
Implementing Connection Calculi
for First-order Modal Logics

Jens Otten

Institut für Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany

jeotten@cs.uni-potsdam.de

Abstract

This paper presents an implementation of an automated theorem prover for first-order modal logic
that works for the constant, cumulative, and varying domain of the modal logics D, T, S4, and S5. It
is based on the connection calculus for classical logic and uses prefixes representing world paths and
a prefix unification algorithm to capture the restrictions given by the Kripke semantics of the standard
modal logics. This permits a modular and elegant treatment of the considered modal logics and yields
an efficient implementation. Details of the calculus, the implementation and performance results on
the QMLTP problem library are presented.

1 Introduction
Modal logics add the unary modal operators 2 and 3 to classical logic. They are used to represent the
modalities ”it is necessarily true that” and ”it is possibly true that”, respectively. The Kripke semantics
of the standard modal logics is defined by a set of worlds and a binary accessibility relation between
these worlds. In each single world the classical semantics applies to the standard connectives ¬, ∧,
∨,⇒, and the modal operators are interpreted with respect to accessible worlds. The properties of the
accessibility relation specify the particular modal logic. In first-order modal logics domains of objects
are associated with each world, and the standard universal and existential quantifiers are added. First-
order modal logics have many applications, e.g. in planning, natural language processing, and program
verification. Many of these application require tools for automated reasoning in order to automate the
proof search. Whereas there exist a few automated theorem proving systems for some propositional
modal logics, e.g. modleanTAP [1] and MSPASS [9], the availability of even basic implementations for
full first-order modal logics is very limited.

Connection calculi are a well-known basis to automate formal reasoning in classical first-order
logic [4, 11]. In connection calculi the proof search is guided by connections, i.e. sets of the form
{P,¬P} that contain literals with the same predicate symbol but different polarities. This yields a goal-
oriented and, therefore, more efficient proof search. Connections correspond to closed branches in the
tableau framework [8] or axioms in the sequent calculus [7]. The matrix characterisation for classical
logic can be seen as the underlying notion of connection calculi for classical logic. This characteriza-
tion of logical validity can be extended to modal logic by using prefixes, which encode the additional
non-permutabilities of rule applications in the modal sequent calculus [16, 17].

In this paper an implementation of a connection calculus for the first-order modal logics D, S4, S5,
and T is presented. It is based on the leanCoP system for classical first-order logic extended by an al-
gorithm for prefix unification. This paper is structured as follows. In Section 2 the use of prefixes is
motivated and the basic definitions required for the matrix characterization for modal logic are intro-
duced. Section 3 presents the algorithm for prefix unification and the connection calculus used for the
proof search. Details about the implementation based on this modal connection calculus are given in
Section 4. Section 5 presents performance results of the implementation on the QMLTP problem library,
before Section 6 concludes with a short summary and some remarks on future work.

18 K. Korovin, S. Schulz, E. Ternovska (eds.), IWIL 2012 (EPiC Series, vol. 22), pp. 18–32

Implementing Connection Calculi for First-order Modal Logics J. Otten

2 Preliminaries
The reader is assumed to be familiar with the syntax and semantics of first-order modal logic, see,
e.g., [6]. In the following we consider the standard semantics with rigid term designation, i.e. terms
denote the same object in every world, and terms are local, i.e. any ground term denotes an existing
object in every world. In this paper the letters P,Q are used to denote predicate symbols, f denotes
a function symbol, and x, y, z are used to denote (term) variables. Terms are denoted by s, t and are
built from functions, constants, and variables. Atomic formulae, denoted by A, are built from predicate
symbols and terms. The connectives ¬, ∧, ∨,⇒ denote negation, conjunction, disjunction and implica-
tion, respectively. A (first-order modal) formula, denoted by F,G,H , consists of atomic formulae, the
connectives, the modal operators 2 and 3, and the existential and universal quantifiers ∀x and ∃x. A
literal, denoted by L, has the form A or ¬A. The complement L of a literal L is A if L is of the form
¬A, and ¬A otherwise.

2.1 Using Prefixes
In order to adapt the matrix characterization of classical validity to modal logic, the notion of prefixes
and a modal substitution are introduced.

While the standard connectives and quantifiers are interpreted as in classical logic, the semantics of
the modal operators 2 and 3 is defined with respect to a set of worlds. Then, 2F or 3F are true in a
world w, if F is true in all worlds accessible from w or some world accessible from w, respectively. The
properties of the accessibility relation determine the particular modal logic. In the following the modal
logics D, T, S4, and S5 are considered. Their accessibility relation is serial (D)1, reflexive (T), reflexive
and transitive (S4), or an equivalence relation (S5), respectively.

The modal sequent calculus extends the classical sequent calculus by the modal rules 2-left, 2-right,
3-left and 3-right, which are used to introduce the modal operators 2 and 3 into the antecedent (left
side) or the succedent (right side) of the sequent, respectively.

Definition 1 (Modal sequent calculus). The sequent calculus for the modal logics D, T, and S4 consists
of the axiom and rules of the classical sequent calculus and the four additional inference rules shown
in Figure 1 [17].2 It is Γ2 := {2G |2G ∈ Γ}, ∆3 := {3G |3G ∈ ∆}, Γ(2) := {G |2G ∈ Γ}, and
∆(3) := {G |3G ∈ ∆}.

Γ+, F ` ∆+

Γ,2F ` ∆
2-left

Γ+ ` F,∆+

Γ ` 3F,∆
3-right

Γ∗ ` F,∆∗
Γ ` 2F,∆

2-right

Γ∗, F ` ∆∗

Γ,3F ` ∆
3-left

logic Γ+ ∆+ Γ∗ ∆∗

D Γ(2) ∆(3) Γ(2) ∆(3)

T Γ ∆ Γ(2) ∆(3)

S4 Γ ∆ Γ2 ∆3

Figure 1: The four additional rules of the modal sequent calculus

For the proof search the modal rules are applied upwards, i.e., in an analytic way. In that case
formulae in the sets Γ∗, ∆∗, Γ+ and ∆+ are deleted from the premise. To avoid deleting formulae that
are required for a proof the application order of the modal rules need to be controlled.

1A relation R ⊆W ×W is serial iff for all w1 ∈W there is some w2 ∈W with (w1, w2) ∈ R.
2The modal sequent calculus captures the cumulative domain condition (see Section 2.2). There are no similar cut-free sequent

calculi (that have the subformula property) for the logics with constant or varying domain or for the modal logic S5.

19

Implementing Connection Calculi for First-order Modal Logics J. Otten

Example 1 (Application of modal rules). Let F1 be the formula 2P ⇒ 22P . The left side of Figure 2
shows a sequent derivation of F1 in the modal sequent calculus for S4. When the rule 2-left is applied
first (in an analytic way), the following application of the rule 2-right deletes the formula P from the
antecedent and the derivation cannot be turned into a proof. In the derivation of F1 in the middle of
Figure 2 the two rules 2-right are applied before rule 2-left, and the resulting derivation is a proof.

