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A stra t. rtfical e eral tell e ce ( GI should be fou ded o a
su table frame ork, e. . arule-based des  or Deep Lear (DL . Here

e choose the DL to be the bas s for GI. appropr ate GI s defi ed,
follo ed b tsappropr ate DL mpleme tat o . We troducea  GI,
the form of co  t ve arch tecture, hch s based o Global Workspace
Theor (GWT . It co ssts of a supervsor, a ork  memor , spec al-
zed memor u ts, a d process u ts. ddto al dscusso about
the u ue ess of the vsual a d the aud tor se sor cha els sco -
ducted. Next, e troduce our DL module, hch sd amc, flex ble,
a d evolv or ro . It ca be also co s dered as a Net ork rch -
tecture Search (N S method. It s a spat al-temporal model, th a
h erarch of both features a d tasks, tasks such as objects or eve ts.

Keywor s: Deep lear - Ge eral tell e ce- wvolv - Gro

1 Introduction

DL, as one of the Artificial intelli ence (AI) approaches, is not as fully exploited
as it could be. First, deep neural networks (DNNs) are passi e models, since they
ha e a fixed structure, while in reality there are dynamic processes, such as the
neurons’ construction/destruction in the brain. Second, Learnin in DL is simply
a cate ori ation process without in ol in any thinkin or ima ination. Next, a
successful DL model (DLM) re uires its desi ners to know the system, i.e., apply
implicit or explicit prior knowled e in the DLM. Moreo er, a carefully desi ned
rule-based system may outperform a DLM, due to its dataset limitation, while
a rule-based system is desi ned for much broader and more di erse scenarios.
Finally, DL is hi hly task-specific. E en multi-taskin in DL re uires all tasks
to be pre-defined. owe er,real A Ican enerali e not only to unseen data but
also to unseen tasks (as in transfer/continual/meta learnin ). Ne ertheless, we
propose a dynamic and flexible DLM that can be extended to A 1.

Next, we present an A I architecture and a DLM, which can function as a
module in this A T architecture, e. . in the perception/actuation module.

Please n te that this pape p esents a sh t e st n. The DLM and espe-
cially the A I a e p elimina y ideas, and desc ibed u hly and ene ally, ith-

ut mathematical details  implementati n/ esults.
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2 roposed AGI model

A eneral A I model sketch is shown in Fi . [l This A I is based on T
, describin a multi-a ent system, where the a ents are local controllers
beha in reacti ely, and competin with each other o er access to the workin
memory.

Our A I, howe er, has no competition
amon its different and independent modules,
i.e. processors and memories. Instead, it has ®)
centrali ed control with different elements, '
where each element has a specific function. i

Examples of similar co niti e architec- e
tures are in Appendix [

1D input Multi-D input

Working memory

Processor

1 GI function 1D output actuators  Multi-D output

Fig. . GI proposed arch tecture
ere the function of the proposed A I in

Fi .[1]is described.

Asin humans, our A Tuses 1D (audio) input and 3D ( isual) input, howe er,
it also uses them as outputs. Moreo er, the isual channel can be extended to 1
or more dimensions, dependin on the en ironment our a ent is deployed in.

There is separate se uential processin of 1D and multi-D data, for feature
extraction and cate ori ation of objects (static entities) or e ents (dynamic en-
tities). Next, these objects/e ents propa ate into the M. Finally, an output
is produced either throu h the 1D or the multi-D channel. If the output is an
emer in idea/thou ht, it can be expressed ia a 1D channel, similarly to hu-
mans describin  erbally their inner thou hts to the outer world. Alternati ely,
it can be expressed ia the multi-D channel, thus can be re arded as sc eenin
ima inati n, which is like projectin the current thou ht into a screen.

Additionally, 1D information (such as lan ua e) has a shared memory for in-
put, output, and M, denoted as 1D memory. This is also true for the multi-D
information. The bidirectional arrows in Fi . represent the ac uisition (read-
in ) and the update (writin ) operations with the stora e module.

The output communication of 1D and multi-D information can ha e arious
modes, such as continuously monitorin thou hts or waitin for a meanin ful
output. In addition, the A T may ha e a de ree of independent choice of when
to interact and throu h which of the two channels.

