Towards an Expressive Practical Logical Action Theory

Mikhail Soutchanski! and Wael Yehia?

1 Dept. of Comp. Science, Ryerson University, 245 Church Street, ENG281, Toronto, ON, M5B 2K3, Canada
mes@scs.ryerson.ca
2 Dept. of Comp. Science and Engineering York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
w2yehia@cse.yorku.ca

Abstract

In the area of reasoning about actions, one of the key computational problems is the projection
problem: to find whether a given logical formula is true after performing a sequence of actions. This
problem is undecidable in the general situation calculus; however, it is decidable in some fragments.
We consider a fragment P of the situation calculus and Reiter’s basic action theories (BAT) such that
the projection problem can be reduced to the satisfiability problem in an expressive description logic
ALCO(U) that includes nominals (O), the universal role (U), and constructs from the well-known
logic ALC. It turns out that our fragment P is more expressive than previously explored description
logic based fragments of the situation calculus. We explore some of the logical properties of our
theories. In particular, we show that the projection problem can be solved using regression in the
case where BAT's include a general “static” TBox, i.e., an ontology that has no occurrences of fluents.
Thus, we propose seamless integration of traditional ontologies with reasoning about actions. We
also show that the projection problem can be solved using progression if all actions have only local
effects on the fluents, i.e., in P, if one starts with an incomplete initial theory that can be transformed
into an ALCO(U) concept, then its progression resulting from execution of a ground action can still
be expressed in the same language. Moreover, we show that for a broad class of incomplete initial
theories progression can be computed efficiently.

1 Introduction

The projection problem is an important reasoning task in Al It is a prerequisite to solving other com-
putational problems including planning and high-level program execution. Informally, the projection
problem consists in finding whether a given logical formula is true in a state that results from a se-
quence of transitions, when knowledge about an initial state is incomplete. In description logics (DLs)
and earlier terminological systems, this problem was formulated using roles to represent transitions and
concept expressions to represent states. This line of research as well as earlier applications of DLs to
planning and plan recognition are discussed and reviewed in [9]]. Using a somewhat related approach,
the projection problem and a solution to the related frame problem (i.e., how to provide a concise ax-
iomatization of non-effects of actions) have been explored using propositional dynamic logic, e.g., see
[8, [7] These papers discuss relations with the propositional fragment of the situation calculus and re-
view previous work. A more recent work explores decidable combinations of several modal logics, or
combining description logics with a modal logic of time or with a propositional dynamic logic [1,130, 5]
The resulting logics are somewhat limited in terms of expressivity because to guarantee the decidability
of the satisfiability problem in the combined logic, only atomic actions can be allowed. In applications,
it is sometimes convenient to consider actions with arbitrary many arguments.

On the other hand, there are several proposals regarding the integration of DLs and reasoning about
actions [19} 3 [17, 4] [11]]. In [[L1]], it is shown that the projection problem is decidable in a proposed
fragment of the situation calculus (SC). However, the logical languages developed in these papers are
not expressive enough to represent some of the action theories popular in Al or to solve the projection
problem in a general case. For example, Gu& Soutchanski propose a DL based situation calculus [[L1],

A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 307 307

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

where the projection problem is reduced to the satisfiability problem in ALCO(U), a DL that adds nom-
inals O and the universal (global) role U to the well known description logic ALC. The universal role
links any two individuals in the domain; it is introduced to add the usual unguarded V- and 3-quantifiers
which are handy to represent incomplete knowledge about an initial state and about conditional effects.
They consider Reiter’s basic action theories (BATs) [28]], but impose syntactic constraints on the for-
mulas that can appear in axioms by concentrating on a subset FOp; of FO? formulas, where FO? is a
fragment of first order logic (FOL) with only two variables. In the fragment of SC that they consider,
action functions may have at most two object arguments, the formulas in the precondition axioms (PA)
and context formulas in the successor state axioms (SSA) should be FOp; formulas (if the situation
argument is suppressed), where FOp; formulas are those FO? formulas, which can be translated into a
concept in ALCO(U) using the standard translation between DLs and fragments of FOL. They illustrate
their proposal with several realistic examples of dynamic domains, but it turns out that some of the well-
known examples, e.g., the Logistics domain from the first International Planning Competition (IPC)
[26], cannot be represented due to syntactic restrictions on the language they consider. Here and subse-
quently, when we mention planning domain specifications, we consider them as FOL theories without
making the Domain Closure Assumption (DCA) common in planning, i.e., without reducing them to
purely propositional level. Later, [10] introduces a possible extension, where the syntactic restrictions
on the class of formulas FOpy, are relaxed, but stipulates SSAs for dynamic roles (fluents with two
object arguments and one situational argument) to be context-free. She conjectures, but does not prove,
that the projection problem in that extension can be reduced to satisfiability in ALCO(U).

In our paper, we consider an even more expressive fragment of SC, called &, where all SSAs can be
context dependent with context conditions formulated in a language . that includes FOpy, as a proper
fragment. Manual translations of planning specifications (from IPC) into our language & show that &7
has expressive power sufficient to represent not only Blocks World and Logistics, but also many other
popular benchmarks [12| 31]]. In any case, reducing projection to satisfiability in ALCO(U) is justified
by the fact that there are several off-the-shelf OWL2 reasoners that can be employed to solve the latter
problem, since a DL SROIQ underlying the Web Ontology Language (OWL2) includes ALCO(U) as a
fragment [[6]. We concentrate on foundational work and explore the logical properties of Z.

Our paper contributes to reasoning about actions by formulating an expressive fragment of SC where
the projection problem is decidable without the domain closure assumption (DCA) and closed world
assumption (CWA), i.e., when an initial theory is incomplete and is not purely propositional.

2 Definition of &

The situation calculus (SC) is a many-sorted language with disjoint sorts object, action, situation, where
the situation terms are built using the constant Sy, the initial situation, and the function do(a, s) that de-
notes the new situation that results from executing an action a in situation s. (Lower case a represents
variable of sort action, s represents variable of sort situation, while upper case A, possible with argu-
ments, stands for an action function.) We assume that the reader is familiar with SC from [27, [28]] and
knows that a BAT & = P4pU Zss U UNAU D5, UX consists of the precondition axioms (PAs) Z4p, that
use the binary predicate symbol Poss, one axiom for each action function, characterizing when action
is possible, successor state axioms (SSAs) Pss, one axiom for each fluent, that define a value of the
fluent in the next situation do(a,s) given values of fluents in current situation s, depending on whether
a was action that makes the fluent true, or if the fluent was already true in s, whether a is an action
that makes the fluent false, a set of unique name axioms UNA, an initial theory s, that specifies an
incomplete theory of the initial situation Sp, and X - a set of domain independent foundational axioms
about the relation s1 < s, of precedence between situations s; and sp. In [28]], axioms X are formulated
in second-order logic, all other axioms are in many-sorted FOL, so we assume the usual definitions of

308

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

sorts, terms, well-formed formulas, and so on. A fluent is a predicate with the last argument s of sort
situation. As usual, we say that a situation calculus FOL formula y(s) is uniform in s, if s is the only
situation term mentioned in y/(s), the formula y has no occurrences of the predicates Poss, <, and has
no quantifiers over variables of sort situation. The formula y obtained by deleting all arguments s from
fluents in the formula y/(s) uniform in s is called the formula with suppressed situation argument (this
is convenient when defining syntactic constraints on y); the interested readers can find details in [27].

Fluents with a single object argument, F(x,s), are called dynamic concepts, and fluents with two
object arguments, F'(x,y,s), are called dynamic roles. In the signature of a BAT &, any predicate that is
not a fluent must have either one or two arguments, and is called either a (static) concept, or a (static)
role, respectively. Subsequently, we consider only BATs with relational fluents, and do not allow any
other function symbols except do(a,s) and action functions. In particular, terms of sort object can be
only constants or variables. Actions may have any number of object arguments.