` P
` 2P

2-right

P ` 22P
2-right

2P ` 22P
2-left

` 2P ⇒ 22P

w2 P ` P
w2 2P ` P 2-left

w1 2P ` 2P
2-right

w0 2P ` 22P
2-right

w0 ` 2P ⇒ 22P

P : a0A1 ` P : a0a1a2
2P : a0 ` P : a0a1a2

2-left

2P : a0 ` 2P : a0a1
2-right

2P : a0 ` 22P : a0
2-right

` 2P ⇒ 22P : a0

Figure 2: Sequent derivations of 2P ⇒ 22P for the modal logic S4

Semantically, every application of the rule 2-right introduces a new world accessible from the pre-
vious one. Starting with w0 the derivation in the middle of Figure 2 is labelled with the worlds in which
the sequent is forced. 2P is forced in w0, w1 is accessible from w0 and w2 is accessible from w1. As
the accessibility relation of S4 is transitive, w2 is also accessible from w0. Hence, the formula 2P on
the left side of the sequent is preserved. For the modal logic D, whose accessibility relation is neither re-
flexive nor transitive, the applications of the rules 2-left (or 2-right) and 2-right would yield the upper
sequent ` P . The 2P on the left side of the sequent does not survive more than one world transition as
the accessibility relation for the modal logic D is not transitive. In the following the notion of prefixes
is used in order to name sequences of accessible worlds.

Definition 2 (Prefix). A prefix, denoted by p or q, is a string (sequence of characters) over an alphabet
ν ∪Π, in which ν is a set of prefix variables and Π is a set of prefix constants.

To distinguish between elements of ν and elements of Π within a prefix, elements of ν are written
in capitals, denoted by V or Vi, whereas small letters, denoted by a or ai, are used to represent elements
of Π. u,w denote strings, ε denotes the empty string, u◦w denotes the concatenation of u andw. u � w
holds if, and only if, u is an initial substring of w or u = w.

Example 2 (Prefixes for worlds). In the right derivation of F1 in Figure 2 each formula is labelled with
a prefix encoding the world in which the formula is forced. Starting with a0 each application of a modal
rule extends the prefix by one character. In the logic S4, A1 could denote any world accessible from a0.
To ensure that the propositions P on both sides of the sequent are forced in the same world, their two
prefixes a0A1 and a0a1a2 need to refer to the same world. This is achieved by assigning the string a1a2
to A1. In the logic D, A1 can only denote a world directly accessible from a0. Hence, only the string a1
can be assigned to A1 and the two prefixes a0A1 and a0a1a2 cannot denote the same world.

Semantically, a prefix denotes a specific world in a model [5, 17]. Prefixes of literals that form an
axiom in the sequent calculus need to denote the same world. Proof-theoretically, a prefix of a formula
F captures the modal context of F and specifies the sequence of modal rules that have to be applied
(analytically) in order to obtain F in the sequent. Prefix variables and constants represent applications
of the modal rules 2-left/3-right and 2-right/3-left, respectively. When a modal rule that corresponds
to an element in Π (and ν for the modal logic D) is applied, only formulae whose prefix ends with an
element of ν are preserved in the premise of the sequent. Hence, the application of the modal rules
represented by elements of ν and Π need to be controlled. In order to preserve two atomic formulae
that form an axiom in the sequent calculus their prefixes need to be made identical. This is done by a
modal substitution that maps elements of ν to strings over ν ∪Π.

20

Implementing Connection Calculi for First-order Modal Logics J. Otten

Definition 3 (Modal substitution). A modal substitution is a mapping σM : ν → (ν ∪Π)∗ that assigns
a string over the alphabet ν ∪ Π to every element in ν . For the modal logics D and T the accessibility
condition |σM (V)| = 1 or |σM (V)| ≤ 1 has to hold for all V ∈ν , respectively. σM (p) denotes the
string p in which each prefix variable V is replaced by its image σM (V).

Substitutions σM are assumed to be idempotent, i.e. σM ◦σM =σM holds. They are represented
by the set {V \p |σM (V) = p and p 6=V }. The accessibility condition encodes the characteristics of
the different modal rules for each logic. For the modal logic D a formula that corresponds to a prefix
variable will only survive one application of the modal rules. Hence, only strings of length one can be
assigned to prefix variables. For the modal logic T a formula that corresponds to a prefix variable will
only survive one application of the modal rules 2-right or 3-left, but any number of applications of the
rules 2-left and 3-right. Therefore, strings of length one or ε can be assigned to prefix variables. For the
modal logic S4 a formula that corresponds to a prefix variable will survive any number of applications
of modal rules. Hence, there is no restriction on strings that can be assigned to prefix variables.

Example 3 (Modal substitution). Consider the prefixes a0A1 and a0a1a2 of the two literals occurring
in the upper sequent of the right derivation in Figure 2. σM 1 = {A1\a1a2} is a modal substitution for
the logic S4 (but not for D or T) with σM 1(a0A1) = a0a1a2 = gσM 1(a0a1a2).

2.2 Matrix Characterization
The matrix characterization of validity for modal logic can be seen as the basis of the connection cal-
culus presented in Section 3.2. As the core implementation of the connection calculus (introduced in
Section 4.2) uses a clausal form, the original (non-clausal) matrix characterization [17] is slightly mod-
ified. Matrices use a clausal form and the definitions of prefixes and paths are simplified by using the
formal definition of a prefixed matrix and an extended Skolemization technique.

A polarity pol∈{0, 1} is used to represent negation in a matrix, i.e. literals of the form A and ¬A
are represented by A0 and A1, respectively. A prefixed formula F pol:p is a formula F marked with a
polarity pol and a prefix p. A (prefixed) clause, denoted by C, is a set {L1 : p1, . . . , Ln : pn}with literals
Li and prefixes pi. F [x\t] denotes the formula F in which all free occurrences of x are replaced by t.

Definition 4 (Prefixed matrix). The prefixed matrix M(F pol:p) of a prefixed formula F pol:p is a set
of prefixed clauses. It is defined inductively according to Table 1. The following abbreviation is used:
MG ∪βMH := {CG ∪CH | CG ∈MG, CH ∈MH}. x∗ is a new term variable, t∗ is the Skolem term
f∗(x1, . . . , xn) in which f∗ is a new function symbol and x1, . . . , xn are all free term and prefix vari-
ables in ∀xG or ∃xG. V ∗ is a new prefix variable, a∗ is a prefix constant of the form f∗(x1, . . . , xn) in
which f∗ is a new function symbol and x1, . . . , xn are all free term and prefix variables in 2G or 3G.
The prefix of x∗ and t∗, denoted pre(x∗) and pre(t∗), is p. The (prefixed) matrix M(F) of a (first-order
modal) formula F is the prefixed matrix M(F 0 : ε).

