EPiC Series in Computing EPiC ’
omputing

Volume 41, 2016, Pages 174-186
GCAI 2016. 2nd Global %
Conference on Artificial Intelligence (.\

When Should Learning Agents Switch to
Explicit Knowledge?

AS .
£ Chrq, 3

Daan Apeldoorn! and Gabriele Kern-Isberner?

! Technische Universitdt Dortmund, Dortmund, Germany
daan.apeldoorn@tu-dortmund.de

2 Technische Universitiat Dortmund, Dortmund, Germany
gabriele.kern-isberner@cs.tu-dortmund.de

Abstract

According to psychological models, learned knowledge can be distinguished into implicit and explicit
knowledge. The former can be exploited, but cannot be verbalized easily (e. g., to explain it to another
person). The latter is available in an explicit form, it often comprises generalized, rule-based knowledge
which can be verbalized and explained to others. During a learning process, the learned knowledge
starts in an implicit form and gets explicit as the learning process progresses, and humans benefit from
exploiting such generalized, rule-based knowledge when learning. This paper investigates how learning
agents can benefit from explicit knowledge which is extracted during a learning process from a learned
implicit representation. It is clearly shown that an agent can already benefit from explicit knowledge
in early phases of a learning process.

1 Introduction

When learning new tasks, a common and general approach for learning agents is to gain knowl-
edge by starting with random actions and by perceiving their consequences (e. g., the resulting
subsequent states and their rewards). This quickly leads to the idea of representing the gained
knowledge in an implicit, sub-symbolic way, e. g., as weighted pairs of states and actions. Re-
inforcement Learning (RL) [15, 11], as an instance of this general approach, is known to work
quite well for many applications (e. g., [12, 6]) and recent research also outlines its psychological
foundation [14]. However, it is also known from psychological experiments, that human rea-
soning incorporates the ability of generalization and distillation of (rule-based) knowledge [2]
(pp. 137-139). This kind of knowledge is explicit and can be verbalized and explained to others.
This paper investigates the incorporation of implicit and explicit knowledge, as it is known
from human learning processes, in the context of agents. For this purpose, symbolic rule-based
knowledge is created during the learning process of an agent using RL as learning paradigm.
The main contribution of the paper is the empirical evidence that learning agents can clearly
benefit from creating and exploiting explicit knowledge, similar to the way humans do when
learning complex tasks. It is shown that learning to solve a task can be significantly acceler-
ated by creating and exploiting explicit symbolic knowledge. As a side-contribution, a multi-

C.Benzmiiller, G.Sutcliffe and R.Rojas (eds.), GCAI 2016 (EPiC Series in Computing, vol. 41), pp. 174-186

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

abstraction-level knowledge base and its extraction from implicit sub-symbolic knowledge will be
outlined which offers an explanatory view on the structure of the learned task and its solution.

After discussing related work in Section 2, the creation of a multi-abstraction-level knowledge
base from implicit sub-symbolic knowledge is outlined in Section 3 as preliminary work to the
experimental set-up. Subsequently, the experimental set-up is presented in Section 4 and the
empirical evaluation is done in Section 5. Finally, a conclusion and remarks on future work are
provided in Section 6.

2 Related Work

Different attempts have already been made to incorporate symbolic knowledge (e. g., rule-based
knowledge) with sub-symbolic learning approaches.

In [1], an object-oriented representation of the environment is integrated with RL to link
environment states with symbols. Although this is an interesting approach, in our case, the
linkage between states and symbols follows a very simple and generic approach by simply
associating one symbolic variable with every dimension of the state space (see Section 3.1).

In [10], extraction approaches are proposed to gain both simple rules and plans from RL
and in [4] decision trees are created from learned weighted state-action representations with the
primary goal of supporting agent developers in the implementation of adequate agent behavior.
These works focus on the extraction of knowledge in different forms but no attempts were made
to evaluate whether agents themselves can benefit from the extracted explicit knowledge.

In [5] sub-symbolic learning was successfully combined with belief revision to support the
learning process and it was shown on a object recognition task that the considered learning
agent can benefit from the belief revision mechanism (with and without additional background
knowledge). The focus of [5] lies on the incorporation of the two paradigms rather than on
making learned knowledge explicit. However, it was not systematically investigated, in which
phase during the learning process the agent should rely its behavior more on the explicit,
symbolic part of the approach rather than on the implicit representation of the weights learned
through RL.

