarantees the success of Step 4.
Notation. pk ≡ p⊗ . . .⊗ p and Σk ≡ Σ, . . . ,Σ (k times).

Example 20. The rules for the N d
2 axioms for restricted weakening (1 ∧ (p ⊗ q)) ( p and

n-contraction (n > 2 fixed) pn−1 ( pn, obtained by applying Steps 1–4 are given below.

Γ[X]⇒ ψ
eW

Γ[∅m; (X,Y )]⇒ ψ

{
Γ[Σk11 , . . . ,Σ

kn−1

n−1 ]⇒ ψ
}
k1+···+kn−1=n

(nctr)
Γ[Σ1, . . . ,Σn−1]⇒ ψ

Lemma 21. Any structural rule r computed from ∅m ⇒ A is permutative.

Proof. Follows from: all metavariables in r are introduced via Ackermann’s lemma and are
polarity preserving, r is a structural rule, and the hypersequent premise and conclusion contexts
can be made identical by using (EW ) and (EC).

We are ready to present the main theorem.

Theorem 22. Let {ri}i∈J be the structural rules computed from the set {∅m ⇒ Ai}i∈I . Then
B ∈ DFLe + {Ai}i∈I iff ∅m ⇒ B is derivable in hDFLe + {ri}i∈J .

Proof. By definition of “structural rule computed from”, Cor. 11 and the fact that Step 4
preserves the rule equivalence (the argument is similar to that in [11] Prop. 3.30): B ∈ DFLe +
{Ai}i∈I iff ∅m ⇒ B is derivable in hDFLe + (cut) + {rj}i∈J . By Lemma 21 and Theorem 15
the latter occurs iff ∅m ⇒ B is derivable in hDFLe + {ri}i∈J .

Related work:

A method was introduced in [29] to transform axioms of a simple form into structural rules such
that cut-elimination is preserved when added to sequent calculi for classical and intuitionistic
first-order logic. The work [8] generalizes the idea and presents a systematic procedure for
extracting structural rules preserving cut-elimination for sequent and hypersequent calculi for
commutative substructural logics (i.e. axiomatic extensions of FLe). The adaptation described
in this section shows that the presence of distributivity, and hence the use of bunched hyperse-
quents, allows us to capture more logics. Specifically, the class of axioms that can be presented
via analytic structural rules over hDFLe is broader than the class—denoted P ′3 in [8]—over hFLe.
The reasons are: (i) in hFLe the connective ∧ is only invertible in the succedent (i.e. the (∧r)
rule) while the use of “;” in bunched sequents makes ∧ invertible on both sides, and (ii) the
failure of Lemma 9(iv) for hFLe means that, in absence of weakening, this calculus requires that
disjuncts of N d

2 formulas have ∧1 appended (see Remark 7). E.g. (p → q) ∨ (q → p) can be
transformed into an analytic structural rule over hDFLe but not over hFLe (which instead can
transform (p→ q)∧1 ∨ (q → p)∧1).

An abstraction (and reformulation) of the algorithm in [8] was applied to display calculi in
[11]. There, the use of an additional structural connective for the residual of disjunction (i.e. the
bi-implication) makes the ∨ rules of the display calculus for FLe invertible both in the antecedent
and succedent of display sequents. This enables the transformation of more axioms into analytic
structural (display) rules; the price to pay is a more complicated formalism, and having to
use structural connectives that are not interpretable as FLe formulas. The latter can lead to
conservativity issues for the introduced calculi (e.g. at the first-order level, intuitionistic logic
extended with the bi-implication connective is not conservative over intuitionistic logic [25]).
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Non-commutative case:

The algorithm can be generalised to non-commutative bunched calculi similar to the general-
isation of [8] in [9] for structural sequent rules. In the non-commutative case, the implication
connective is replaced by two connectives: left and right implication. We can then handle
all N d

2 axioms (the classes are modified in the natural way to accommodate the new connec-
tives in FL). A generalisation to non-commutative bunched hypersequent calculi is also possible;
as shown in [10], the interpretation of the hypersequent “|” then requires a special form ∇ [4]
of disjunction (also considered in the setting of abstract algebraic logic) which consists of a
combination of ∨ and iterated conjugates.