To specify syntactic constraints on Z,, and Z,,, we consider a language ., that has at most n + 2
object variables x,y,z71,. .., 2,, for some integer n > 0. We assume . has at least n constants b;, 1 <i<n.
The purpose of the variables z; is to serve as place-holders to be instantiated with constants b; that occur
as named object arguments of ground action terms. This language .Z consists of two related sets of
formulas: F* and F’. Formulas ¢ (x) from the set F* can have as free variables either x, or some of the
place-holder variables z;, | < i < n, but cannot have free occurrences of y. Formulas ¢ (y) from the set
F” can have free occurrences of either y, or some of the place holders z;, 1 <i < n, but cannot have free
occurrences of x. Note the formulas ¢ may have free variables z; that are not shown explicitly, but it
will be always clear from the context which variables are free in the formulas. We use the symbol
to denote a bijection between F* and F”. If ¢ (x) € F¥, then ¢ (y) is the dual formula of ¢ (x), obtained
by renaming in ¢(x) every occurrence of x (both free and bound) with y and every bound occurrence
of y with x. Similarly, if ¢(y) € F”, then ¢ (x) is the dual formula to ¢ (y) obtained by replacing every
occurrence of y with variable x, and every bound occurrence of x with y. The sets F* and F” have a
non-empty intersection. For example, sentences that mention constants only, and F* formulas that have
only occurrences of z variables belong to both F* and to F. Each formula ¢ without x,y variables is
mapped by bijection ¢ to itself. We are ready to give the following inductive definition.

Definition 1. Let .Z be the set of first-order logic formulas such that £ = F*UF”, and ~ be a bijection
between formulas in F* and F” as defined above, where the sets F¥ and F* are minimal sets constructed
as follows. (We focus on F~, since F” is similar.)

1. T and L are in F~.

2. If AC is a unary predicate symbol, 7 is a variable distinct from x and y, and b is a constant, then
the formulas AC(x), AC(z), and AC(b) are in F*.

3. If b is a constant, and 7 is a variable that is distinct from x and y, then the formulas x=x, x=D,
x=zare in F*.

4. If R is a binary predicate symbol, by and b, are constants, and 71 and zp are variables that
are distinct from x and y, then R(z1,22), R(b1,b2), R(b1,22), R(z1,b2), R(x,b2) and R(x,z2) are
formulas in F*.

5. If ¢ € F*, then also =¢ € F*.
6. If ¢,y € F*, then both (¢ Ny) € F and (¢ V y) € F*.

7. If ¢(x)€ F*, R is a binary predicate symbol, b is any constant, z is any variable distinct from
x and y, and a (y) is the formula dual to ¢(x), then all of the following formulas with quantifiers
guarded by R belong to F*: Jy.R(x,y) A (E(y), I.R(b,y) A a(y) Iy.R(z,y) A (E(y), as well as
Vy.R(x,y) D ¢(y), Vy.R(b,y) D @(y), ¥y.R(z,y) D ¢ ().

309

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

8. If ¢ € F*, ¢ is the formula dual to ¢, then [Ix].¢(x), [Vx].¢(x) as well as [Iy.]¢ (), [Vy.]¢ (y)
belong to F*, where [3] ([V), respectively) means quantifiers are optional and applied only when
a formula has a free variable.

The intuition behind the definition of .# is that any variable z other than x and y has to be free in a
formula from .. The set of formulas FOp;, =FO},; UF O)bL defined in [11] is a proper subset of .Z
because the set of formulas FO},, (FO},, respectively) is a proper subset of F* (F”, respectively): no
place holder variables zy, ... ,z, are allowed in FO5,, and FOY,;. We say a formula ¢ € .% is a z-free ¥
formula, if all occurrences of variables z (if any), other than x and y, in ¢ are instantiated with constants.

Lemma 1. There are syntactic translations between the set of z-free formulas ¢ € £ and the concept
expressions from the language ALCO(U) in both directions, i.e., they are equally expressive. Moreover,
such translations lead to no more than a linear increase in the size of the formula.

This lemma is proved using the standard translation between DLs and FOL; the proof is similar to
the proof of Lemma 1 in [[11]]. Using the fluents Loaded (box,s), At(box,city,s), and In(box,vehicle,s)
from Logistics as an example, after suppressing s, a z-free .¢ formula Loaded(B;) V 3x(Box(x) A x #
By ANIn(x,Ty)) is translated as 3U.({B;} M Loaded) U 3U.(BoxM—{B, } M 3In.{T\}, where {B,},{T1}
are nominals (i.e., concepts interpreted as singleton sets). The formula Vx(—Box(x)V x = B; V
At(x,Toronto)), all boxes distinct from B; are in Toronto, is translated as VU.(—~Box U {B;} U
At {Toronto}). Notice why nominals and U are important. Subsequently, we consider BATSs that
use .Z-like formulas uniform in s. This motivates the following requirements. For brevity, let a vector
% of object variables denote either x, or y, or (x,y); also, let Z denote a vector of place holder variables.

Action precondition axioms P4p: For each action function A(Z), there is a single precondition axiom
uniform in s:

(VZ,s). Poss(A(Z),s) = Ta(2)[s], (D

where T4 (Z,s) is uniform in s; it is an .% formula with 7 as the only free variables, if any, when s is
suppressed. When object arguments of A(7) are instantiated with constants, by Lemma |1} the RHS of
each precondition axiom can be translated into a concept in ALCO(U), when s is suppressed.

Successor state axioms YDss: There is a single SSA for each fluent F(X,do(a,s)). In comparison to the
general SSAs provided in [27, 28], we impose syntactic restrictions on formulas that can be used on the
RHS in the SSAs. We assume that each axiom is as follows:

(VX,s,a). F(¥do(a,s)) = }/}' (X,a,5) VF(X,s) A7 (X,a,5) 2)

where each of the y’s are disjunctions either of the form

[T7).a = A(d) Ao (x,Z,s), /* a set of variables 7 C #i; may be {x} € ii */
if (2)) is a SSA for a dynamic concept F(x,s) with a single object argument x, or

[F.a=AE) AN o(x,Z,5) N O (3,Z,5), /* variables 7 C i, possibly {x,y}Nii # @ */
if (2 is a SSA for a dynamic role F(x,y,s), where ¢ (X,Z,s) is a context condition uniform in s saying
when an action A can have an effect on the fluent F. The formula ¢ (x,7,s) € F*, the formula ¢ (y,Z,s) €
F”, when s is suppressed. A set of variables 7 in a context condition ¢ (¥,Z,s) must be a subset of object
variables i. If i in an action function A (i) does not include any z variables, then there is no 37 quantifier.

If not all variables from X are included in i, then it is said that A(if) has a global effect, since the

fluent F' experiences changes beyond the objects explicitly named in A(#) (e.g., driving a truck between
two locations changes location of all boxes loaded into the truck). When a vector of object variables
contains both ¥ and 7, we say that the action A (&) has a local effect. A BAT is called a local-effect BAT
if all of its actions have only local effects. Observe that in a local-effect SSA, when one substitutes a
ground action term A(b,,b.) for a variable a in the formula [3z].a =A(X,Z) A ¢ (%,Z,s). applying UNA

310

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

—

7. X=b ANZ=b. A 9(X,Z,s), and applying Iz(z=b A ¢(z)) = ¢(b) repeatedly
by N (X,by,s).

results in the formula ¥=5b,
Initial Theory @SO: The @50 is an .Z sentence without z variables, i.e., it can be transformed into an
ALCO(U) concept.

A BAT 2 that satisfies all of the above requirements is called an action theory &. We note that
BATS proposed in [L1] are less general than &, because their axioms should be written using formulas
from FOp;, but FOpy is a proper subset of .Z. Sometimes, for clarity, when we talk about &2, we say
that it is an .Z-based BAT, in contrast to F Op;-based BATs considered in [11]]. The Blocks World is an
example of a FOpr-based BAT, while Logistics is an example of &. Logistics cannot be formulated
as a FOpy-based BAT because it includes actions, e.g., drive(Truck,Locy,Locy,City), with more than
2 arguments, and the SSA for a dynamic role Az(0bj,loc,s) uses as a context condition an F* formula,
while in [[L1], the SSAs for dynamic roles must be context-free. Subsequently, for brevity, instead of
saying that ¢ (s) is a SC formula uniform in s that becomes an . formula when s is suppressed, we say
simply that @ (s) is an % formula.

for action terms yields [3

=l o=

Due to space limitations, we skip introduction to DLs, but the reader can find one in [2]]. Recall
that the satisfiability problem (SAT) of a concept and/or the consistency problem of an ABox in the DL
language ALCO(U) can be solved in EXPTIME. As a comparison, SAT in SROIQ (this DL includes
AICO(U) as a fragment) has high complexity 2NEXPTIME-complete. However, W3C recommends
OWL2 for applications, because OWL2 solvers handle many large realistic instances reasonably fast,
see [6] for a related discussion of OWL2 and SROIQ.