In general, there seems to be no attempt to investigate the point during a learning process,
when agents benefit most from creating generalized rule-based knowledge as a model of their
environment and relying their behavior on it, although this is an interesting question since
humans are doing this intuitively.

Nowadays, different sub-symbolic learning approaches exist, and especially in the context of
agents, RL is a widely used paradigm. RL approaches differ in the way how weights are updated
when perceiving subsequent states and rewards (e. g., @-Learning [15], SARSA [8]), how many
previous states are considered by the update, how the action selection is realized to balance
exploration and exploitation (e.g., VDBE [13]) and how the problem of high dimensional state-
action spaces in larger problems can be tackled (e.g., [3]). Also in recent works, RL has been
combined with other modern learning approaches like Deep Neural Networks [6] to increase the
learning performance.

The knowledge extraction approach which is introduced in this paper to be used for the
experiments, can be combined with both the classical and the newer learning approaches men-
tioned here, given that the underlying learning approach provides a weighted mapping of inputs
(e.g., percepts) to corresponding outputs (e.g., actions). The performance of our approach
should actually increase with the performance of the underlying learning approach.

Unlike Inductive Logic Programming (ILP) [7], no background knowledge is involved here
and the presented approach focuses on the weights of the state-action pairs.

175

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

The focus of this paper lies on the investigation how learning agents can benefit from sym-
bolic knowledge representation—not in the sense of a priori knowledge that is provided to an
agent to support the learning process (as has been done e. g. in [9, 5])—but in the sense of gen-
eralizing, explicit rule-based knowledge that will be created by the learning agent itself during
the learning process, similar to the way humans do when learning (cf. [2], pp. 137-139).

3 Preliminaries

This section presents the preliminaries needed for the experiments done in Section 5. It starts
with a short introduction to the multi-abstraction-level knowledge base (representing the ex-
plicit knowledge) and how it is extracted from the implicit representation of weighted state-
action pairs (Sections 3.1). After that, the reasoning algorithm will be outlined, which is used
by the agent to exploit the explicit knowledge created during the learning process (Section 3.2).

3.1 Knowledge Extraction

As basic preliminary, the previously learned knowledge is assumed to be available in an implicit
form, i.e., as weighted state-action-pairs which are stored in an extended weight matrix Q: The
matrix comprises n + 1 dimensions, where the first n dimensions represent states in the state
space S = S X ... X S,, of the task to be learned and the last dimension represents actions in
the action space A which comprises the agent’s possible actions.! In principle, it is not relevant
how the weights were learned and any learning paradigm can be used to fill the weight matrix:
The more efficient the learning approach (i.e., the faster the weights represent the adequate
behavior of the agent), the better the knowledge extraction should perform.

To represent the knowledge contained in the learned weights of the extended Q-matrix
adequately in a rule-based way, some representation criteria have to be determined first. As
a model, we consider a human explaining a previously learned task to another person, since
such explainable knowledge can be considered explicit. The explicit, explanatory knowledge is
expected to be

e Criterion 1: adequately relevant
(the knowledge should be restricted to the relevant parts only), and

e Criterion 2: adequately generic
(equivalent, more general knowledge should be preferred over more specific knowledge).

To be able to fulfill these criteria, the following definitions are helpful which will be used later
to outline the knowledge extraction approach:

Complete states and elementary rules. A complete state s can be constructed from the
conjunction of all partial states s1 A ... A s, (with s; € S;) and an elementary rule has the form
$1 A ... Asp = a [w] (where a is an action and w = ¢, is the weight determining the quality
of the action given that state s is perceived).

Elementary and generalized rules. Elementary rules are the most specific rules possible,
but to get compact knowledge bases, generalized rules have to be found (where possible) which
do not contain all of the s; in the premises. These more general rules can be considered aggre-
gations of the more specific rules (i. e., the weights are aggregated over all values of the missing

INote, that the matrix will be implemented in a sparse form, since usually only a few state-action-pairs are
relevant for performing the knowledge extraction.