6 The case of Bunched Implication logics

The logic BI [30, 33] of bunched implication extends the language of DFLe with ⊥, > and a
connective → for intuitionistic implication. The interest in BI and its extensions is due to the
fact that these logics allow us to reason about resource composition and systems modelling and
provide a basis for an assertion language of separation logic [21], and even more recently, for
reasoning about systems architecture layers [13]. An analytic calculus for BI is obtained by the
addition of the following rules to sDFLe [33]. There are two new structural connectives: ∅a is
antecedent-interpreted as > and Oa is succedent-interpreted as ⊥.

X ⇒ Oa (wr)
X ⇒ ψ

Γ[X] ⇒ ψ
(∅al)

Γ[∅a;X] ⇒ ψ

Γ[∅a;X] ⇒ ψ
(∅al′)

Γ[X] ⇒ ψ

G |Γ[ ∅a] ⇒ ψ
(>l)

G |Γ[>] ⇒ ψ

(>r)
∅a ⇒ > Γ[⊥] ⇒ ψ

X ⇒ A Γ[B] ⇒ ψ
(→l)

Γ[X;A→ B] ⇒ ψ

A;X ⇒ B
(→r)

X ⇒ A→ B

The algebraic semantics of BI are Heyting algebras (intuitionistic implication is denoted by →)
equipped with a commutative monoidal operation ⊗ with identity 1 and associated multiplica-
tion ( satisfying x⊗ y ≤ z iff x ≤ y ( z.

The soundness and completeness theorem for sBI can be obtained from Theorem 3 by
uniformly replacing “DFLe” with “BI”. The hypersequent calculus hBI is obtained from sBI
by adding a hypersequent context “g | ” to each rule in analogy with sDFLe and hDFLe. The
cut-elimination method of Section 4 also applies:

Theorem 23. The rule (cut) is eliminable in hBI + (cut) + {ri}i∈I (sBI + (cut) + {ri}i∈I) for
any set {ri}i∈I of permutative rules.

It is easy to see the procedure in the previous section can be used to compute structural
rule extensions of sBI from initial sequents in the “N d

2 ” class in the extended grammar for BI
formulae. More precisely, consider (NBI

0 and PBI0 are the set of propositional variables):

PBIn+1 ::= 1 | > | NBI
n | PBIn+1 ⊗ PBIn+1 | PBIn+1 ∧ PBIn+1 | PBIn+1 ∨ PBIn+1

NBI
n+1 ::= 0 | ⊥ | PBIn | NBI

n+1 ∧NBI
n+1 | PBIn+1 ( NBI

n+1 | PBIn+1 → NBI
n+1

Theorem 24. Every α ⇒ β where α ∈ PBI2 and β ∈ NBI
2 can be transformed into equivalent

structural bunched sequent rules that are permutative.

Example 25 (Extensions of BI). Analytic bunched calculi for BI extended with pn−1 ⇒ pn or
with restricted weakening eW (see, e.g., [7]) can be obtained by adding to sBI the rules (nctr)
or (eW) in Ex. 20.
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Structural rules for bunched hypersequents

Analytic calculi for extensions of DFLe by disjunctions ofN d
2 axioms were obtained by exploiting

the hypersequent structure. Some obstacles are encountered, however, when we attempt to
extend Theorem 24 in the same manner to present extensions of BI beyond α ⇒ β (α ∈ PBI2

and β ∈ NBI
2 ).

As an example, consider the following sequent, whose addition to sBI+(cut) yields a bunched
calculus for Boolean Bunched Implication logic BBI where the cut rule is not eliminable.