This particular A Tis based upon Stimulus-Response beha ioral theory ,
which states that the mind can be communicated with, althou h unobser able.
This assumption is similar to the Chinese Room Ar ument, since there is only
direct access to the output of the a ent and not to the operations within. In
other words, there is no explainability o er the A I’s inner operations (it is a
black-box), and so only the output can be analy ed. It is referred to as intelli ent
beha i , which is also expressed by human producti ity o er time, in fields such
as science, psycholo y, and technolo y.
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This A I does more than static/dynamic object identification or scene un-
derstandin [39], as in DL. It extends to the temporal dimension, by includin
e ents, objects’ beha ior and function, associations from past experiences, etc.
It is illustrated by comparin the current AT and the proposed A I, in Fi .[2}

Just like Einstein’s relati ity theory, space and time are not separated, but
treated as one whole concept. Similarly, our DLM is based on this hypothesis.

GI characteristics

Firstly, we consider A I’s main purpose to be or ani in information to be
utili ed optimally in a ariety of tasks. ence, the self-super ision approach is a
suitable tool to estimate this main oal. Additionally, DNN is an efficient model
and memory structure, which can achie e this oal, in the sense that it or ani es
the data with the intention of reco erin it later, see more in Appendix[]

Secondly, we ad ocate that efficiency is more important than effecti eness, in
A 1, since it is about the exploitation of a ailable resources, while effecti eness
is about how well a oal is achie ed , e. . the common attitude in DL to
compare performances.

Finally, other characteristics an A I should ha e are those imitatin humans,
such as ha in human uidance and support as in infant-parent and student-
teacher interactions, ha in a correct teachin order (simple to complex), and
the ability to row/e ol e in compulsory sta es.

.3 Two information types in GI

ere we discuss and propose a rationale behind the uni ue functionin of the
isual and auditory channels.

Firstly, we examine why humans do not possess an ima ery output tool like
the multi-D output we permit in our A I. One can ar ue it would hurt our
basic desire for pri acy, but then just as we choose whether to talk or not, we
can similarly choose when to turn this tool on. Another ar ument could be due
to e olutionary sur i al reasons. Our current opinion is that the world we see
with our eyes is what we all a ree upon. Other than that, our inner models of
the world are totally different.
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Secondly, we reflect upon the reasons for humans not ha in a symbolic or lin-
uistic channel to be objecti e as ision, i.e. why we end up with inner and uni ue
symbolic representation. e think it is because lan ua e is hi hly context-
dependent, and since each person has different contexts alon his life, or different
experiences, then he de elops a different meanin /feelin /understandin of the
objecti e concepts we all a ree upon. ence, the concepts we use in external
communication are objecti e and common to all people, but their interpretation
is different for each one. Therefore, the isual perception purpose is nothin but
the objecti e a reement for effecti e communication between humans, reali ed
ia lan ua e. In other words, ision is not the main communicati e channel for
us, thou h, deaf people can bypass it by usin si nlan ua e and textual format.
Conse uently, the purpose of ha in two channel types is to distin uish the
outer and inner world that the a ent interacts with. Furthermore, humans (as
should be followed by A I) base their inner representation on spatio-temporal
e ents, or operational lan ua e. A lan ua e comprised of objects, actions, and
attributes, and expressed by words/symbols. Therefore spatio-temporal infor-
mation can be transferred to humans not only by the static/objecti e world, but
e en more broadly by lan ua e. A ents denoted as reen circles, communicatin
ia 1D and indi idually percei in multi-D input are illustrated in Fi .[3

objective
world

multiD

Fig. 3. Object ve (r ht verse Subject ve  er represe tat o (left .

3 roposed DLM

Until now we presented a eneral A I model. Now we turn to discuss which DLM
can implement such A I, or implement each or some of its different modules.

Any DLM re uires some prior knowled e, also known as inducti e bias. Then
due to difficulties with matchin the most proper prior knowled e to each specific
problem we encounter - many studies try different hyper-parameters or archi-
tectures, to et better performance, e. . they use Network Architecture Search.
See more about it in Appendix [f]

Therefore, the DLM we propose is adapti e for continuous learnin and can
ser e also as a NAS method.

3.1 Proposed DLM function

Our proposed DLM is based on the inducti e bias principle. It states that small
data re uires simpler model while bi er datare uires a more complex one. Com-
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plexity in DLMs is expressed in the NN si e. ence, assumin radual learnin
like in infants, we propose e ol in DLM, startin from small NN, extendin
successi ely to a bi er one, followin abstraction, while encounterin new data.

In the followin , we describe our DLM e olution with comparison to an
infant, while percei in a spatial-temporal type of data.

e presume, that an infant does not ha e any super ised learnin at the
be innin of his life, but rather an unsuper ised one. Only later that he fuses
multi-modal information about objects and their meanin .