Example 1. As an example of &7, imagine searching for a given file in a depth-first search (DFS) like
manner through directories. An action forward(z),z2,z3) makes forward transition from a current di-
rectory z; to its child directory z; while searching for a file z3. It is possible in situation s, if zo has
never been visited. This is represented using the fluent vis(z2,z3,s). A backirack(z1,z2,z3) transition
from z; back to its parent z, is possible only if all children of z; had been visited while searching for a
file z3. & also includes situation independent unary predicates file(x), dir(x), and the binary predicate
dirChild(x,y) meaning that x is a direct child of y in a file system. The search for a file f in a directory
d succeeds when find(d, f) is executed. This action is possible when d actually contains f. This is
represented using the fluent at(d, f,s). Using chmod(z1,z2) one can toggle in situation s permissions of
a directory z; between zp =on and zp =off, if the current permission x for this directory z;, represented
using the fluent perm(z;,x,s), is such that the values of x and z, are opposite. The following are pre-
condition axioms (PA) for all actions (the variables z;, s are V-quantified at front).

Poss(forward(z1,22,23),5) = dir(z1) Adir(z2) Az1 # 22 A file(z3)A

dirChild(za,z1) N —vis(22,23,5) Aat(z21,23,5)
Poss(backtrack(zi,z2,23),5) = dir(z1) Adir(z2) A file(z3) AdirChild(z1,z2) \

at(z1,z3,8) A3y (dirChild(y,z1) Adir(y) A —wis(y,z3,5))
Poss(find(z1,22),5) = file(z1) Ndir(z2) AdirChild(z1,z2) N at(z2,21,5)
Poss(chmod(z1,22),s) =dir(z1) A(zz=onV zz=o0ff) A Ix.(perm(z1,x,8) Nx # 22).

The direct effects and non-effects of actions are formulated using Successor State Axioms (SSA).
The current DFS for a file y arrives at a directory x when either forward or backtracking transition leads
to x; otherwise, if any other action is executed, it remains at x. Also, the directory x becomes visited as
soon as DFS arrives there following some forward transition, but only if the current permission of x is
on in situation s. Otherwise, forward transition has no effect. Changing permission of a directory x to
y has an effect only when DFS for a file is currently located at x in situation s. A file f is found after
doing find(x,z; in a directory z; only if permission is on for this directory in s.

311

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

at(x,y,do(a,s)) = 3zi (a= forward(zy,x,y) A perm(x,on,s)) V
3z (a=backtrack(z1,x,y)) V
at(x,y,s) A—3zi(a= forward(x,z1,y) A perm(zy,0n,s))A\
—3zy (a=backtrack(x,z1,y))
vis(x,y,do(a,s)) = 3z1(a= forward(z1,x,y) A perm(x,on,s)) Vvis(x,y,s)
perm(x,y,do(a,s)) = a=chmod(x,y) AJy(at(x,y,s) A\y=y) V
perm(x,y,s) A —3zy (a=chmod(x,z1) Ay # z1 Ady.at (x,y,s) ANy=y)
found(x,do(a,s)) = 3z (a= find(x,z1) A perm(z1,0n,s)) V found(x,s).

These SSAs satisfy syntactic constraints in &2, but they cannot be formulated as FOpy-based SSAs
considered in [[11]] since SSAs for the dynamic roles ar and perm have context conditions and mention
action terms with more than 2 arguments. Observe that our SSAs use two object variables, in addition
to action and situation variables. Also, they use the situation term do(a,s) and several action terms.
Clearly, neither PAs, nor SSAs can be translated to a DL. Nevertheless, there are instances of the pro-
jection problem in this BAT that can be reduced to SAT in a DL. This reduction is discussed in the
following section. Observe that we are not interested in checking satisfiability of arbitrary formulas
from &2, we are interested instead only in solving the projection problem in £2.

3 The Projection Problem in &/

Let 2 be a description logic based BAT defined in [11], a1, -, 0, be a sequence of ground action
terms, and Goal(s) be a query formula uniform in s such that it can be transformed into an ALCO(U)
concept, if s is suppressed. Subsequently, we call a query Goal(S) a regressable formula, if S is a ground
situation term. One of the most important reasoning tasks in the SC is the projection problem, that is,
to determine whether 7 |= Goal(do([e, - -+, 04,],S0)). Another basic reasoning task is the executability
problem: whether all ground actions in @y, -- - , ¢, can be consecutively executed. This can be reduced
to the projection problem using the precondition axioms, and for this reason we no longer consider it.
Planning and high-level program execution are two important settings where the executability and pro-
jection problems arise naturally. Regression is a central computational mechanism that forms the basis
of automated solutions to the executability and projection tasks in the SC [28]. A recursive definition
of the modified regression operator % on any regressable formula Goal(S) is given in [11]]. The mod-
ified regression operator makes sure that the only two available object variables x,y are re-used when
regressing a quantified formula in contrast to Reiter’s regression, where new variables are introduced.
For a regressable formula Goal(S), we use notation %Z[Goal(S)] to denote the regressed formula uni-
form in Sy that results from replacing repeatedly fluent atoms about do(a.,s) by logically equivalent
expressions about s as given by the RHS of SSAs, until such replacements no longer can be made; this
is why the regressed formula is uniform in Sy. For any static concept C(x) and role R(x,y), by definition
of regression Z[C(x)] =C(x) and Z[R(x,y)]=R(x,y).

The regression theorem (Theorem 8) proved in [[11] shows that 2[Goal(S)] is a FOp;, formula,
when Sy is suppressed and, as a consequence, one can reduce the projection problem for a regressable
sentence Goal(S) to the satisfiability problem in ALCO(U) as long as a BAT & satisfies syntactic restric-
tions due to using F Op formulas in axioms:

9 k= Goal iff s, = Z|Goal(S)],
where it is assumed that Zs, includes UNA, unique name axioms for objects. (Unique name axioms
for actions are used by modified regression, and they are no longer required when regression termi-
nates.) This statement is proved in [11] for an extended BAT that additionally includes a set of axioms
D1 =Dr .5 U Dr,ayn- Here, the static TBox Zr is an acyclic set of concept definitions, G(x) = ¢g(x),
that mentions only situation independent predicates, where G is an unary predicate symbol and ¢¢(x) is a

312

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

F Opy formula that has no occurrences of fluents. In [11]], 950 includes Zr . The dynamic TBox ‘@Tﬂyn
is an acyclic set of abbreviations, G(x,s) = @g(x,s), where ¢g(x,s) is a FOp, formula (when s is sup-
pressed) such that ¢g(x,s) has occurrences of fluents, and ¢¢(x,s) may acyclically mention other abbre-
viations; @ (x,s) is a formula uniform in s. The abbreviations G(x, s) are different from fleunts because
they do not have SSAs. They can be mentioned only in the RHS of SSAs, and they are eliminated by the
modified regression operator using lazy unfolding. For example, 27 may include situation indepen-
dent static definitions such as “vehicle is a truck or an airplane”, while Zr 4,, may include convenient
situation dependent abbreviations like Movable(x,s) = Loaded(x,s) A Iyln(x,y,s). See [11] for more
examples. The previously mentioned acyclicity assumption originates in [3]].

We would like to eliminate a previous assumption that Zr is acyclic. For simplicity, let us consider
a case when Zr g, = 0. Let Z be & such that its initial theory Zs, is augmented with an arbitrary
satisfiable static TBox Zr that may include general concept inclusions between ALCO(U) concepts.
(This TBox can be expressed as an ALCO(U) concept.) Then, by the relative satisfiability theorem from
[27], 2U Zap U D50 UUNAU D5, U D51 is satisfiable iff UNAU D, U Dt is satisfiable, i.e., the presence
of a static satisfiable ontology is harmless. Moreover, since regression does not affect the predicates
without a situation term, in other words, since axioms in Zr g are invariant wrt the regression operator,
it can be used to answer ‘“static” queries and to reduce the projection problem to the satisfiability in
ALCO(U): ZU Dap U Dysa JUNAU D5, U D1 = Goal iff UNAU Dsy U D1 |= Goal, when Goal is an
Z sentence without z-variables that has no occurrences of fluents (a “static” query), and UNA includes
unique name axioms only for objects. This simple observation is a consequence of Lemma [I] and the
regression theorem from [27]. In addition, in & we can prove that formulas from . remain to be in .£
after regression.

Theorem 1. Let 9 be an L -based BAT (a theory &), ¢ be a regressable £ formula, and o, a ground
action. The result of regressing ¢[(do(o,Sy)], denoted by Z[¢(do(ct,S0)], is a formula uniform in
situation Sy that is an £ -formula if Sy is suppressed.