In the graphical representation of a matrix, its clauses are arranged horizontally, while the literals
of each clause are arranged vertically. In order to simplify the implementation Skolemization is not only
used for Eigenvariables but also for prefix constants. A similar approach is already used for intuitionistic
logic [10]. Thus, the irreflexivity test of the reduction ordering [17] is realized by the occur check of the
term and prefix unification procedures. The same Skolem function symbol is used for instances of the
same subformula, a technique that is similar to the liberalized δ+-rule in classical tableau calculi [8].

Example 4 (Prefixed matrix). Let F1 be the modal formula (3∃xPx∧2∀y(3Py ⇒ Qy))⇒ 3∃zQz.
The prefixed matrix of F1 is M1:=M(F1) = {{P 1d : a1}, {P 0y :V1V2, Q

1y :V1}, {Q0z :V3}}. x is an
Eigenvariable, y, z are free term variables, a1 ∈ Π is a prefix constant, V1, V2, V3 ∈ ν are prefix vari-
ables. d, a1 are Skolem functions/constants. The graphical representation of M1 is shown in Figure 3.

21

Implementing Connection Calculi for First-order Modal Logics J. Otten

Table 1: Matrix M(F pol : p) of a first-order modal formula F pol : p

type F pol : p M(F pol : p)
atomic A0 : p {{A0 : p}}

A1 : p {{A1 : p}}
α (¬G)0 : p M(G1 : p)

(¬G)1 : p M(G0 : p)
(G ∧H)1 : p M(G1:p) ∪M(H1:p)
(G ∨H)0 : p M(G0:p) ∪M(H0:p)
(G⇒ H)0: p M(G1:p) ∪M(H0:p)

ν (2G)1 : p M(G1 : p ◦V ∗)
(3G)0 : p M(G0 : p ◦V ∗)

type F pol : p M(F pol : p)
β (G ∧H)0 : p M(G0:p) ∪β M(H0:p)

(G ∨H)1 : p M(G1:p) ∪β M(H1:p)
(G⇒ H)1: p M(G0:p) ∪β M(H1:p)

γ (∀xG)1 : p M(G[x\x∗]1 : p)
(∃xG)0 : p M(G[x\x∗]0 : p)

δ (∀xG)0 : p M(G[x\t∗]0 : p)
(∃xG)1 : p M(G[x\t∗]1 : p)

π (2G)0 : p M(G0 : p ◦ a∗)
(3G)1 : p M(G1 : p ◦ a∗)

Connections and paths are the basic concepts of the matrix characterization. They correspond to
axioms and atomic sequents (that cannot be reduced anymore) in the sequent calculus, respectively.

Definition 5 (Connection, path, term substitution). The set {P 1(s1, . . . , sn) : p1, P
0(t1, . . . , tn) : p2} is

a connection. It consists of a pair of literals with the same predicate symbol but different polarities.
A path pt through a matrix M = {C1, . . . , Cn} is a set of literals that contains one literal from each
clause, i.e. pt := ∪ni=1{Li} with Li ∈Ci. A term substitution σQ is a mapping from the set of term
variables to the set of terms. In σQ(L) all term variables x in L are substituted by their image σQ(x).

Example 5 (Connection, path, term substitution). Consider the matrixM1 of Example 4 and its graphi-
cal representation in Figure 3. Then, {P 1d : a1, P

0y :V1V2} and {Q1y :V1, Q
0z :V3} are connections.

{P 1d : a1, P
0y :V1V2, Q

0z :V3} and {P 1d : a1, Q
1y :V1, Q

0z :V3} are (the only) paths through M1.
σQ1 with σQ1(y) = d and σQ1(z) = d is a term substitution.

To ensure that a connection represents an axiom in the sequent calculus, the atomic formulae in the
connection have to unify under a term substitution. Furthermore, their prefixes have to unify under a
prefix substitution. This ensures that these formulae are not deleted by applications of modal rules.

Definition 6 (Admissible substitution, complementarity). Let L ∈ {D, T, S4, S5} be a modal logic,
D ∈ {constant, cumulative, varying} be a domain, σM be a modal substitution for L and σQ be a
term substitution. The (combined) substitution σ := (σQ, σM) is admissible iff the domain condition in
Table 2 holds for all term variables x and (I) for cumulative domain for all Skolem terms t in σQ(x), or
(II) for varying domain for all term variables/Skolem terms s in σQ(x). A connection {L1 : p1, L2 : p2}
is σ-complementary for a substitution σ = (σQ, σM) iff σQ(σM (L1 : p1)) =σQ(σM (L2 : p2)). For the
modal logic S5 only the last character of all prefixes, i.e. of pre(x), pre(s), p1 and p2, is considered.

Table 2: Domain condition for the substitution σ = (σQ, σM)

logic L
domain D D, T, S4 S5

constant – –
cumulative σM (pre(t)) � σM (pre(x)) –

varying σM (pre(s)) = σM (pre(x)) σM (pre(s)) = σM (pre(x))

22

Implementing Connection Calculi for First-order Modal Logics J. Otten

[[
P 1d : a1

] [
P 0y : V1V2
Q1y : V1

] [
Q0z : V3

]]
Figure 3: Graphical representation of the matrix M1

The constant domain variants place no restriction on the modal substitution as the same objects exist
in every world. For the cumulative domain variants any Skolem term t introduced by a quantifier rule
in a world w1 exists in a world w2 that is directly or indirectly accessible from w1. Hence, if t occurs in
σQ(x) then the prefix w1 =σM (pre(t)) has to be an initial string of w2 =σM (pre(x)).3 In case of the
varying domain variants objects may only exists in the world in which they are introduced. Hence, if s
occurs in σQ(x) then the prefixes w1 =σM (pre(s)) and w2 =σM (pre(x)) need to be identical.

Example 6 (Admissible substitution, complementarity). Consider the matrix M1 of Example 4 with
σQ1(y) =σQ1(z) = d, σM 1(V1) =σM 1(V3) = a1, and σM 1(V2) = ε (for T, S4) or σM 1(V2) = a1 (for
S5). Then, σM 1 is a modal substitution for the modal logics T, S4, and S5, but not for D. The substitution
σ1 = (σQ1, σM 1) is admissible for the constant, cumulative, and varying domain as pre(y) = pre(z) =
pre(d) = a1. The connections {P 1d : a1, P

0y :V1V2} and {Q1y :V1, Q
0z :V3} are σ1-complementary.

The notion of multiplicity is used to encode the number of clause copies used in a proof. It is a
function µ :M→ IN that assigns a natural number to each clause in M specifying how many copies of
this clause are considered in a proof. In the copy of a clause C every (term and prefix) variable in C
is replaced by a unique new variable. Mµ denotes the matrix that includes these clause copies. Clause
copies correspond to applications of the contraction rule in the sequent calculus.