176

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

s; to create a weight for the disjunction of these values?). An example on how elementary rules
will be aggregated to generalized rules will be provided by Example 1.

The knowledge extraction algorithm takes an extended weight matrix Q as input (which con-

tains the implicit knowledge in form of the learned weights) and returns a knowledge base KBe

which reflects Q according to the preliminaries introduced in the beginning of this section.

Since we want to create the explicit knowledge as a compact representation of the knowledge

implicitly contained in @, and due to reasons of computational complexity, only the weights of

the best state-action sequence found until the learning process was stopped will be considered.?
The knowledge extraction algorithm performs the following steps:

1. Normalization of weights:
Every weight wyaw € Q = (§sy,....s,,a) is normalized over the action dimension to

wraw

w = N
maXa’EA(QS17---,sn,a')

2. Creation of rule sets:
All generalized rules (i.e., all rules A,_; s; = a [w] with s; € S; and with I C {1,...,n}
where n is the number of state space dimensions) are created by aggregating the average
weight w over all missing state space dimensions (i.e., over those state space dimensions
S; of which no value is contained in the premise of the respective rule). Note, that (as
already mentioned) only the state-action pairs contained in the best found state-action
sequence will be considered in this step.

Example 1. Consider a 2-dimensional state space S=T x U with T = {¢1,t2} and
U = {u1,us}, an action space A = {ay1,a2} and an extended weight matric Q= (Gtu,a)-
Then the following 10 generalized rules are potentially created (depending on what states
are actually contained in the sparse matrix Q)

<

_ . _ 1 .
T = a1 [w1] with @, = 1 Z Qt,u,a;
teT,uelU

_) _ 1 .
T = ag [w2] with wy; = 1 § 4t,u,az
teT,uelU

- most general rules

[ws] with w3 = %ZuEU Gty 0y
[Wy] with wy = %Zuelu Gty u,as
[Ws] with ws = %ZUGU Gta,u,a1

ty = as [we] with W =53,y Graue L more specific rules
[] with wy; = %Zte’]}‘ Gt ur a1
[ws] with ws = %ZteT Qt,uy,a0
[Wg] with Wy = %Zteﬂ' Gt ,us,a1
[

_ . _ 1 x
U2 = a2 ’wlo] with wig = 5 Zte'ﬂ‘ Qt,us,as

20nly the relevant states contained in the sparse matrix are considered here.
3Combined with the implementation of @ in sparse form, this significantly reduces the state-action pairs
that have to be considered by the knowledge extraction algorithm.

177

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

The resulting rules will be grouped according to their generality into different sets
Ry, ..., Ryy1 where Ry contains the most general rules and R,, 1 contains the most specific,
the elementary rules. The elementary rules are derived directly from the Q-matrix.

3. Remowal of worse rules:
Intuition: “Restrict to relevant knowledge” (corresponds to Criterion 1, Section 3.1).
In all sets R;, a rule p € R; is removed, if there exists another rule ¢ € R; with the same
partial state as premise having a higher weight (i.e., in every set R; only the best rules
for a given partial state are kept).

4. Remowal of worse more specific rules:
Intuition: “Prefer general over specific knowledge” (corresponds to Criterion 2, Sec. 3.1).
In all sets R;, a rule p € R; with premise p, = s; A... A sy, conclusion a, and weight w,, is
removed, if there exists a more general rule o € Rj ; with premise p, = A\ . s, s where
Sy C 8, ={51,..., 5} and with weight w, > w,,.

5. Remowal of too specific rules:
Intuition: “Prefer general over specific knowledge, if the more specific knowledge is not
necessarily needed/relevant” (corresponds to Criteria 1 and 2, Section 3.1).
In all sets R;, a rule p € R; with premise p, = s1 A...A's,, and conclusion a, is removed, if
there exists a more general rule o € R/ .; with the same action a, = a, as conclusion and
with premise p, = A\, cg s where S, C S, = {s1,...,5,} and if p is not a needed exception
toarule T € Rj_q.
A rule o is an exception, to a rule 7 € R;_; with premise p, = /\seS, s, action a, as
conclusion and weight w, if S; C S, and a, # a,. The exception is needed, if there exists
no other rule v € R;_; with premise p, = /\se s, S and action a, as conclusion where
Sy C 8, ay = a, and wy, > wr.