This can be proved similarly to Lemma 2 from Section 5.4 in [[11] that is proved for a F Op;-based
BAT. However, this does not follow directly from [11}[10] because in &2, SSA for dynamic roles may
have context conditions, but in [[L1, [10] it was assumed that SSA for dynamic roles are context free.
Also, recall that FOpy is a proper subset of .. The proof is long and laborious because regression is
a syntactic operation, and the SSAs in & may have several different syntactic forms, but we have to
analyze all cases and show that if we start with a DL-like formula, then after a single step of regression
we get a formula that remains DL-like. As a consequence, for the “dynamic” queries, we have the
following.

Theorem 2. Let P =XU%,p U Dy UUNAU Dsy U D be P augmented with a (static) general
ALCO(U) TBox, ¢(S) be a regressable z-free £ sentence, and S be a ground situation. Then the
projection problem can be reduced to satisfiability in ALCO(U):
U 9alp U @SSH UUNAU @SO) @T.st ': ¢(S) lﬁ[
UNAU Zs, U Dr gy = Z[9(S)]

This follows from Theorem E]by induction on the length of the situation term S, from Lemmam and
from the fact that UNAU %5, U Zr s can be transformed into an ALCO(U) concept. The Theorem [2|is
important because it shows that any static ALCO(U) ontology can be seamlessly integrated with reason-
ing about actions in &?. To the best of our knowledge we are the first to propose this. Our contribution
is important because one may expect that in applications a static TBox characterizing essential termino-
logical connections between concepts does not change when actions are executed, but only fluents can
change. Also, one can add an acyclic dynamic TBox Zr 4y, to &7 without any difficulties, as in [[L1].
However, [3, 17, 4] and others argue that a general dynamic TBox leads to serious difficulties. While
[3]] does not consider a general static TBox Zr y, it could be added, e.g., by internalizing Zr y into an

313

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

ALCO(U) concept and including it as an ABox assertion wrt a dummy individual. This trick was not
considered in [3]], because the universal role U is required for this trick, but U was missing in [3]].
Example 1 (Cont.) We would like to adapt for our purposes an example of a general TBox from
the paper by Giuseppe De Giacomo, Maurizio Lenzerini “TBox and ABox Reasoning in Expressive
Description Logics”, KR 1996, pages 316-327). Suppose that a TBox has the following concept inclu-
sions:
dir T ¥YdirCh™.(dirU file) M < 1 dirCh.dir
file T —dirnVdirCh~.L
Let s, be the following incomplete theory (in FOL syntax; can be easily translated to ALCO(U)):
dir(home) Adir(mes) Adir(root) Adir(wyehia) A file(f1) A file(f2) AdirChild(f1,mes) A
dirChild(f2,wyehia) A dirChild(home, root) A dirChild(mes,home) A dirChild (wyehia, home) N
at(wyehia, f1,50) A Vx.(—(dir(x) V file(x)) V perm(x,on,Sy))

The UNA for object constants: f1, f2,home, mes,off,on,root,wyehia are pairwise distinct. Let
the projection query be whether 2 UTBox |= found(f1,S), where S is
do([backtrack(wyehia,home, f1), forward(home,mes, f1), find(f1,mes)],S0)).
Then, it is easy to see that the regressed query is
((f1 = f1A perm(mes,on,S0))V found(f1,50))
This example demonstrates that we managed to solve the projection problem in the presence of a general
expressive static TBox. As far as we know, we are the first to propose the approach to integrating DLs
and reasoning about actions that can accomplish this. This example BAT has been implemented in XML,
regression of a query was computed using a C++ program, SAT in SROIQ was solved using HERMIT;
see details at http://www.scs.ryerson.ca/mes/d12012.zip

4 Progression in Local-effect BATs

This section reviews previously published definitions and results: the readers familiar with forgetting
and progression can skip it. Since progression is closely related to forgetting, we start with reviewing
the definitions and some of the recent results about forgetting. The concept of forgetting was introduced
in [[15] and was also studied in [18]]. One can forget about a ground atom or about a predicate in general;
we consider the former case. A theory T is the result of forgetting about a ground atom P(¢) in a theory
T, if T' entails all sentences entailed by T except the ones “related” to P(¢).

Definition 2. Let P(¢) be a ground atom, and let .#| and M, be two first-order structures. We write
M pe) A if M\ and M agree on everything except possibly on the interpretation of P(C):

1. A\ and M5 have the same domain, and interpret every function identically.
2. For every predicate Q distinct from P, #,(|Q] = 4,[Q).

3. Let i = #[), then for any tuple d of the elements in the domain that is distinct from u, de
AP iff de [P

Definition 3. Let T be a theory, and p a ground atom. A theory T' is a result of forgetting about p in
T, denoted by forget(T,p), if for any structure A', .#" is a model of T' iff there is a model M of T
such that M ., M.

The result of forgetting a ground atom P(¢) in ¢ can be computed by simple syntactic manipulations.
Let ¢[P(c)] denote the formula obtained from ¢ by replacing every occurrence of P(x) (if any) in ¢ by:
(X=C¢AP(@))V(X#£EAPX)).

314

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

Theorem 3. ([I5], Theorem 4) Let T = {¢} be a theory, and P(¢) be a ground atom, then
forget(T,P(¢)) = ¢+ V@, where ¢ and ¢~ are the result of replacing P(¢) by T and L in ¢[P(C)],
respectively.

For the purpose of computing progression, when forgetting is applied multiple times, and, possibly
to the same predicate symbol more than once, it’s possible to define the notion of forgetting about a set
of ground atoms at once, as suggested in [18]]. Let I" be a finite set of ground atoms to be forgotten. We
call a truth assignment 6 to atoms from I" a I'-model. We use . (I") to denote the set of all I'-models.
Let ¢ be a formula and 8 a I'-model. Let P(¢}), P(¢3), ... P(¢y,) be all those ground atoms in ', which
use the predicate letter P, and let 6(P(C;)) represent the truth value of P(¢;) specified by 6. We use
¢[60] to denote the result of replacing (for each predicate symbol P in I') every occurrence of an atom
P(X) in ¢ by the following formula:

m m
N (&= AB[PEN V(N T#E) APE). 3)
Jj=1 Jj=1
Theorem 4. ([lI8|], Theorem 2.4) Let T be a finite set of ground atoms and ¢ a formula. Then,
forget(9,I') and \ gc 4 (r) ¢ [0] are logically equivalent.

As observed in [15], forgetting about a set I" of ground literals amounts to forgetting about each
literal one after another, i.e., if T = {pi,...,pn}, then

forget(¢,T')= forget(---forget(forget(,p1),...,pn)-

Lin and Reiter formalized the notion of progression in [16]. Informally, it involves updating an
initial theory s, with the effects of executing an action «. The idea behind progression is that we want
the BAT & to “forget” about all the logical consequences of the fluents in s, that change, as a result of
executing action ¢. We denote as Sy, the situation term do(ot,S).

Definition 4. For two many-sorted structures .#, #' of the situation calculus signature, and a ground
action a, we write M ~s, M if: (1) M and A’ have the same domains for sorts action and object;
(2) M and M interpret all situation-independent predicate and function symbols identically; (3) M
and #' agree on interpretation of all fluents at Sy, i.e. for every fluent F and every variable assignment
o, we have M ,0 |=F(X,Sq) iff A',0=F(XSq)

Definition 5. Let 2 be a basic action theory with initial theory 9s, and & be a ground action term. A
set of formulas Ds,, in second-order logic is called progression of Ds, w.rt. 9 and o if it is uniform in
situation term Sy, and for any structure M, M is a model of Ds,, iff there is a model ' of 9 such that
M s, M

In STRIPS, progression s, is merely an insertion and removal of literals based on the effects of «.
In more complex languages, such as the situation calculus, progression is always definable as a second
order theory. We are interested in a middle point between these two extremes: a local-effect BAT based
on a convenient language X that is preserved by forgetting; [18] prove in their Theorem 3.6 that X=FOL.
We argue that in &7 X can be instantiated with our language .Z.