Theorem 1 (Matrix characterisation for modal logic). Let L∈{D,T,S4,S5} be a modal logic and
D∈{constant,cumulative,varying} be a domain. A formula F is valid in the logic L with domain D iff
there is a multiplicity µ, an admissible substitution σ= (σQ, σM) forL/D, and a set of σ-complementary
connections such that every path through M(F)µ contains a connection from this set.

Example 7 (Matrix characterisation for modal logic). Consider the formula F1 of Example 4 and the
graphical representation of its matrix M1 in Figure 3. Let µ≡ 1, σQ1(y) =σQ1(z) = d, σM 1(V1) =
σM 1(V3) = a1, and σM 1(V2) = ε (for T, S4) or σM 1(V2) = a1 (for S5). σ1 = (σQ1, σM 1) is admissible
for all domains, and every path through Mµ

1 contains a σ1-complementary connection. Hence, F1 is
valid in the modal logics T, S4, and S5 with constant, cumulative, and varying domain.

3 Proof Search
An effective way to carry out proof search that is based on the matrix characterization is done with a
connection-driven search strategy. For this purpose the connection calculus is extended by additional
prefixes. Furthermore, a prefix unification algorithm is required in order to calculate the modal substi-
tution by unifying the prefixes of the literals in each connection.

3.1 Prefix Unification
Formally, prefix unification is the problem to find a modal substitution or unifier σM for a set of prefix
equations E = {p1 = q1, . . . , pn = qn} such that σM (pi) =σM (qi) for all 1≤ i≤n. A set of unifiers
Σ is a set of most general unifiers for E if, and only if, every unifier τ is an instance of some σ ∈ Σ
(completeness) and no unifier σ ∈ Σ is an instance of another unifier τ ∈ Σ (minimality).

3This condition — as well as the (non-applicable) accessibility condition for S5 — are slightly corrected conditions of [17].

23

Implementing Connection Calculi for First-order Modal Logics J. Otten

As prefixes are strings, general algorithms for string unification 4 could be used for unifying prefixes.
But for general string unification the number of most general unifiers might not be finite. A more
efficient unification takes the prefix property of all prefixes p1, p2, . . . into account: for all prefixes
pi =u1Xw1 and pj =u2Xw2 with X ∈ ν ∪Π the property u1 =u2 holds. The prefix property reflects
the fact that the order in which modal rules are applied corresponds to a (formula) tree structure.

Depending on the modal logic the accessibility condition (see Definition 3) has to be respected
when calculating the modal substitution σM , i.e. for all V ∈ ν : |σM (V)|= 1 for the modal logic D,
|σM (V)| ≤ 1 for the modal logic T and no restriction for the modal logics S4 and S5. The prefix
unification for D is a simple pattern matching, i.e. the standard term unification can be used. For S4 the
prefix unification for intuitionistic logic can be used; see [10] for details. For S5 only the last character
of each prefix (or ε if the prefix is ε) has to be unified. The prefix unification for T is specified by a set
of rewriting rules. Given a prefix equation E = {p= q} it calculates a set of most general unifiers for
E. For an equation of the form V1u=V2w the substitution {V1\ε, V2\ε} would not be minimal (but an
instance of {V1\V2}). To prevent the calculation of such substitutions, the right side of each equation is
split by a bar. Then, V2 is moved to the left side of the bar, i.e., u = V2|w, when ε is assigned to V1.

Definition 7 (Prefix unification). The prefix unification of two prefixes p and q for the modal logic T is
done by applying the rewriting rules in Table 4; it is V ∈ν , a∈Π, X ∈ν ∪Π, u,w∈ (ν ∪Π)∗. The
application of a rewriting rule replaces a tuple (E, σM) by a tuple (E′, σM

′). E and E′ are prefix
equations, σM and σM ′ are modal substitutions. The unification starts with the tuple ({p= ε|q}, {})
and terminates when the tuple ({}, σM) is derived. In this case σM represents a most general unifier.
Rules can be applied non-deterministically as there might be more than one most general unifier.

R1. {ε = ε|ε}, σM → {}, σM
R2. {ε = ε|Xw}, σM → {Xw = ε|ε}, σM
R3. {V u = ε|ε}, σM → {u = ε|ε}, σM ∪ {V \ε}
R4. {Xu = ε|Xw}, σM → {u = ε|w}, σM
R5. {V u = ε|Xw}, σM → {V u = X|w}, σM (X 6= V)
R6. {au = ε|V w}, σM → {V w = a|u}, σM
R7. {V1u = ε|V2w}, σM → {w = V1|u}, σM ∪ {V2\ε} (V1 6= V2)
R8. {V u = X|w}, σM → {u = X|w}, σM ∪ {V \ε}
R9. {V u = X|w}, σM → {u = ε|w}, σM ∪ {V \X}
R10. {au = V |w}, σM → {u = ε|w}, σM ∪ {V \a}

Figure 4: Prefix unification for the modal logic T

To solve a set of prefix equations E = {p1 = p1, . . . , qn = tq} the equations in E are solved one
after the other. The modal substitution σM calculated for the first equation is applied to E and the next
equation in E is considered and so on. Different substitutions σM are calculated on backtracking.

Example 8 (Prefix unification). Consider the connection {P 1d : a1, P
0y :V1V2} from Example 5 and 6.

The most general unifiers for its two prefixes a1 and V1V2 are calculated as follows: {a1 = ε|V1V2}, {}
R6−→ {V1V2 = a1|ε}, {}

R8−→{V2 = a1|ε}, {V1\ε}
R9−→ {ε= ε|ε}, {V1\ε, V2\a1}

R1−→ {}, {V1\ε, V2\a1}
and {a1 = ε|V1V2}, {}

R6−→ {V1V2 = a1|ε}, {}
R9−→ {V2 = ε|ε}, {V1\a1}

R3−→ {ε= ε|ε}, {V1\a1, V2\ε}
R1−→ {}, {V1\a1, V2\ε}. Hence, the two most general unifiers are {V1\ε, V2\a1} and {V1\a1, V2\ε}.

4This is also called the monoid problem; it is the equation theory in which there is a neutral element ε and the associativity of
the string concatenation operator ◦ holds.

24

Implementing Connection Calculi for First-order Modal Logics J. Otten

3.2 The Connection Calculus
The matrix characterization of Theorem 1 can serve as the basis for a proof calculus. Checking that
all paths contain a σ-complementary connection can be done by, e.g., sequent or tableau calculi. The
connection calculus uses a connection-driven search strategy in order to determine an appropriate set of
connections. It is already successfully used for automated theorem proving in classical and intuitionistic
logic [11, 12]. Proof search in the connection calculus starts by selecting a start clause. Afterwards,
connections are successively identified in order to make sure that all paths through the matrix contain
a σ-complementary connection for some combined substitution σ = (σQ, σM). This process is guided
by an active path, a subset of a path through the matrix. The multiplicity µ is increased dynamically
during the path checking process. The connection calculus is adapted to modal logic by simply adding
prefixes to all literals and using the prefix unification algorithm presented in Section 3.1.