The first thin he does is se ment the time period into simple e ents. But he
starts with a sin le e ent detection (e. . his total wakin period) throu h some
initial DNN with se eral layers. See Fi . [#a).

After a while, when enou h counts detected the sin le e ent, a split of this
e ent is performed into two (or more) classes of e ents, e. . day and ni ht,
see Fi . @b) Counts are the number of times the output class was tri ered.
Now, the a ent can differentiate two e ents, sharin the same features. Later it
can extend the number of e ents, and reco ni e as many e ents as necessary.
Conse uently, it is an adapti e NN structure, adapti e by necessity.

At some point of e olution, when connections (wei hts in DNN) and e ent
identification (output layer’s counts) are stren thened and established, the model
can chan e its attention or free its resources, since the i en le el had become
more automatic, similar to the idea in . It can now build a new layer/le el
on top of the pre ious ones, if a simultaneous re-occurrence of se eral e ents
is detected. For example, the re-occurrence of seein the mom appearin and
preparin herself to i e milk su ests to the infant that it is a composite e ent,
on its own, see Fi .(c), where yellow= isual sensors, and reen=neurons.

Composite Mom give-milk
events
Mom

Basic Ev. 14,

Event 1 events

ﬁ Event 1 a ﬁ Event 2

2N Visual
ARSSSMRRS. ANSSSSESSE e
(a (b
Fig. 4. Neuro separat o a d compost o the proposed approach ( v.= ve t .

Opposite structure-chan in operations could be (i) deletin extremely rare
nodes/ed es in the DNN, a bit similar to dropout re ulari ation in DL; and (ii)
decomposin an e ent, if it appears to be more complex than it was supposed to
be. In other words, if pre iously it was treated as a specific-le el e ent, now it is
fine- rained, thus decomposed into simpler e ents (refinement). It is decomposed
into either existin e ents or new ones. If new ones, then they ha e to be attached
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to lower-le el e ents/features, e. . see Fi .[] where the "ball in the air" e ent is
decomposed into its three basics throwin , mo in in the air, and bein cau ht.

Ev. 2 & ball In-air

(a (b (c

Fig.5. Neuro decompost o the proposed approach ( v.= ve t .

Decomposition is a hi hly uncertain operation, since it is unknown whether
an e ent is compositional, and if it does - how many e ents it consists of, and
which of these e ents are new and which are not. There are numerous ways to
deal with it, e. . see studies in but it is out of the scope of this paper.

For this dynamic al orithm to work, the number of isits has to be stored
for each wei ht (ed e in DNN) and each neuron (node). If scalability is an issue
for lar e DNNs, the isits memori ation can be reduced from bein stored for
each neuron to bein stored in each cluster of neurons in a lar e enou h DNN.

Furthermore, the isits can be counted durin  a in periods (when the
DNN is fixed), and the structure update can be done durin sleepin periods,
when there is no stimulus from the sensors, while the trajectory fre uency within
the DNN is stored in the neurons themsel es, as mentioned abo e. The rate of
structure chan in can also be modeled with a learnin rate as in RL, where at
first it is mostly exploration (i.e. fast NN rowth), and then lesser exploration and
more exploitation. Finally, a finite number of nodes and connections is presumed,
i.e. limited resources (so that it would not row infinitely), thus resultin in
adjustin the learnin rate accordin ly.

Finally, additional aspects for the DLM are presented in Appendix [7]

3. dvanta es of the proposed DLM

This approach is self-super ised and not unsuper ised, since it is not about
clusterin into a pre-defined number of cate ories. ere, similar to NAS, the
number of cate ories and connections are all dynamic, and chan e accordin to
the decision of some super isin al orithm.

Another reason for this dynamic al orithm is that real intelli ence does not
end up with cate ories like cat/do (it e ol es into more complex models). More-
o er, most Al research works backward. It always starts from hi h-complexity
data and tries to learn it from scratch, instead of simple to complex learnin as
it should bein ane ol in A I

Additionally, this dynamic al orithm is less computationally expensi e since
it has fewer connections compared to FC NN, similar to sparse NN.
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set of outputs. In other words, there were no recurrent connections to include a
temporal se uence of inputs.

Usually, spatial-temporal models combine CNN with RNN in different ways.
Either separately CNN—RNN or interchan eably CNN—RNN—CNN—RNN...
Another way is to separate CNN and RNN to separate inputs, e. . textual for
RNN and isual for CNN, with a fusion module at the end. In conclusion, e ent
tasks, such as classification/clusterin , can be done usin the methods abo e.