Subsequently in this section, we consider only local-effect BATs. For local effect BATs, the change
that occurs due to executing the action ¢ affects a finite set of ground fluents, so progression involves
merely forgetting about those ground literals in the initial theory and computing their new values from
SSAs. The set of these literals is called the characteristic set of @ and is denoted by Q(s), where Q(Sp)
is the set to be forgotten and Q(S¢) is the new set of values. These sets can be computed as follows.
First, instantiate a in Zss with a ground action o(7;,7,), apply UNA for actions, and 3z(z=bA
0(X;,2,8)) = ¢(X;,b,s) repeatedly. This eliminates Iz from RHS of each axiom (2)) in Zsg, and each
context condition becomes a z-free formula. As a result of this transformation, each disjunction in ¢ in

315

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

becomes either X=1;" A ¢;" (¥,27,s), or ¥=1; A9 (¥,1; ,5) depending on whether it is a part of ¥}
or ¥ in H Second, define the argument set Ag; for each fluent Fj:

Ap,={7| X=T appears in the transformed SSA for F;} 4)

The characteristic set of « is the following set:
Q(s) ={F(f,s) | F isafluentand 7 € Ar }, (5)

where the set Q(s) includes F; (7, s) for each 7; € Ar;. Observe that in &2, since & is an .Z-based BAT,

both ¢;" (t},tg.“,s) and ¢, (t;L t;; ,s) are z-free .2 sentences. The set of ground atoms we want to forget
is Q(Sp). New values Q(Sy) of fluents can be obtained from the (transformed) SSA for each fluent. Let
Ps5]Q] denote the instantiation of Pgs w.r.t. Q(Sp), i.e. the set of sentences

F(7,Sq) = B (7, a,50), ©)

where F(7,S¢) € Q(S¢) and ®f is the instantiated right hand-side of the SSA for fluent F w.r.t. a
ground action o. Note that for progression to be definable, the language X should be able to express
the conjunction of Zgs[Q] axioms. Progression in a local-effect BAT & w.r.t. a ground action ¢ can be
computed as follows.

Theorem 5. ([[I8], Theorem 3.6) Let 9 be a local-effect BAT, @ a ground action, and Q(s) be the
characteristic set of o Let ¢ be D5, U Dss|QY]. Then the following is a progression Ds,, of Ds, w.r.t. :

Dsq = [\UNA A forget(9,2(S0)) (Sa/So), (7

where y(u/v) is the result of replacing all occurrences of v in W by u. Moreover, using notation from
TheoremH| we have:

forget(9,Q(S0)) = \/ 9[6] (Sa/So0)-
0c.#((So))

From , it follows that size of s, can increase in comparison to the size of Zs,. For this reason,
(18] considers a special case of a proper™ Zs,. The proper™ KBs are proposed in [13]] as a gener-
alization of proper KBs [14]]. In [18], the authors showed for a local-effect BAT that progression of
an initial theory in proper* form can be computed efficiently. For this purpose, they defined a normal
form such that once a KB has been transformed into this normal form, forgetting becomes straightfor-
ward. Below, we reproduce a sequence of definitions and propositions from their paper, but we also
introduce new terminology. Let e be an ewff, a well-formed formula whose only predicate is equality,
and let a clause d be a disjunction of literals. Then, the universal closure V(e D d) is called a guarded
clause, or a proper™-formula. A KB is called proper™ if it is a finite non-empty set of guarded clauses
supplemented with the axioms of equality and the set of UNA for constants.

The notion of forgetting about a ground atom P(¢) brings in the related notion of irrelevance, which
divides formulas into those which are affected, and those formulas which are not affected by forgetting
about P(¢).

Definition 6. Let P(C) be a ground atom, ¢ be a sentence. Then, P(C) is irrelevant to ¢ iff
forget(9,P(c)) = 6.

Note that when ¢ has no occurrences of P(¢), then P(¢) is irrelevant to ¢. Using the distributivity
law ((aV p) A (bV p)) = (aAbV p) one can collect sub-formulas from all clauses in a KB with positive
occurrences of p into a single conjunction ¢,,. Similarly, using the distributivity law ((a VvV —p) A (bV
—p)) = (aAbV —p) one can combine sub-formulas occurring together with —p in clauses of a KB into
the conjunction ¢.e. Then, from Theorem about forgetting (see above) one can easily obtain this:

316

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

Proposition 1. (/I8]], Prop. 5.3) Let P(C) be a ground atom, Qps, Oneg, and @y be sentences to which
P(C) is irrelevant, and KB be (P(C)V @pos) A (—P(C) V Gneg) A Qirr, Then, forget(KB,P(C)) = (@pos V
¢neg) A ¢irr-

This proposition is important because it shows a class of formulas where forgetting about P(¢) can
be easily computed. However, note that the KB resulting from forgetting is not in a proper™ form; it
needs some reshaping using logically equivalent transformations.

Since propert KB are not purely propositional, a simple condition is required to find when a ground
atom P(¢) is irrelevant. The following proposition serves this purpose.

Proposition 2. ([I8]], Prop. 5.4) Let P(¢) be a ground atom, and ¢ =V(e D d) be a guarded clause. If
for every P(f) in d we have that e NT = C is unsatisfiable, then P(C) is irrelevant to ¢.

The previous proposition provides an easily verifiable condition that is sufficient to determine
whether P(¢) is irrelevant to ¢. The following normal form (NF) introduced in [18]] and the next propo-
sition prepare the ground for forgetting efficiently in proper™ KBs.

Definition 7. ([I8], Def. 5.5) Let P(C) be a ground atom, and ¢ =Y(e D d) be a guarded clause.
Then, ¢ is in normal form (NF) w.r.t. P(C) if for any P(f) appearing in d, either T is ¢ or e N\T=C is
unsatisfiable. A proper™ KB is in normal form w.r.t. P(2), if its every guarded clause is in normal form
w.r.t. P(C).

Proposition 3. (/I8)], Prop. 5.6) Let P(C) be a ground atom. Every propert KB can be transform-
ed into a logically equivalent one which is in normal form NF w.r.t. P(¢). This transformation takes
Oo(n+ m-2k) time, where n is the size of the KB, m < n is the size of sentences, where P appears, and k
is the maximum number of occurrences of P(X) in a sentence of the KB.

[18]] show that after converting a proper™ KB into their normal form NF w.r.t. P(¢), it is easy to
forget P(¢), and then transform the resulting formula back into proper™ KB. They also show that if the
RHS of all SSA are essentially quantifier free (i.e., if context conditions can be simplified to quantifier
free formulas), then Zgs[Q(S)] is definable as a proper™ KB. As a consequence of all these results,
progression of a proper™ KB can be computed in linear time w.r.t. n, the size of the KB. Unfortunately,
we cannot apply these results directly because it remains unclear whether the transformations required
to maintain proper™ form after forgetting introduce new variables or not. Since, we can only use two
variables, this issue is crucially important.

5 Progression in &

In this section, we use the notion of forgetting about a sequence of ground atoms, the notion of pro-
gression in SC, the fact about definability of progression in FOL for local effect BATs, and notation
introduced in [15] [16, [I8]]. Recall that & is any .Z-based BAT. It is easy to give an example of &
with global effect actions such that progression of s, is not definable as a z-free .2’ sentence. Sub-
sequently, we consider only local-effect &7 action theories, and we talk about z-free .Z sentences that
can be transformed into an ALCO(U) concept. Below, we prove that progression of a z-free .£ sentence
s, is still expressible as a z-free £ sentence Zs,, (here and subsequently, for brevity, we talk about
situation-suppressed sentences). This does not follow from Theorem 3.6 in [[18] about definability of
progression in FOL for local-effect BATSs, since our initial theory s, is formulated in a strict subset
of FO? language, and it is not obvious at all whether in & progression Ds,, of Ds, can still be defined
within same language. Since progression involves forgetting about old values of fluents and computing
new values, we need a couple of intermediate lemmas. First, we show that new fluent values can be
expressed in .Z. Then, we prove that the result of forgetting about ground fluents in s, affected by a
ground action o remains to be a z-free . sentence.

317

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

Lemma 2. Let 9 be a local effect &, a. a ground action, and Q(Sy) be the characteristic set of o
with respect to 9. Then Pss[Q] is a set of L sentences without occurrences of z-variables, when the
situation terms are suppressed.

Proof: To compute new values, we instantiate Zsg w.r.t. Q(Sp), do simplification and obtain the set of
sentences Zss[Q]. By Definition [6]of Zss[Q], it is a set of bi-conditionals, but each of them is simply
syntactic sugar for:

[<F (7,Sq)V ®r(,0,80)] A [~Pr(F,0,S0) VF(7,Sq)]
It is clear that if both F and ®f are . formulas, then so is the formula above. Moreover,
o F(7,S¢) is a ground fluent, so it is a . formula when the term Sy, is suppressed.

o Op(7,,S)) is of this form (after suppressing Sp):

pos .
[v ¢1’+ (?’ tz_t-—)
=1

neg

y [F(ZSO)/H(\/ b @)
=1

where each of ¢;" and ¢, is an .#-formula without free variables. This is because replacing an
action variable in a local effect SSA (2) with a ground action, using UNA for actions, and applying
Jz2(z=bA9(z)) = ¢(b) repeatedly yields z-free .£-formulas ¢;" and ¢, . Indeed, recall that each
context condition ¢; is a formula with syntax F* AF”, but eliminating 3z and instantiating ¢; with
7 yields an . formula. Hence, ®f (7, @, Sp) is an . formula without any free variables.