Definition 8 (Modal connection calculus). The axiom and the rules of the modal connection calculus
are given in Figure 5. The words of the calculus are tuples of the form “C,M,Path”, where M is a
(prefixed) matrix, C and Path are sets of (prefixed) literals or ε. C is called the subgoal clause and
Path is called the active path. C1 and C2 are clauses, σ= (σQ, σM) is an admissible substitution,
{L1 : p1, L2 : p2} is a σ-complementary connection. The substitutions σQ and σM are global (or rigid),
i.e. they are applied to the whole derivation.

Axiom (A)
{},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2: p2}

C∪{L1: p1},M, Path∪{L2: p2}
and {L1: p1, L2: p2} is σ-complementary

Extension (E)
C2\{L2: p2},M, Path∪{L1: p1} C,M,Path

C∪{L1: p1},M, Path

and C2 is a copy of C1∈M ,
L2:p2 ∈C2, {L1: p1, L2: p2}
is σ-complementary

Figure 5: The connection calculus for modal logic

A derivation for C,M,Path with the admissible substitution σ = (σQ, σM) for the logic L and the
domain D in which all leaves are axioms is called a modal connection proof for C,M,Path. A modal
connection proof for the matrix M is a modal connection proof for ε,M, ε.

Theorem 2 (Correctness and completeness). Let L ∈ {D, T, S4, S5} be a modal logic and D ∈
{constant, cumulative, varying} be a domain. A modal first-order formula F is valid in the modal
logic L with domain D iff there is a modal connection proof for M(F) for the logic/domain L/D.

The proof of Theorem 2 is based on the the matrix characterization for modal logic (see Theorem 1)
and the correctness and completeness of the connection calculus [4]. Proof search in the clausal connec-
tion calculus is carried out by applying the rules of the calculus in an analytic way, i.e. from bottom to
top. During the proof search backtracking might be required, i.e. alternative rules need to be considered
if the chosen rule (instance) does not lead to a proof. Alternative applications of rules occur whenever

25

Implementing Connection Calculi for First-order Modal Logics J. Otten

more than one rule or more than one instance of a rule can be applied, i.e. when choosing the clause C1

in the start and extension rule or the literal L2 : p2 in the reduction and extension rule. No backtracking
is required when choosing the literal L1 : p1 in the reduction or extension rule as all literals in C are
considered in subsequent proof steps anyway. The term substitution σQ and the modal substitution σM
are calculated by algorithms for term unification and prefix unification (see Section 3.1), respectively,
whenever a reduction or extension rule is applied.

Example 9 (Modal connection calculus). Consider the formula F1 and its matrix M1 = {{P 1d : a1},
{P 0y :V1V2, Q

1y :V1}, {Q0z :V3}} of Example 4. A derivation for M1 in the modal connection cal-
culus with σQ(z′) =σQ(z′) = d, σM (V ′1) =σM (V ′3) = a1 and σM (V ′2) = ε (for T, S4) or σM (V ′2) = a1
(for S5) is shown in Figure 6. y′, z′ and V ′1 , V ′2 , V ′3 are new term and prefix variables. The two extension
steps use the connections {P 1d : a1, P

0y′ :V ′1V
′
2} and {Q1y′ :V ′1 , Q

0z′ :V ′3}. As all leaves are axioms
and the substitution σ1 = (σQ, σM) is admissible the derivation is also a proof for M1. Hence, the

{},M1, {P 1d : a1, Q
1y′ :V ′1}

A {},M1, {P 1d : a1}
A

{Q1y′ :V ′1}, {{P 1d : a1}, {P 0y :V1V2, Q
1y :V1}, {Q0z :V3}}, {P 1d : a1}

E
{},M1, {}

A

{P 1d : a1}, {{P 1d : a1}, {P 0y :V1V2, Q
1y :V1}, {Q0z :V3}}, {}

E

ε, {{P 1d : a1}, {P 0y :V1V2, Q
1y :V1}, {Q0z :V3}}, ε

S

Figure 6: A proof for M1 in the modal connection calculus

formula F1 is valid in the modal logics T, S4, and S5 (with constant, cumulative, and varying domain).
The proof of F1 using the graphical matrix representation is depicted in Figure 7. The literals of each
connection are connected with a line. The literals of the active path are boxed. In the first step the first
clause {P 1d : a1} is selected as start clause. The second step is an extension step to the first literal of
the second clause. The second step is an extension step to the third clause. Variables in clauses that are
used in a proof step are renamed.

[[
P 1d : a1

] [
P 0y′ : V ′1V

′
2

Q1y′ : V ′1

] [
Q0z′ : V ′3

]]
1.

2.

3.

Figure 7: The modal connection proof for M1 using the graphical matrix representation

Additional techniques to prune the search space in the connection calculus are regularity, lemmata,
restricted backtracking, and the use of a definition clausal form translation; see [12] for details. All these
techniques can be integrated into the modal connection calculus as well.

4 An Implementation
The connection calculus for modal logic presented in Section 3.2 was implemented in Prolog. The main
components are the connection-driven proof search procedure and the prefix unification algorithm. The
complete source code can be obtained at http://www.leancop.de/mleancop/ .

26

Implementing Connection Calculi for First-order Modal Logics J. Otten

4.1 Prefix Unification

In the Prolog implementation strings are represented by Prolog lists, e.g. the prefix a0a1V2 is represented
by the list [a0,a1,V2]. Prefix variables are Prolog variables, i.e. they start with a capital, prefix
constants are Prolog atoms, i.e. they start with a small letter.

The source code of the prefix unification for the modal logic T is shown in line R1 to R10 of Figure 8.
Each Prolog clause corresponds exactly to one of the rewrite rules defined in Figure 4. The predicate
tuni_t(S,[],T) succeeds if the two prefixes S and T can be unified with respect to the accessibility
condition for the modal logic T given in Definition 3. In this case the prefix variables are instantiated
with a most general unifier for S and T. Alternative unifiers are calculated via backtracking. According
to the accessibility condition for the modal logic T, prefix variables may only be instantiated with the
empty string or a single prefix constant or variable. As the Skolemization technique is applied to prefix
constants as well, a term unification with the Prolog predicate unify_with_occurs_check is
required (line R4, R9 and R10) whenever a prefix constant needs to be unified with another prefix
constant or variable.