6. Optional filter step:
Optionally, filters may be applied to filter out further rules which are helpful to explain
the knowledge contained in Q, but which are not needed for reasoning later (e.g., since
they will never fire given all states contained in Q, or since other rules exist on the same
level of abstraction which would lead to the same result when reasoning is performed on
the extracted knowledge base, see Section 3.2). Since the optional filter step only serves

to simplify the resulting knowledge base KB? without having any effect on the reasoning
behavior, no further details on this step will be provided here.

After performing these steps on Q, the knowledge base KB® comprises all sets R; # 0 with
the extracted rules representing the implicit knowledge contained in the learned weights of Q
in a compact way. Algorithm 1 summarizes the knowledge extraction algorithm.

The algorithm presented here creates nice and compact knowledge bases with multiple
abstraction levels, which explain the structure of the underlying problem and its solution in an
easy and comprehensible way (examples will be shown in Section 5.3).

3.2 Reasoning

The reasoning algorithm takes the knowledge base KB (created by Algorithm 1) and the
current perceived state of the agent as input and it outputs a set A C A of inferred actions.* The

4Usually the set A contains only one single action. Only in case of multiple equivalent rules with the same
maximum weight and different conclusions exist on a level R;, more than one action could be contained in A.

178

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

01 % Normalization

02 % (according to Section 3.1, Step 1)

03 normalize(Q)

04

05 % Initial creation of the rule sets

06 % (according to Section 3.1, Step 2)

07 RY:={Ry,...,R,y1} % Ordered set of rule sets
08

09 % Removal of worse rules

10 % (according to Section 3.1, Step 3)

11 for each R € RQ do

12 for each p€ R do

13 if J0 € R: p; = p,p, We > w, then
14 R:= R\ {p}

15 end if

16 end for

17 end for

18

19 % Removal of worse more specific rules
20 % (according to Section 3.1, Step 4)
21 for j:=2 ton+1 do

22 R:=R; e R

23 for each p€ R do

24 if Jo € Rjij: So C Sp, wo > w, then
25 R:= R\ {p}

26 end if

27 end for

28 end for

29

30 % Removal of too specific rules
31 % (according to Section 3.1, Step 5)
32 for j:=2 ton+1 do

33 R:=R; € RV

34 for each p&€ R do

35 if do0 € Rjij: ag = a,, S C S, and

36 (Fr € Ri_1:a,#ar,S; CS, or

37 Jv e Rj_1:ay, =a,, S C Sy, wy >w;) then
38 R:= R\ {p}

39 end if

40 end for

41 end for

42

43 7 Perform optional filter steps

44 % (according to Section 3.1, Step 6)
45 filter(RY)

46

47 KB? :={ReROR # 0}

Algorithm 1: Knowledge extraction
179

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

01 % Initialize the set of all partial states of
02 % the current perceived state s, the inferred

03 % actions A and index j
04 S:={s1,....8n}

05 A=0
06 j:=|KB?
07

08 % Search for most specific rules whose premise
09 % is satisfied by the current perceived state s
10 % with maximum weight among all satisfied rules
11 while A=) and j>1 do

12 R:=R; € KB¥

13 for each p€ R do

14 if §,C S and fo € R: Se € S,ws > w, then
15 A:=AU{a,}

16 end if

17 end for

18 ji=7-1

19 end while

Algorithm 2: Reasoning

knowledge base KBC = {R1,..., Rnt1} consists of an ordered set of rule sets, where R; contains
the most general and R, contains the most specific, the elementary rules (see Section 3.1).

When a state s = s1 A ... A s, is perceived, the reasoning algorithm searches for the most
specific rules p whose premises are satisfied by s and which have the highest weight among all
satisfied rules on the same level of specificity (i.e., rules p with premise p, = A, s, s’ where
S, is a subset of the set S = {s1,...s,} and no other rule ¢ exists with premise p, = A, cg s’
where S, C S and w, < s,). The actions A will then be returned (in case |A| > 1 the returned
actions are equivalent and the agent may select randomly among them). Algorithm 2 shows
the reasoning algorithm.