One thing to note is that F(7,Sq) and ®f (7, ®,Sy) are not uniform in the situation term. However,
F (?, S«) can never occur in @ or any RHS of SSA of other fluents because they are all uniform in Sp.
Also, none of the ground fluents in Q(Sp) to be subsequently forgotten are relevant to F(7,Sy) simply
because it is the value of the fluent F at a different ground situation term S, which makes it a totally
different predicate from the point of view of forgetting. This can be easily verified using the syntactuc
rule provided in Theorem for computing forgetting. For these reasons, we can replace F(7,S¢) tem-
porarily by some atom F; until forgetting about ground atoms in Q(Sp) is completed, and then put it
back while preserving logical equivalence. O

The next lemma shows that forgetting about ground atoms Q(Sp) in an .# formula results in an .¥
formula. Since by Theorem E] forgetting is computed using the syntactic substituiton denoted ¢[6], it is
sufficient to argue that . formulas are invariant with respect to this syntactic transformation.

Lemma 3. Let ¢ be a F* (or F?) formula and 0 a truth assignment to some of the atoms P(fj) occurring
in this formula (if any), then ¢[0] remains a F* (F*) formula.

Proof: Recall that notation ¢[6], introduced in [18]], means the result of replacing every occurrence of
an atom P(X) in ¢ by \/I_ (X=1; AO[P(7})]) V (NT=1 X# £j) A P(X), and recall explanations preceeding
the formula (3). We prove this lemma for F* and leave out the F case because it is symmetrical. The
proof is by induction on structure of the formula ¢. Let ¢ be a F* formula. The base case is the atomic
formulas:

e T, 1, and x=t are all unaffected by [6] because they contain no P, so ¢[6] = ¢.

e P(7), where 7 is a vector of constants and/or z-variables. If P(7) € 6, then ¢[0] = 0[P (7)] which is
either T or L. Otherwise P(7) ¢ 6 and ¢[0] = ¢.

e P(x), where x is a single variable (not a vector). Then ¢[0] = 3.

318

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

e R(x,t), where ¢ is either a z-variable or a constant. This can be rewritten as Jy.R(x,y) Ay =1,
which is a non-atomic formula to be considered below.

It is clear that in all cases, the resulting formula is in F*.

The induction step. Assume F(x), A, B are F* formulas such that F(x)[60], A[6], B[6] are also F*
formulas, and F(y) is a F* formula such that F(y)[0] is also F” formula. Also, let R(x,y) be a binary
predicate. The formula ¢ can have one of the following non-atomic forms:

Ox.F(x), where Q € {3,V}. Then ¢[6] = Qx.F (x)[0].

e AANB,AV B, and —A. Then ¢[6] = A[6] AB[6], ¢[6] = A[6] V B[B], and ¢[0] = —A[6], respec-
tively.

e VYyR(x,y) D F(y). Two cases, first when P is R, second when P is F. The latter is obvious. The
former case is a long (but straightforward) sequence of FOL equivalent transformations, so we
won’t mention it here, but the result is that ¢[6] is a F* formula

e JyR(x,y) AF(y). Similar to the above, we have two cases, the first when P is R and the second
when P is F. The latter is easy and the former is laborious, but straightforward, and due to lack
of space is omitted. But ¢[0] is a F* formula in both cases.

Thus, in all cases the resulting formula is a F* formula. O

Now, using the notation in (7), we show that progression remains to be a z-free .# sentence.
Theorem 6. Let 2 be a local-effect BAT based on £ and o a ground action. Let Q(s) be the charac-
teristic set of o. Then the following formula is a progression of 9s, w.r.t. o and this formula is an £

rentence ANA A\ (N\Zsy A\ ZssI)6] (Sa/S0) ®)
0e.(Q(Sp))

Proof: This is a consequence of Lemmas (2)), and Theorem 3.6 from [[18]]. Note that the final

formula is uniform in Sy. This theorem is important for our work because it shows for & that if an

initial theory s, is expressible as an ALCO(U)-like concept, then progression Zs,, is also expressible

as an ALCO(U)-like concept.

6 Efficient Progression in p™ KB

Theorem E] shows progression %, can be translated to ALCO(U), but in a general case, the size of
progression can be much larger than the size of Zs,. If one wants to solve the projection problem by
computing progression for a sequence of action, then one has to find special cases of an initial theory
s, such that the size of progression remains linear w.r.t. the size of Zs,. [18] prove that progression
is computationally tractable if an initial Zs, is in proper™ form, where proper™ theories generalize
databases by allowing incomplete disjunctive knowledge about some of the named elements of the
domain [13]]. A proper™ knowledge base (KB) is more general than a proper KB, which is equivalent
to a possibly infinite consistent set of ground literals. We show that in 2, if s, is a set of proper™
formulas that can be translated into ALCO(U), then progression of Zs, in our new normal form can be
computed efficiently, and the normal form can be maintained without introducing any new variables. To
achieve this, we show that a KB in our new normal form remains in the same normal form after forgetting
about old values of fluents. The fact that forgetting in our normal form KB can be accomplished without
introducing new variables is novelty that does not follow from [18]].

Let e be an ewff, a well-formed formula whose only predicate is equality, and let a clause d be
a disjunction of literals. Recall that the universal closure V(e D d) is called a guarded clause, or a

319

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

propert-formula, and a KB is called proper™ if it is a finite non-empty set of guarded clauses sup-
plemented with the axioms of equality and the set of UNA for constants. We are going to use a p*
normal form in which forgetting can be accomplished without introducing new variables. The new form
is logically equivalent to the propert normal form, but it is more handy for our purposes. In addition,
there is no increase in the size when a proper™ formula is transformed into p™ form.

Definition 8. We say that a disjunction of guarded clauses \/;¥(e; Dd;) is a p* formula. A p* KB is a
finite set of p* formulas (plus axioms of equality and UNA for constants).

We would like to show that a KB in our p™ normal form can be equivalently transformed into
the same normal form after forgetting about old values of fluents, and none of the intermediate logical
transformations require introducing new variables to preserve logical equivalence. Working with p™ KB
requires logically equivalent transformations using V-quantifiers applied to disjunctions. To ensure these
transformations do not need fresh variables to preserve equivalence, we introduce auxiliary technical
notions.

Definition 9. Let S; be a set of variables that occur in a guarded clause ¥(e; D d;). Let & =
{81,82,...8,} be a collection of these sets such that they are pairwise disjoint. We call a p* formula
¢ =\V/,;V(e; Dd;) separable w.rt. & iff for each guarded clause ¥(e; D d;) the free variables of e; D d;
are a subset of one and only one set in ..

Definition 10. Let capacity(.¥) be the maximum number of variables in a set from ..

Our goal is to transform a KB into a form such that forgetting about a ground atom P(¢) becomes
a simple syntactic operation. Note that the easiest case for forgetting about a ground atom P(¢) in a
formula ¢, is when P(C) is irrelevant to ¢;,,, or formally, when forget (@i, P(¢)) = ¢ir. For example,
this applies when a formula ¢;,» has no occurrences of P. Otherwise, let’s consider a ground (for the
sake of simplicity) KB where all clauses mention a predicate symbol P at most once. Then, using
distributivity ((aV P(¢)) A (bV P(¢))) = (aAbV P(c)), we can collect all sub-formulas from clauses
that mention P(¢) into a single conjunction ¢,,. Similarly, we can collect all sub-formulas from clauses
that mention —P(¢) into a single conjunction ¢,.,. Then, we can use the following simple observation
to forget about P(C) easily. Let P(¢) be a ground atom, @pos, Preg, and ¢;,- be sentences to which P(c) is
irrelevant, and KB be (P(C) V @pos) A (—P(€) V Pneg) A @irr, Then, forget(KB,P(Z)) = (Ppos \V Pneg) A D
Now, we would like to elaborate these observations in the context of p™ KBs that have V-quantifiers.
This preliminary discussion motivates the subsequent developments.