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

(R1)
(R2)
(R3)
(R4)

(R5)
(R6)
(R7)
(R8)
(R9)

(R10)

prefix_unify([]).
prefix_unify([S=T|G]) :-

(-S2=S -> T2=T ; -S2=T, T2=S), flatten(S2,S1), flatten(T2,T1),
(logic(s5) -> tuni_s5(S1,T1) ;
logic(d) -> tuni_d(S1,T1) ;
logic(t) -> tuni_t(S1,[],T1) ;
logic(s4) -> tunify(S1,[],T1)),

prefix_unify(G).

tuni_t([],[],[]).
tuni_t([],[],[X|T]) :- tuni_t([X|T],[],[]).
tuni_t([V|S],[],[]) :- V=[], tuni_t(S,[],[]).
tuni_t([X1|S],[],[X2|T]) :- (var(X1) -> (var(X2), X1==X2);

(\+var(X2), unify_with_occurs_check(X1,X2))),
!, tuni_t(S,[],T).

tuni_t([V|S],[],[X|T]) :- var(V), tuni_t([V|S],[X],T).
tuni_t([C|S],[],[V|T]) :- \+var(C), var(V), tuni_t([V|T],[C],S).
tuni_t([V1|S],[],[V2|T]) :- var(V1), V2=[], tuni_t(T,[V1],S).
tuni_t([V|S],[X],T) :- V=[], tuni_t(S,[X],T).
tuni_t([V|S],[X],T) :- var(V), unify_with_occurs_check(V,X),

tuni_t(S,[],T).
tuni_t([C|S],[V],T) :- \+var(C), var(V), unify_with_occurs_check(V,C),

tuni_t(S,[],T).

Figure 8: Source code of the prefix unification for the modal logic T

The predicate prefix_unify(G) is used to solve a set of prefix equations. Its code is shown in
the upper part of Figure 8. The set of prefix equations G is presented by a Prolog list of equations of the
form S=T. In each step one prefix equation is selected (line b) and the appropriate prefix unification is
invoked depending on the logic specified by the logic predicate (line d to g). The remaining equations
are considered afterwards (line h). If all equations are solved (line a) the predicate prefix_unify
succeeds. A minus sign in front of a prefix (used for technical reasons) is deleted and prefixes are
flattened (as they may contain nested lists) before the unification starts (line c).

The predicates tuni_s5 and tuni_d implementing the prefix unification for the modal logics
S5 and D, respectively, are straightforward. Details about the predicate tunify implementing the
prefix unification for the modal logic S4 can be found in [10].

27

Implementing Connection Calculi for First-order Modal Logics J. Otten

4.2 The Connection Calculus
The implementation of the connection calculus for first-order modal logic, called MleanCoP, is based on
leanCoP 2.0, an automated theorem prover for first-order classical logic [11]. To adapt the implementa-
tion to the modal connection calculus of Section 3.2 the leanCoP prover is extended by (a) prefixes that
are added to literals and collected during the proof search and (b) an additional list that contains term
variables together with their prefixes in order to check the domain condition. First, MleanCoP performs
a classical proof search. After a proof is found, the prefixes of the literals in each connection are unified
and the domain condition is checked. If the prefix unification fails the (classical) search for alternative
connections continues via backtracking. The Prolog source code of the MleanCoP core prover is shown
in Figure 9. The underlined code was added to leanCoP; no other modifications were done. In ECLiPSe
Prolog sound unification has to be switched on with set_flag(occur_check,on).

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

prove(PathLim,Set) :-
(\+member(scut,Set) ->
prove([(-(#)):(-[])],[],PathLim,[],[PreSet,FreeV1],Set) ;
lit((#):_,FV:C,_) ->
prove(C,[(-(#)):(-[])],PathLim,[],[PreSet,FreeV],Set),
append(FreeV,FV,FreeV1)),
domain_cond(FreeV1), prefix_unify(PreSet).

prove(PathLim,Set) :-
member(comp(Limit),Set), PathLim=Limit -> prove(1,[]) ;
(member(comp(_),Set);retract(pathlim)) ->
PathLim1 is PathLim+1, prove(PathLim1,Set).

prove([],_,_,_,[[],[]],_).
prove([Lit:Pre|Cla],Path,PathLim,Lem,[PreSet,FreeV],Set) :-

\+ (member(LitC,[Lit:Pre|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit:Pre==LitL, PreSet3=[], FreeV3=[]
;
member(NegL:PreN,Path), unify_with_occurs_check(NegL,NegLit),
\+ \+ prefix_unify([Pre=PreN]), PreSet3=[Pre=PreN], FreeV3=[]
;
lit(NegLit:PreN,FV:Cla1,Grnd1),
\+ \+ prefix_unify([Pre=PreN]),
(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;
\+ pathlim -> assert(pathlim), fail),

prove(Cla1,[Lit:Pre|Path],PathLim,Lem,[PreSet1,FreeV1],Set),
PreSet3=[Pre=PreN|PreSet1], append(FreeV1,FV,FreeV3)

),
(member(cut,Set) -> ! ; true),
prove(Cla,Path,PathLim,[Lit:Pre|Lem],[PreSet2,FreeV2],Set),
append(PreSet3,PreSet2,PreSet), append(FreeV2,FreeV3,FreeV).

Figure 9: Source code of the MleanCoP core prover

The open subgoal C and the active path Path in the modal connection calculus of Figure 5 are
represented by the Prolog lists Cla and Path, respectively. The matrix M is written into Prolog’s
database in a preprocessing step. For every clause C∈M and for every literal Lit:Pre∈C the fact
lit(Lit:Pre,FV:C1,Grnd) is stored where FV is a list of elements of the form [V,Pre1] in
which V is a term variable in C and Pre1 is its prefix, C1=C\{Lit:Pre} and Grnd is g if C
is ground, otherwise Grnd is n. Atoms are represented by Prolog atoms, term variables by Prolog
variables and negation by “-”. The substitutions σQ and σM are stored implicitly by Prolog.

28

Implementing Connection Calculi for First-order Modal Logics J. Otten

The predicate prove(Cla,Path,PathLim,Lem,[PreSet,FreeV],Set) in line 1 to 19
implements the axiom, the reduction rule and the extension rule of the modal connection calculus of
Figure 5. PathLim is the maximum size of the active path used for iterative deepening, Lem is a
set of literals used as lemmata, and Set is a list of options used to control the proof search (see [12]
for details). For modal logic the lists PreSet and FreeV were added. They contain a list of prefix
equations and a list of term variables with their prefixes that are collected during the proof search.

Line 1 implements the axiom, line 4 calculates the complement of the first literal Lit:Pre in the
list of open subgoals, which is is used for the following reduction step (line 7/8 and 18/19) or extension
step (line 10/11, 14/15 and 18/19). In line 7 it is checked whether the active path Path contains a
literal NegL:PreN that unifies with the complement NegLit:Pre of the literal Lit:Pre. In Line 8
a weak prefix unification of the prefix equation Pre=PreN is carried out (double negation prevents any
variable bindings). Line 18 and 19 continue the proof search for the premise of the reduction rule.