Example 2. Consider again the 2-dimensional state space S =T x U and the action space A
fmm Example 1. Furthermore, assume that Algorithm 1 resulted in the extracted knowledge base
KBC = {R1, R2} with Ry = {T = a1 [w1]} and Rz = {t1 = a2 [w3]} and that state s =t Auy
is percewed. Then, the reasoning algorithm will return A = {a1}, since {t1} € {t2,u1}.

4 From Implicit to Explicit Knowledge

After having provided the basic algorithms for knowledge extraction and reasoning in the pre-
vious section, we will now explain the main idea of our approach to connect learning and
rule-based reasoning, and describe the test scenarios for the experimental set-up. As learning
approach, an instance of RL (classical Q-Learning [15]), will be used to fill the extended weight
matrix Q. The approach is slightly modified to be able to handle the multi-dimensional state-
spaces where every dimension represents the values of one kind of percepts (i. e., the values of
one of the agent’s sensors).

180

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

4.1 Basic Idea

Humans seem to incorporate both sub-symbolic learning with symbolic (rule-based) knowledge
representation and reasoning capabilities: When being confronted with a new, previously un-
known environment (e. g., a new task to be solved), there seems to be a learning process until
we are able to create a (simplified) model of the new environment which can be represented
explicitly by symbolic knowledge (e. g., by simple but generalizing rules describing how to solve
the task). At this point in the learning process, we can make the learned knowledge explicit
and we are able to explain the learned task to someone else based on the explicit model. In
addition, we are also able to exploit the model and to benefit from its simplified representation.
This can also be observed in psychological experiments (as has been done e. g. in [2]).
From this observation, two central questions arise:

e Is a learning agent also able to benefit from extracted rule-based knowledge?

e If so, in which phase of the learning process the agent benefits most from relying its
behavior on the explicit knowledge?

If the model is created too early during the learning process, the extracted knowledge will
be of low quality (and even comprise wrong rules); if the model is created too late during
the learning process, the benefit from exploiting the simplified model will be relatively low.

In the following, we make a first attempt to answer these questions by investigating them in
the context of two typical RL test scenarios. This will be done by letting an agent interact with
an environment, until the learned optimal policy can be considered stable (see Section 5.2).
This whole learning process will be repeated multiple times and the point when the knowledge
is extracted though Algorithm 1 and the agent relies its action selection on Algorithm 2 will be
varied. The details of these experiments and the results are provided in the following sections.

4.2 Test Scenarios

We consider two simple and typical RL test scenarios which will be used for the experiments
to investigate at which point during a learning process learning agents can benefit most from
relying their behavior on extracted symbolic knowledge rather than on the knowledge implicitly
contained in the learned extended weight matrix Q

Scenario 1. In this scenario an agent (e.g., a robot) has to learn to get from a starting point
A to a target point B in an unknown environment represented by a 2-dimensional grid world
of size 8 x 6. The agent is able to perceive its current - and y-position. Thus, its state space is
given by S =S, x S, with S; = {xo, ..., z7} and Sy = {yo, ..., ys}. The agent is able to perform
four different actions corresponding to the four cardinal directions. Thus, the action space is
given by A = {North, South, East, West}. The agent should reach the target point B efficiently
in as few as possible steps (i.e., all states except the target point B are rewarded negatively).
The target point represents a terminal state, thus reaching this state determines the end of a
learning episode. The left part of Figure 1 shows the Scenario.

Obviously, in this scenario, the optimal policy is easy to explain: The agent simply has to go
to east to reach the point B. Nevertheless, the optimal policy is not that easy to find, since the
agent does not know anything in advance about the environment and therefore has to explore
the environment (which is much larger than the optimal policy). As a consequence, storing
the knowledge about the way from A to B would comprise 8 - 6 - 4 = 192 weights, instead of a
knowledge base with a single symbolic rule which would be sufficient here.

181

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

Ys Ys Rewards:

Ya Ya

Ys Ys D -1

(2 W 1 -100

% h

Y A Bl w4 B 0 (terminal state)
Ty Ty Ty XT3 Ty Ts Tg Ty Ty Ty Ty T3 Ty Ts T Ty

Figure 1: Test scenarios 1 (left) and 2 (right) with corresponding rewards

Scenario 2. The second scenario is quite similar to Scenario 1. In addition, in this scenario,
there is a large area of negative reward (e. g., water or swamp) which must be taken into account
by the agent when getting from A to B. The right part of Figure 1 shows the scenario.’