> ⇒ p ∨ (p→ ⊥)

It would be tempting to preprocess this initial sequent (analogous to how we handled top-
level disjunctions in axioms in the DFLe case) as the initial hypersequent > ⇒ p | > ⇒ p → ⊥
(two components). However, it is not clear how to interpret such a hypersequent in sBI, as
required in order to prove a soundness and completeness statement corresponding to Lemma 10.
Recall that in hDFLe, we interpreted the initial hypersequent g as the initial sequent ∅m ⇒ gI

thus allowing us to prove Lemma 10 asserting equi-derivability of the bunched hypersequent and
bunched sequent calculi. We are unable to define a corresponding (·)I function in hBI because
the presence of the two different implication connectives that both utilise the turnstile ⇒ in
their right introduction rule—i.e. ((r) and (→r)—prohibits the interpretation of ⇒ as either
connective. The lack of a soundness and completeness theorem impedes in turn a general theory
relating initial sequent extensions of sBI + cut with analytic structural rule extensions of hBI.4

Despite this, there is a way to obtain new logics extending BI sidestepping the hyperse-
quent interpretation-dependent preprocessing step. Motivated by the analytic structural rules
for hDFLe, we may construct analytic hypersequent structural rules for hBI and investigate the
set of sequents (i.e. hypersequents with exactly one component) that are derivable. For exam-
ple, we already can compute that the addition of the structural rule below left to hDFLe yields
an analytic hypersequent calculus for DFLe + p∨ (p( 0). Motivated by this rule, consider the
rule below right.

g |Γ[Σ]⇒ ψ

g |Γ[∅m]⇒ ψ |∅m,Σ⇒ Om
g |Γ[Σ]⇒ ψ

(cl)
g |Γ[∅m]⇒ ψ |∅m; Σ⇒ Oa

It may be verified that hBI + (cl) derives 1⇒ p∨ (p→ ⊥). Moreover this logic is consistent in
the sense that > ⇒ ⊥ is not derivable: to see this, argue backwards from > ⇒ ⊥ in hBI + (cl)
and observe that there is no way of obtaining the semicolon-separated ∅m that is required for
an application of (cl). By a similar argument the sequent > ⇒ p ∨ (p → ⊥) is not derivable
and hence the logic of hBI + (cl) cannot be the logic BBI!

The connective → is intuitionistic implication in BI and classical implication in BBI. Since
spatial and separation logics as well as epistemic resource reasoning [16] typically use the clas-
sical implication [23], BBI has greater applicative importance than BI. For this reason, several
analytic proof calculi for BBI have been presented, such as an attractive display calculus [6]
which makes use of involutive negation as a structural connective, and also a somewhat more
complicated labelled calculus [20] and nested sequent calculus [35]. Despite its great applicative
interest, a drawback of BBI is that it is undecidable [24, 7]. This undecidability motivates the
interest in finding potentially decidable logics in the vicinity of BBI which are equipped with

4The inability to give a fixed definition to the interpretation of a hypersequent has already been recognised,
and the interpretation is known to be strongly related to the underlying semantics of the logic. See [10] where
it is shown that in the context of FL-algebras, the semantic interpretation of | is not a disjunction unless the
algebraic models are commutative and integral.
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analytic proof calculi to assist further investigation. Based on the discussion here, the logic
of hBI + (cl) emerges as such a candidate. It is worth noting that the hypersequent structure
is crucial for formulating this logic; in particular, the display calculus in [6] cannot be used
because it relies crucially on the involutive negation structural connective (which builds-in BBI).

Incidentally observe that if we want > ⇒ p ∨ (p → ⊥) to be derivable, then we might be
tempted to amend (cl) to (cl′) as follows:

g |Γ[Σ]⇒ ψ
(cl′)

g |Γ[∅a]⇒ ψ |Σ⇒ Oa

In turns out then that p ⇒ p ⊗ p is derivable in hBI + (cl′) which means that the formalised
logic must be an extension of ⊗-contractive BBI. We leave the systematic study of the logics
obtained by analytic structural rule extension over hBI and their potential resource-sensitive
applications as future work.
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