In line 10 the predicate lit(NegLit:PreN,FV:Cla1,Grnd1) is used to find a clause that
contains the complement of the literal Lit:Pre. FV is the list of term variables occuring in Cla1,
Cla1 is the remaining set of literals of the selected clause. Again, weak prefix unification in line 11
ensures that the prefixes of the new connection are unifiable. In line 14 the proof search for the left
premise of the extension rule is invoked with the new open subgoal Cla1 and the active path Path
extended by the literal Lit:Pre. Afterwards the proof search for the right premise is invoked in
line 18. The lists of prefix equations and term variables are collected in line 8, 15 and 19.

The predicate prove(PathLim,Set) in line a to k implements the start rule of the modal con-
nection calculus in Figure 5. When the matrix M is written into Prolog’s database the distinct lit-
eral #:[] is added to all positive clauses. In line c the proof search starts with the open subgoal
[(-(#)):(-[])] and the empty active path [], i.e. only positive clauses are used as start clause.
After the classical proof search succeeds the domain condition is checked and the prefixes of each con-
nection are unified. To this end the two predicates domain_cond (see the complete source code on
the MleanCoP web site) and prefix_unify (see Section 4.1) are invoked in line g.

Prolog uses a depth-first search strategy resulting in an incomplete proof search. In order to regain
completeness MleanCoP performs an iterative deepening on the size of the active path. When the ex-
tension rule is applied and the new clause is not ground, i.e. it contains a (term or prefix) variable, it is
checked whether the size K of the active path exceeds the current path limit PathLim (line 12). In this
case the predicate pathlim is written into Prolog’s database (line 13) indicating the need to increase
the path limit. If the proof search for the current path limit fails and the predicate pathlim was written
into the database (line j), then PathLim is increased and the proof search starts again (line k).

leanCoP uses a few additional techniques, which are integrated into MleanCoP as well; see [12] for
details. Regularity ensures that no literal occurs more than once in the active path. It is integrated into
the modal connection calculus in Figure 5 by imposing the following restriction on the reduction and
the extension rule: ∀ L′: p′ ∈ C ∪{L1: p1} : σQ(σM (L′: p′)) 6∈ σQ(σM (Path)). Line 3 implements
a ground version of the regularity condition in MleanCoP. The idea of Lemmata or factorization is
to reuse subproofs during the proof search. To this end an additional argument Lem is added to the
prove predicate and line 5 is added to the MleanCoP source code. Restricted backtracking [12] is a
very effective technique to restrict backtracking in the connection calculus. It is implemented in line b,
d, e, f , and 17. A definition clausal form translation reduces the number of possible connections and,
hence, the search space. Furthermore, MleanCoP uses a fixed strategy scheduling, i.e. the core prover is
invoked repeatedly by a shell script with different prover options given in the list Set.

Example 10 (MleanCoP). Consider the modal formula F1 and its matrix M1 of Example 4. The goal
prove(((* ex X:p(X) , # all Y:(* p(Y) => q(Y))) => * ex Z:q(Z))) succeeds; hence, F1 is
valid. The (internal) representation ofM1 (with added variable/prefix lists) is [[]:[-(p(dˆ[]ˆ[a1])):

-([a1])], [[Y,[V1]]]: [p(Y): [V1,V2], -(q(Y)): -([V1])], [[Z,[V3]]]: [q(Z): [V3]]].

29

Implementing Connection Calculi for First-order Modal Logics J. Otten

5 Performance
The MleanCoP implementation of Section 4.2 was tested on all 580 uni-modal problems of version 1.1
of the QMLTP library [14]. All problems were converted into the MleanCoP syntax using the TPTP2X
tool [15] together with the format file included in the QMLTP library. All tests were conducted on a
3.4 GHz Xeon system with 4 GB of RAM running Linux 2.6.24 and ECLiPSe Prolog 5.10. The CPU
time limit for all proof attempts was 600 seconds. Table 3 gives a summary of the test result. It shows
the number of solved problems for the varying, cumulative, and constant domain of the modal logics D,
T, S4, and S5 for the provers MleanCoP 1.2 (CoP), MleanTAP 1.3 (TAP), and MleanSeP 1.2 (SeP).5

Table 3: Number of solved problems from the QMLTP library v1.1

varying domain cumulative domain constant domain
logic CoP TAP SeP CoP TAP SeP CoP TAP SeP

D 422 104 – 424 124 134 426 139 135
T 369 142 – 374 164 167 381 179 167

S4 393 173 – 432 209 201 434 224 198
S5 447 223 – 479 276 – 479 276 –

MleanSeP implements the standard modal sequent calculus (see Definition 1) for several modal
logics. Proof search is carried out in an analytic way and free term variables are used together with
a dynamic Skolemization to ensure the Eigenvariable condition. For the constant domain variants the
Barcan formula (scheme) is added in a preprocessing step. The prover does not deal with the modal
logic S5 and the varying domain variants as they do not have (cut-free) sequent calculi [17].

MleanTAP is a compact implementation of a prefixed tableau calculus for several modal logics. Sim-
ilar to the modal connection calculus presented in Section 3.2 it is based on the modal matrix character-
ization of validity given in Theorem 1. Like MleanCoP it first performs a purely classical proof search.
After a classical tableau proof is found the prefixes of those literals that closed the tableau branches are
unified. The existence of a unifier ensures that the given formula is valid in modal logic. MleanCoP and
MleanTAP use the same source code for the prefix unification and for checking the domain condition.

Table 4 presents detailed performance results of the three theorem provers on the QMLTP library.
It shows for each considered modal logic and domain the number of solved problems, the number of
proved (i.e. valid) problems, the number of refuted (i.e. invalid) problems, and the number of problems
that are proved within specific time intervals. In general, MleanCoP proves and refutes significantly more
problems than MleanTAP and MleanSeP. The number of proved problems by MleanTAP and MleanSeP is
similar, but MleanSeP has a better time complexity behaviour; MleanTAP solves only two problems (for
S4) in a time of more than 10 seconds. As MleanCoP uses a fixed strategy scheduling, many problems
are solved in a time of more than one second. In general, the fewest problems are proved for the modal
logic D with varying domain and the highest problems are proved for S5 with cumulative or constant
domain. This behaviour is in line with the following fact:

If Theorem(L,D) is the set of theorems in the modal logic Lwith the domainD, then for all logics
L ∈ {D,T,S4} and all domains D it is: Theorem(D,D) ⊂ Theorem(T,D) ⊂ Theorem(S4,D) ⊂
Theorem(S5,D) and Theorem(L,varying) ⊂ Theorem(L,cumulative) ⊂ Theorem(L,constant);
furthermore, it is Theorem(S5,varying) ⊂ Theorem(S5,cumulative) = Theorem(S5,constant).

5None of these provers were tuned towards the problems in the QMLTP library. MleanSeP and MleanTAP can be obtained at
http://www.leancop.de/mleansep/ and http://www.leancop.de/mleantap/ .