Compared to Scenario 1, in this scenario, the optimal policy is more complex, since the agent
must not only learn to reach the target point B, but also to avoid the highly negative rewarded
area. Nevertheless, both scenarios have in common that a larger area has to be explored, even
though the tasks themselves are easy to describe.

5 Experiments

At the beginning of this section, the learning approach used in the experiments to learn the im-
plicit knowledge will be described (Section 5.1). Subsequently, stable policies will be defined for
the test scenarios to determine (approximately) when the agent completed the learning process
in the corresponding scenario (Section 5.2). After that, the knowledge extraction approach will
be illustrated, by showing to which knowledge bases the approach converges in case of the two
test scenarios (Section 5.3). Finally, it will be investigated at which point during the learning
process the agent can benefit most from relying its behavior on the extracted explicit knowledge
rather than on the learned weights of the extended Q-matrix (Section 5.4).

5.1 Learning Approach

As sub-symbolic learning approach for the implicit knowledge, a classical RL algorithm
(Q-Learning [15]) will be used. During the learning process, the weights are updated according
to the following formula [15]:

Goo=1—0a) qsata-(re+v- MAx G,/ (1)

where ¢, q is the old weight and q;’a is the new weight determining the quality of performing
action a in state s and s is the subsequent state. a € [0, 1] is the learning rate which determines
how much of a currently perceived reward is used for learning and v € [0,1] is the discount
factor which determines to which degree future states are taken into account.

Furthermore, to explore the environment, an exploration rate ¢ € [0,1] determines the
probability that a random action is chosen, instead of the best action already learned according
to the current weights.

The approach is only slightly modified to be able to handle the multi-dimensional state-
spaces of the extended Q—matrix. In addition, the current best state-action sequence is kept

5This scenario is taken from a Soft-Computing tutorial at University of Mainz in 2006 by Peter Dauscher
and Tobias Jung.

182

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

optimal policy mno. of subsequent average no.

length [opt. policy runs k of runs 7
Scenario 1 7 6 ~196
Scenario 2 9 7 ~219

Table 1: Parameters of the test scenarios

after every learning episode (i. e., after every run during the learning process), to be able to apply
the knowledge extraction algorithm to the relevant state-action pairs only (see Section 3.1).

In the following experiments, a learning rate of a = 0.1, a discount factor of v = 0.9 and an
exploration rate of € = 0.1 will be used.

5.2 Stable Policies

The agent learns a policy 7 while interacting with the environment through multiple iterations
of the learning approach described in Section 5.1. Whenever the agent reaches the terminal
state (point B of the test scenarios) the current run ends and the agent’s position is reset to
the starting point (point A). After a certain number of runs, the optimal policy 7* is learned.

An important question is now, at which point during the learning process (i.e., after how
many runs) the learned optimal policy 7* can be considered to be stable. Since the agent
explores its environment randomly (see Section 5.1), we cannot consider 7* to be stable, when
the agent found it for the first time. Instead, 7* should be considered to be stable, if the
probability, that the found optimal policy n* will be changed again, is smaller than a certain
threshold. Since an important preliminary for changing an already found policy is exploration
(i. e., performing actions which are suboptimal according to the current weights of the extended

N

Q-matrix), 7* is considered to be stable if the following inequation holds for a minimal k:
(1-(1-ep))* <p (2)

where € is the random action probability used in Algorithm 1, ¢ = 1 — ﬁ = 0.75 is the
conditional probability that a suboptimal action is performed given that a random action is
performed, [is the number of steps of the optimal policy 7*, k is the number of (subsequent)
runs and [is the threshold for the probability that exploration is involved in performing 7* in
k subsequent runs.

For the following experiments, we choose € = 0.1, 3 = 0.01 and by solving (2), we get the
respective values of a minimal k for the test scenarios. Having these parameters, the average
number 7 of runs that are needed to learn the optimal policy 7* stably, can be determined for
every test scenario. The learned optimal policy is then considered to be stable after 7 runs
(averaged over 200 repetitions). Table 1 summarizes the parameters of the test scenarios for
the following experiments.