Proposition 4. Let 9=\/;V(e; Dd;) be a p* formula. If for each d; and for every P(f) in d; the formula
(e; \f=C) is unsatisfiable, then P(C) is irrelevant to ¢.

We are ready to define a new normal form NF, that accommodates disjunctions of guarded clauses.
Our definition takes into account separability of variables that is important for equivalent transforma-
tions with V such as Vy(A(x)VB(y)) = A(x) V VyB(y).

Definition 11. Let # be a p*™ KB, .’ be a collection of pairwise disjoint sets of variables and P(c)
be a ground atom. Then, ¢ is in NFy normal form w.r.t P(¢), called NF. (¢ ,P(?)), if # ={¢ | ¢ =
V;V(eiDd;)} such that

1. each formula ¢ € ¥ is separable w.r.t. ./,

2. ineach ¢ € K, for any P(f) appearing in any d;, either f is ¢ or (e; \T=7) is unsatisfiable.

The crucial fact is that a p™ KB can be normalized without introducing new variables.
Theorem 7. Let . be a collection of sets of variables such that these sets are pairwise disjoint, and
capacity(.#) =m for some integer m > 0. Let ¢ be a KB of p* formulas that are separable w.r..
7, and let P(C) be a ground atom. Then, & can be transformed into a KB in NFy. normal form w.r.t
P(&), such that each constituent formula ¢ =\/;¥(e; Dd;) is separable w.r.t. a collection /' of pairwise
disjoint sets of variables, ¥ C ., and capacity(."") =m.

320

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

Proof: Let ¢ = \/!'V(e; D d;) € # be an arbitrary p* formula separable w.r.t. .. Since ¢ is separable
w.rt. .7, any V-clause in ¢ has at most m variables, and any two guarded clauses either share variables
from the same set S; € .%, or have no variables in common. In the former case, we can rename the
variables in those V-clauses which share variables from S;. Each time, when renaming, we create a new
temporary set of variables S; of size at most m and add it to .. Let .’ be the resulting expanded
collection of sets. For any S;,S; € ., we have by construction that S; N S; =@ and capacity(.) =
capacity(.#"). Now, we use .’ to perform the following transformation.

1. Convert ¢ into propert by moving all V quantifiers to the front of ¢. The resulting formula — call
it ¢, — has the form
V(€1 DdiVeyDdryV.. Ve, D d,,)

where each clause e; D d; uses variables from one and only one set in ./, and no two clauses
share any variables.

2. Rearrange ¢, to look like this:

V(el/\ez.../\en D (dl\/dz\/...\/dn))

which is a single guarded clause of the form V(E D D). We would like to transform this guarded
clause into the regular NF w.r.t. the atom P(¢).

3. Compute the set O as follows. Let P(f1), .. P(;) be all the occurrences of P in the rearranged D

of ¢,. Then .
0= {/\izlti 0; ¢|o; € {=#}}

4. For each combination 6 € ® do the following

(a) letd' = djV...Vd,, where each d} is same as d;, but with every P(7) replaced by P(¢), if
r=ceo.
(b) define e’ =eNB=e; Aes A...Ney, ANT{OIEA ... ANjokC

(c) transform V(e' O d') back into p* while maintaining the separability wrt .%’. Call the
resulting formula ¢[6)].

5. Let NFy(¢,P(c)) be the set {¢[6] | 6 € O}.
6. Then, NF (% ,P(c)) is the union of NF (¢, P(c)) for all ¢ € 7.

Note we added formulas in step (b)) only, while step only removed formulas. In @b}, equalities
of the form 7;0;¢ were added, where each 7; is a vector of variables that belongs in one and only one set
from .’ simply because the clause with the atom P(%;), from which 7; came from, is separable w.r.t. ..
Hence, step (4c), which involves moving V inside the formula, is a logically equivalent transformation.
Finally, temporary variables were renamed back to old variables. O

For a given ground atom P(¢), converting a p* KB into NF, produces only three different types of
p* formulas with sub-formulas Oposs Pneg» Pirr such that P(¢) is irrelevant to them: formula of structure
P(C) V @pos is called pos-type formula, formula of structure =P (¢)V @y, is called neg-type formula, irr-
type formulas ¢;, have no occurrences of P(c). As explained above, forgetting about P(¢) in NF, can be
easily accomplished. Moreover, we prove that the KB resulting from forgetting about P(¢) can be easily
transformed back into the p™ KB while preserving capacity (i.e., without introducing new variables).

321

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

Theorem 8. Let .7 be a collection of sets of variables such that the sets in each collection are pairwise
disjoint, and capacity(.#) =m for some integer m > 0. Let ¢ be a p* KB of formulas that are
separable w.r.t. .7, and P(¢) be a ground atom. Then, the result of forgetting P(c) in % is a p* KB
of formulas that are separable w.r.t. a collection of pairwise disjoint sets of variables .’ such that
& C . and capacity(S") =m.

Proof: First convert % into NFy (¢ ,P(¢)), a NFy normal form w.r.t. P(c), and then consider
the conjunction of formulas in this NF. form of J#". Since each p™ formula has one of the three types,
group together p* formulas of same type w.r.t P(¢), and using the distributivity law ((aV p)A(bV p)) =
(aAbV p) rewrite the conjunction as:

i J
(P@)V N\ pos) NPV A bueg) A N\ Girr,
where i and j are the number of pos- and neg-type formulas, respectively; they are linear in the number
of formulas containing P(x) and =P(x) in %, respectively. Using Proposition [1} forgetting P(¢) in this

formula yields ; j
(/\ ¢p0s vV /\ ¢neg) A /\ (Pirr'
Finally, apply the distributivity law to get the following

i-j
/\(¢pos \ ¢neg) A /\ ¢irr> (9)

which is the final result of forgetting P(¢) in # and is a p™ KB. One may expect thati- j is O(n), where
n is the number of formulas in J¢’; also, the number of ¢;,, is O(n). It is obvious that each pT formula
Ppos V Pneg is separable w.r.t. .7 ' because each @pos and @y,q¢ is separable w.r.t .7 " (by definition of the
normal form NF,). O

Since our proof shows that the transformations do not incur any increase in the sizes of the formulas,
the complexity of forgetting is as in [18]]: linear w.r.t. the size of a KB.

Once forgetting has been completed, the maximum number of variables in any guarded clause does
not exceed the initial capacity(.#) of a KB that is transformed back into p™ form. Consequently, we
can accomplish forgetting in our action theory &, if we start with an initial theory s, that is both in
pT normal form and that is a z-free . sentence. The intersection of these two languages should be
expressive enough for applications.

Regarding the connection between AICO(U) and p™, it is clear that the intersection of % and the
language for defining p* KBs restricts the capacity of guarded clauses to 2 since AICO(U) is a fragment
of FO?. In 2, if context formulas F* and F” are essentially quantifier free (i.e., if context conditions
can be simplified to quantifier free formulas), then Zss[Q] can be converted to CNF of literals, and then
into a p™ KB. Therefore, by Theorem [6] since Zss[Q] is O(1) in size (Zss is a fixed input), the only
potentially large input that matters is %s,. The number of affected ground fluent literals that should
be forgotten is limited by the structure of the Zgsg, i.e., it can be considered a constant. Therefore,
we would apply a constant number of forgetting operations, each operation increasing the size of %,
linearly. Overall, this yields progression s, that is linear w.r.t Zs,. Once an initial theory Zs, has been
progressed, the projection problem can be solved using any ALCO(U) satisfiability solver.

7 Discussion and Future Work
The situation calculus (SC) is a well known and popular logical theory for reasoning about changes
caused by events and actions. There are several different formulations of SC. According to John Mc-

Carthy the history is the following: “[20] proposed mathematical logic as a tool for representing facts
about the consequences of actions and using logical reasoning to plan sequences of actions that would

322

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

achieve goals. Situation calculus as a formalism was proposed in [21]] and elaborated in [25]. The name
situation calculus was first used in [25] but wasn’t defined there. [22] proposed to solve the frame and
qualification problems by circumscription, but the proposed solution to the frame problem was incor-
rect. [29] and [28]] describe several situation calculus formalisms and give references” (see the footnote
4 in [24]). Unfortunately, the projection problem is undecidable in the SC in general without making
strong assumptions such as DCA (i.e., essentially reducing the logical action theory to a propositional
one) and CWA (i.e., allowing only data bases with complete knowledge as initial theories).