30

Implementing Connection Calculi for First-order Modal Logics J. Otten

Table 4: Detailed performance results for the modal logics D, T, S4, and S5

varying domain cumulative domain constant domain
logic CoP TAP SeP CoP TAP SeP CoP TAP SeP

D solved 422 104 – 424 124 134 426 139 135
proved 179 100 – 200 120 130 217 135 134
refuted 243 4 – 224 4 4 209 4 1

proved 0s to 1s 149 97 – 169 117 126 187 132 101
1s to 10s 11 3 – 12 3 4 11 3 28

10s to 100s 7 0 – 7 0 0 7 0 3
100s to 600s 12 0 – 12 0 0 12 0 2

T solved 369 142 – 374 164 167 381 179 167
proved 224 138 – 249 160 163 269 175 166
refuted 145 4 – 125 4 4 112 4 1

proved 0s to 1s 199 133 – 223 157 156 238 172 148
1s to 10s 10 5 – 11 3 6 12 3 10

10s to 100s 9 0 – 9 0 1 10 0 7
100s to 600s 6 0 – 6 0 0 9 0 1

S4 solved 393 173 – 432 209 201 434 224 198
proved 274 169 – 338 205 197 352 220 197
refuted 119 4 – 94 4 4 82 4 1

proved 0s to 1s 245 167 – 286 202 152 301 217 146
1s to 10s 11 2 – 18 2 32 18 2 13

10s to 100s 11 0 – 21 1 6 18 1 30
100s to 600s 7 0 – 13 0 7 15 0 8

S5 solved 447 223 – 479 276 – 479 276 –
proved 359 219 – 438 272 – 438 272 –
refuted 88 4 – 41 4 – 41 4 –

proved 0s to 1s 307 215 – 372 269 – 372 269 –
1s to 10s 23 4 – 24 3 – 24 3 –

10s to 100s 16 0 – 25 0 – 25 0 –
100s to 600s 33 0 – 17 0 – 17 0 –

6 Conclusion
An implementation of a modal connection calculus for various first-order modal logics was presented.
The modal connection calculus extends the classical calculus by prefixes and an additional prefix uni-
fication procedure. The specific modal logic and domain variant is selected through different prefix
unification algorithms and different domain conditions, respectively. The Skolemization technique is
extended to prefix variables. This makes an explicit reflexivity test of the reduction ordering redundant
and simplifies the implementation. The implementation itself is based on the classical leanCoP prover.
Optimization techniques used in leanCoP, such as regularity, lemmata, restricted backtracking and a
definitional clausal form translation, are adapted and integrated into the modal prover MleanCoP as well.

Experimental results on the QMLTP library indicate that the performance of MleanCoP is signif-
icantly higher than the performance of provers based on analytic sequent calculi or prefixed tableau
calculi. Hence, a connection-driven strategy seems to be essential for an efficient proof search based on

31

Implementing Connection Calculi for First-order Modal Logics J. Otten

approaches that use prefixes and a prefix unification procedure. A similar effect was already observed
for first-order intuitionistic logic [10].

The development of automated theorem proving systems for first-order modal logic is still in its early
stages. Only few other implementations exist so far. Another promising approach is the embedding
of first-order modal logic into simple type theory [2, 3]. Future work includes the comparison with
implementations of this and other approaches.

While a clausal form technically simplifies the proof search procedure, the translation into clausal
form has a negative effect on the number of (possible) connections and, thus, on the size of the resulting
search space. A non-clausal connection calculus [13] avoids any translation steps and preserves the
structure of the original formula. Future work also includes the improvement of the prefix unification
algorithm as this is the component that captures the main part of the additional search required for
(first-order) modal logics.

Acknowledgements. The author would like to thank Thomas Raths for testing all implementations on
the QMLTP library and providing the presented performance statistics.

References
[1] G. Beckert, R. Goré. Free Variable Tableaux for Propositional Modal Logics. In D. Galmiche, Ed.,

TABLEAUX 1997, LNAI 1227, pp. 91–106. Springer, Heidelberg, 1997.
[2] C. Benzmüller, L. Paulson. Quantified Multimodal Logics in Simple Type Theory. SEKI Report SR–2009–02

(ISSN 1437–4447), Saarland University, 2009.
[3] C. Benzmüller, L. Paulson. Multimodal and Intuitionistic Logics in Simple Type Theory. The Logic Journal

of the IGPL, 18(6):881–892, 2010.
[4] W. Bibel. Automated Theorem Proving. Vieweg, Wiesbaden, 1987.
[5] M. Fitting. Proof Methods for Modal and Intuitionistic Logic. D. Reidel, Dordrecht, 1983.
[6] M. Fitting, R. L. Mendelsohn. First-Order Modal Logic. Kluwer, Dordrecht, 1998.
[7] G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39:176–210, 405–431,

1935.
[8] R. Hähnle. Tableaux and Related Methods. In A. Robinson, A. Voronkov, Eds., Handbook of Automated

Reasoning, pp. 100–178. Elsevier, Amsterdam, 2001.
[9] U. Hustadt, R. A. Schmidt. MSPASS: Modal Reasoning by Translation and First-Order Resolution. R. Dyck-

hoff, Ed., TABLEAUX 2000, LNAI 1847, pp. 67–81. Springer, Heidelberg, 2000.
[10] J. Otten. Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic. In B. Beckert, Ed.,

TABLEAUX 2005, LNAI 3702, pp. 245–261. Springer, Heidelberg, 2005.
[11] J. Otten. leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionis-

tic Logic. In A. Armando, P. Baumgartner, G. Dowek, Eds., IJCAR 2008, LNCS 5195, pp. 283–291. Springer,
Heidelberg, 2008.

[12] J. Otten. Restricting Backtracking in Connection Calculi. AI Communications 23:159–182, 2010.
[13] J. Otten. A Non-clausal Connection Calculus. In K. Brünnler, G. Metcalfe, Eds., TABLEAUX 2011, LNAI

6793, pp. 226–241. Springer, Heidelberg, 2011.
[14] T. Raths, J. Otten. The QMLTP Problem Library for First-order Modal Logics. 2012. Submitted.
[15] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0.

Journal of Automated Reasoning, 43(4):337–362, 2009.
[16] A. Waaler. Connections in Nonclassical Logics. In A. Robinson, A. Voronkov, Eds., Handbook of Automated

Reasoning, pp. 1487–1578. Elsevier, Amsterdam, 2001.
[17] L. Wallen. Automated deduction in nonclassical logic. MIT Press, Cambridge, 1990.

32

	Introduction
	Preliminaries
	Using Prefixes
	Matrix Characterization

	Proof Search
	Prefix Unification
	The Connection Calculus

	An Implementation
	Prefix Unification
	The Connection Calculus

	Performance
	Conclusion