5.3 Illustrating the Knowledge Extraction Algorithm

In this section, the knowledge extraction algorithm (Algorithm 1) will be demonstrated in
the context of the two test scenarios: This will be done by running the learning approach
from Section 5.1 in every scenario for 7 runs (according to Table 1). After that, Algorithm 2

183

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

KBS: KBS:

T = East [1.00] Ry T = East [0.78] Ry

x7 = South [1.00]

R
yo = North [1.00] ?

Figure 2: Extracted knowledge bases for the test scenarios normally obtained after 7 runs,
according to Table 1 (weights are rounded to two decimals)

LEARNING PROGRESS: LEARNING PROGRESS:
Runs before action selection relies on the extracted knowledge [i] Runs before action selection relies on the extracted knowledge [i]
(196 runs £100% learning stability of optimal policy; see Table 1) (219 runs £100% learning stability of optimal policy; see Table 1)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
20 39 59 78 98 118 137 157 176 196 0 1 22 44 66 88 110 131 153 175 197 219
T T T T T T T T T T T T T T T T

(=]

o
—
S

20 W\w‘v‘ 40 M
25 / W 50 Y o
30 , \ 60 4 I

AVERAGE REWARD:

Avg. reward per run after 7 runs [avgrew(i)]

Figure 3: Results for Scenarios 1 (left) and Scenario 2 (right)

is performed to extract the knowledge from the learned weights of the extended Q—matrix.
Figure 2 shows the resulting knowledge bases for Scenario 1 and Scenario 2.

5.4 Results

This section presents the results of the experiments, which are shown in Figure 3.

The results show clearly that the agent benefits from relying its behavior on the extracted
explicit knowledge even in early stages of the learning process. This is due to the fact, that
the agent has to explore the whole state-action space, but the environment of the scenario is
structured according to rather simple rules (e. g., in case of Scenario 1, the goal can be reached
by simply going to the east). This generalization is found quickly by already exploiting the
explicit knowledge in early stages of the learning process.

At the beginning of the learning process, the explicit knowledge represented by the extracted
knowledge bases is of rather low quality, since the agent did not yet collect enough experience
for these kinds of generalization. This can lead to knowledge bases comprising over-generalized
and wrong rules. This effect is reflected in the early phase of the learning process (up to
approximately 15% learning stability of the optimal policy 7*) by the fluctuations of the curve.
This seems to be related to psychological findings, which show that the human ability of learning
and generalizing from few examples can also lead to over-generalization [2]. The optimal amount

184

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

of learning stability found here for relying the action selection on the extracted knowledge is
around 15%.

In case of Scenario 2 (right part of Figure 3), the effect that the extracted explicit knowl-
edge is of low quality in early phases of the learning process is even more visible (which is
reflected by the stronger fluctuations of the curve), since the environment of the scenario is
structured according to more complex rules and thus early generalizations are more probable
to be misleading.

6 Conclusion and Future Work

In this paper, the benefit of exploiting explicit symbolic knowledge in the context of learning
agents was investigated. The explicit knowledge was created by the introduced knowledge
extraction algorithm from a sub-symbolic implicit representation of learned state-action pairs
and the explicit knowledge was represented using a multi-abstraction-level knowledge base. The
algorithm was implemented and tested in a learning cycle of a RL agent using Q-Learning to
learn the weights of the implicit representation and the benefit has been empirically studied in
the context of two typical RL test scenarios. It was shown that an agent can clearly benefit
from explicit symbolic knowledge even in early stages of the learning process.

In addition, by making use of the presented approach, the learned knowledge implicitly
contained in the weights of the extended Q—matrix can be represented in a very compact way
focusing on the relevant parts of the learned knowledge. Besides the compression aspect (once
the knowledge base is extracted, it can replace the extended Q—matrix which can comprise
thousands of weights in real world scenarios), the extracted knowledge is easy to comprehend
which can serve to explain the behavior learned by an autonomous agent.