Main contributions of our paper are as follows. First, we define a logical theory & integrating
reasoning about action with DLs such that &7 is more expressive than theories from [10} [11]. For ex-
ample, in 2, there are no restrictions on arity of actions functions. Second, Theorem [2] (regression in
&) shouldn’t be underestimated. It shows existing ontologies (with a general ALCO(U) static TBox)
can be seamlessly integrated with &?. To the best of our knowledge, this seamless integration of DLs
and reasoning about actions has never been proposed before. For example, [3,[11] allowed only acyclic
dynamic TBox (that can be easily added to & too). Third, Theorem[f]is a new non-trivial statement that
doesn’t follow from [18]. It is important because it guarantees that progression of ALCO(U) KBs can
still be formulated in the same language, and consequently, one can continue computing progression for
subsequent actions. Fourth, Theorems[7]and[§]are proved using new techniques. They don’t follow from
[[L8]], where progression was studied in FOL. They are important because we have to prove that trans-
forming a KB back into our normal form (after forgetting in our normalized KB) can be done without
introducing new variables. We have to do all logically equivalent transformations without adding new
variables since our KBs should be formulated in a fragment of FO?.

Our regression in & had been successfully implemented in XML and C++ [31] and extensively
tested on half a dozen benchmark domains [12, 31]. In [12]], ADL versions of several planning
specifications (considered as FOL theories, without grounding) have been manually translated from
PDDL (Planning Domains Definition Language) into XML encoding of &?. Note that STRIPS plan-
ning domains are trivial. When fluents have more than two object arguments, they can be rephrased
using simpler fluents if arguments vary over finite ranges: see examples of such transformations in
Section 5.2 of [I1]. An implementation of progression in & is ongoing: see the pseudo-code at
http://www.scs.ryerson.ca/mes/d12012.zip

An approach to integrating DLs and reasoning about actions proposed in [3]] inspired a number of
subsequent papers including [11]], where the reader can find extensive comparison and discussion. The
approach proposed in [3]] is expressive, and it can be used to represent many popular Al action theories.
However, one can answer only ground projection queries using their approach, but Theorem [2shows we
can use regression to answer projection queries with quantifiers over object arguments in fluents. Also,
our regression can be used to solve the projection problem in a BAT where some actions have global
effects, but the approach proposed in [3] can answer projection queries only in local effect BATs. In
any case, it is important to compare our implementations with an implementation based on [3] for the
common classes of queries and theories. An empirical assessment can use a few planning domains and
a number of other benchmarks. The first step in this direction is taken in [32].

All other related publications are very extensively discussed in [3} 14} [11}[17].
Acknowledgements
Thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC), to the De-
partment of Computer Science of Ryerson University and to the Department of Computer Science and
Engineering of York University for providing partial financial support. We are grateful to Giuseppe De

Giacomo and Yilan Gu for discussions at an earlier stage of this research.

323

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

324

Alessandro Artale and Enrico Franconi. A survey of temporal extensions of description logics. Ann. Math.
Artif. Intell., 30(1-4):171-210, 2000.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In Handbook of Knowledge Representa-
tion, pages 135-179. Elsevier, 2007.

Franz Baader, Carsten Lutz, Maja Mili¢i¢, Ulrike Sattler, and Frank Wolter. Integrating Description Log-
ics and Action Formalisms: First Results. In Proceedings of the 20th AAAI Conference, pages 572-577,
Pittsburgh, PA, USA, 2005.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Actions and Programs
over Description Logic Ontologies. In Description Logics Workshop (DL-2007), 2007.

Liang Chang, Zhongzhi Shi, Tianlong Gu, and Lingzhong Zhao. A Family of Dynamic Description Logics
for Representing and Reasoning About Actions. Journal of Automated Reasoning, 49(1):1-52, 2012.
Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F. Patel-Schneider, and Ulrike Sattler.
OWL 2: The next step for OWL. J. Web Sem., 6(4):309-322, 2008.

Giuseppe De Giacomo, Luca locchi, Daniele Nardi, and Riccardo Rosati. A theory and implementation of
cognitive mobile robots. J. Log. Comput., 9(5):759-785, 1999.

Giuseppe De Giacomo and Maurizio Lenzerini. PDL-based framework for reasoning about actions. In Marco
Gori and Giovanni Soda, editors, AI*IA, volume 992 of Lecture Notes in Computer Science, pages 103-114.
Springer, 1995.

Premkumar T. Devanbu and Diane J. Litman. Taxonomic plan reasoning. Artif. Intell., 84(1-2):1-35, 1996.
Yilan Gu. Advanced Reasoning about Dynamical Systems. PhD thesis, Department of Computer Science,
University of Toronto, Canada, 2010.

Yilan Gu and Mikhail Soutchanski. A Description Logic Based Situation Calculus. Ann. Math. Artif. Intell.,
58(1-2):3-83, 2010.

Ekaterina Kudashkina. An Empirical Evaluation of the Practical Logical Action Theory (Undergrad. Thesis).
Dep. of Comp. Science, Ryerson University, Toronto, Canada, 2011.

Gerhard Lakemeyer and Hector J. Levesque. Evaluation-Based Reasoning with Disjunctive Information in
First-Order Knowledge Bases. In Proc. of KR-02, pages 73-81, 2002.

Hector J. Levesque. A completeness result for reasoning with incomplete first-order knowledge bases. In KR,
pages 14-23, 1998.

Fangzhen Lin and Ray Reiter. Forget It! In Proceedings of the AAAI Fall Symposium on Relevance, pages
154-159, 1994.

Fangzhen Lin and Raymond Reiter. How to Progress a Database. Artificial Intelligence, 92:131-167, 1997.
Hongkai Liu, Carsten Lutz, Maja Milii, and Frank Wolter. Reasoning About Actions Using Description Logics
with General TBoxes. In Logics in Artificial Intelligence, volume 4160 of Lecture Notes in Computer Science,
pages 266-279. Springer Berlin / Heidelberg, 2006.

Yongmei Liu and Gerhard Lakemeyer. On First-Order Definability and Computability of Progression for
Local-Effect Actions and Beyond. In Craig Boutilier, editor, IJCAI, pages 860-866, 2009.

Carsten Lutz and Ulrike Sattler. A Proposal for Describing Services with DLs. In Proc. of the 15th Intl
Workshop on Description Logics, 2002.

John McCarthy. Programs with common sense. In Mechanisation of Thought Processes, Proceedings of the
Symposium of the National Physics Laboratory, pages 77-84, London, U.K., 1959. Her Majesty’s Stationery
Office. Reprinted in [23].

John McCarthy. Situations, actions and causal laws. Memo 2, Stanford University, Department of Computer
Science, 1963. Reprinted in: “Semantic Information Processing” (M.Minsky, ed.), The MIT Press, Cambridge
(MA), 1968, pages 410-417.

John McCarthy. Applications of circumscription to formalizing common sense knowledge. Artificial Intelli-
gence, 28:89-116, 1986.

Towards an Expressive Practical Logical Action Theory M.Soutchanski and W.Yehia

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

[31]

(32]

John McCarthy. Formalization of common sense: papers by John McCarthy edited by V. Lifschitz. Ablex,
Norwood, N.J., 1990.

John McCarthy. Actions and other events in situation calculus. In Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2002), pages 615-628, Toulouse, France, 2002. Morgan
Kaufmann Publishers.

John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of artificial intelligence.
In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4, pages 463—-502. Edinburgh University
Press, Reprinted in [23], 1969.

Drew V. McDermott. The 1998 Al Planning Systems Competition. Al Magazine, 21(2):35-55, 2000.

Fiora Pirri and Ray Reiter. Some Contributions to the Metatheory of the Situation Calculus. Journal of the
ACM, 46(3):325-364, 1999.

Raymond Reiter. Knowledge in Action: Logical Foundat. for Describing and Implementing Dynam. Systems.
MIT Press, 2001.

Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of
Inertia. The MIT Press, 1997.

Frank Wolter and Michael Zakharyaschev. Dynamic description logics. In Advances in Modal Logic 2, pages
431-446, 1998.

Wael Yehia. MSc Thesis (forthcoming). Dep. of Comp. Science and Engineer., York Univ., Toronto, Canada,
2012.

Wael Yehia, Hongkai Liu, Marcel Lippmann, Franz Baader, and Mikhail Soutchanski. Experimental Results
on Solving the Projection Problem in Action Formalisms Based on Description Logics. In Proc. of the 25th
Intern. Workshop on Description Logics, 2012.

325

	Introduction
	Definition of P
	The Projection Problem in P
	Progression in Local-effect BATs
	Progression in P
	Efficient Progression in p+ KB
	Discussion and Future Work