Humans are able to learn from few examples by generalizing their experiences adequately.
Thereby, on the one hand, humans can cope with large state-action spaces. On the other hand,
it is also known from psychological experiments, that humans tend to over-generalization which
can result in bad decisions [2]. The experimental results shown in Figure 3 seem to reflect
these effects adequately: Creating explicit generalizing knowledge at the right time during a
learning process increases the learning performance significantly. Done too early, this can even
decrease the performance (which is reflected by the larger fluctuations in the early phases of
the leaning process in Figure 3). However, overall, there is a clear benefit from exploiting the
explicit generalized knowledge.

Furthermore, humans are able to explain complex learned tasks in an easy way on an
adequate level of abstraction. This is well reflected by the multi-abstraction-level knowledge
base which was proposed here to model the explicit knowledge.

For future work, it would be interesting to also investigate the reverse direction: When
learning agents should give up such created explicit knowledge in case of new percepts (e. g., from
a new environment) which do not seem to fit to the previously created explicit representation.
Furthermore, it would be interesting to apply the results to transfer learning, e.g., how the
multi-abstraction-level knowledge bases can be adapted to new tasks (e.g., to avoid complete
relearning) and to incorporate the approach to a sound cognitive architecture. Future work
could also comprise applications to real world scenarios, e. g., to make knowledge about learned
tasks and their solutions explicit and comprehensible for humans.

Acknowledgements. Thanks to Viola GauBl for helpful discussions and to Jan Eric Lenssen
and Henrik Heimbiirger for providing computational resources for some experiments.

185

When Should Learning Agents Switch to Explicit Knowledge? Apeldoorn and Kern-Isberner

References

(1]

2l
3]
(4]

[5]

[10]
[11]
12
13
[14]

[15]

186

C. Diuk, A. Cohen, and M. L. Littman. An Object-Oriented Representation for Efficient Rein-
forcement Learning, pages 240-247. Proceedings of the 25th International Conference on Machine
Learning. Omnipress, Madison, Wisconsin, 2008.

D. Dorner. Die Logik des Mifllingens — Strategisches Denken in komplezen Situationen. Rowohlt
Taschenbuch Verlag, Reinbek bei Hamburg, 1992.

T. Jung. Reinforcement Lernen mit Regularisierungsnetzwerken. Johannes Gutenberg-Universitét
Mainz, Mainz, 2007.

R. Junges and F. Kliigl. Learning tools for agent-based modeling and simulation. KI — Kiinstliche
Intelligenz, 27(3):273-280, 2013.

T. Leopold, G. Kern-Isberner, and G. Peters. Belief Revision with Reinforcement Learning for
Interactive Object Recognition, pages 65—69. ECAI 2008 — 18th European Conference on Artificial
Intelligence Proceedings. I0S Press, Amsterdam, 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. The Journal
of Logic Programming, 19-20(1):629-679, 1994.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. CUED/F-
INFENG/TR 166, Cambridge University Engineering Department, England, 1994.

D. Shapiro, P. Langley, and R. Shachter. Using Background Knowledge to Speed Reinforcement
Learning in Physical Agents, pages 254-261. AGENTS ’01 Proceedings of the fifth international
conference on Autonomous agents. ACM, New York, 2001.

R. Sun. Knowledge Extraction from Reinforcement Learning, pages 170-180. New Learning
Paradigms in Soft Computing. Springer, Berlin Heidelberg, 2002.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Came-
bridge, Massachusetts; London, England, 1998.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural
Computation, 6(2):215-219, 1994.

M. Tokic. Adaptive e-Greedy Exploration in Reinforcement Learning Based on Value Differences,
pages 203-210. KI 2010: Advances in Artificial Intelligence. Springer, Berlin Heidelberg, 2010.
M. Tokic. Reinforcement Learning: Psychologische und neurobiologische Aspekte. KI — Kiinstliche
Intelligenz, 27(3):213-219, 2013.

C.J.C.H. Watkins. Learning from Delayed Rewards. University of Cambridge, England, 1989.

	Introduction
	Related Work
	Preliminaries
	Knowledge Extraction
	Reasoning

	From Implicit to Explicit Knowledge
	Basic Idea
	Test Scenarios

	Experiments
	Learning Approach
	Stable Policies
	Illustrating the Knowledge Extraction Algorithm
	Results

	Conclusion and Future Work