Nonetheless, re ular FC DNNs are used for spatial object tasks. But if our

oal is to extract features alon the temporal dimension also, a simple addition
of recurrent connections could be made. Alternati ely, an extension of the DNN
could be done to include a temporal dimension, without chan in the spatial
dimension, i.e. ortho onal to it. See Fi .[7] for static and dynamic object tasks.

N9\ A n\\ >
A RN O
g \\. @ .,‘ W
o 9] &‘L’\{éﬁz"‘-\:\\"

(a (Fro t ve Objects tasks (b (Sdeve ve ts tasks

Fig. 7. Spat o-temporal DNN model.

In Fi .[7it is shown a FC NN. owe er, if re uired, it could be speciali ed
in different ways, e. . by shared connections/parameters or con olutions. And it
can be done for either the spatial or temporal dimensions, or both.

3.5 Related Wor

Se eral topics are in ol ed with our DLM continual/lifelon learnin ; unsu-
per ised learnin , specifically deep and non-deep clusterin ; e ent detection;
multi-label and multi-task learnin ; Network Architecture Search, and more.

From the aspect of our task, ideo reco nition tasks such as e ent detec-
tion is a lar e topic in computer ision, and the most rele ant
to our DLM, whose task is the continual refinement of e ents. owe er, these
tasks mostly in ol e batch learnin , not continual learnin , and utili e fixed
architectures.

One practical application of our task, is for na i atin robots to reco ni e
e ents, e. . in m owe er, they use time series of sensor and motor si nals to
reco ni e important e ents, i.e. they do not use fully isual spatial data.
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From the aspect of our architecture, similar models are belon to the family of
rowin networks [6,33], e. . Incremental rid rowin (I ) [9], rowin Cell
Structure ( CS), rowin Self-Or ani in -Map ( SOM) [3], rowin Neural-
as (N ) [22], and their ariations [4}62,/64-66]. They all are unsuper ised
methods, learnin the data distribution. owe er, they are based on shallow NNs
with desi ned features [191/62], while we are focused on DNNs that automatically
extract features, to allow learnin of more complex and di erse e ents.

Also, some of the methods abo e [6], utili e an a e counter, similar to the
number of isitations in our model, which in eneral can be extended to other
counters, holdin additional information for better clusterin .

Ne ertheless, there are ariations of SOM that produce non-flat data struc-
ture, e. . the rowin hierarchical SOM (  SOM) [6,/4 | 2|, which induces
hierarchical bias o er the data to be learned. owe er, it implements only a top-
down eneratin hierarchy, which is e ui alent to our decomposition operation
and can act as a le itimate implementation of this operation. e also implement
bottom-up operations such as splittin and mer in . e actually construct the
hierarchy bottom-up, and the top-down is just an additional option.

ierarchical clusterin is usually illustrated ia dendro ram, and it exists
also in other models, such as in Linka e based clusterin , Tree-Structured SOM,
and ierarchical Feature Map [6]] 2|.

Ne ertheless, [62] combines the two aspects, by usin ~ SOM for anomaly de-
tection in chan in sur eillance scenes, i.e. same task in similar online settin s as
we ha e. owe er since they use the shallow NNs described abo e, the features
are en ineered, in this case beha ioral features of the scenes. Moreo er, its row-
in feature is used only for adaptin to chan in e ents, i.e. to find anomalies
in a chan in en ironment. It is not made for radual learnin of e ents. Also,
unlike the anomaly detection task, our task is to learn normal recurrent e ents.

All the methods abo e use different heuristics [4] to impro e clusterin in
different tasks. Additionally, the search for the closest neuron to a i en input
(like in k-nearest nei hbor clusterin ) is the most expensi e task, a step that
is absent in our approach. Finally, these methods, includin ours, are of the
clusterin type, and all ha e in common the problem of how to choose the suit-
able measure/distance. ence, a more adapti e approach is needed, e. . a deep
clusterin topic that exists in DL.

Similarly, our DL approach, su ests the hierarchy will not include only the
neurons representin e ents, but also feature neurons in-between, to enable more
flexible learnin and clusterin of e ents.

Besides, there are rowin networks for super ised learnin [18,/44,| 1| and
semi-super ised learnin | 1,/64,/67|, especially for continual learnin to a oid
catastrophic for ettin [49]. Networks that in ol e both rowin and prunin |,
such as Pro ressi e Neural Networks (PNN) [49], Dynamically Expandable Net-
workS (DEN) [491|74], and DeepDPM | 6].
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3.6 Contribution

Finally, the no elty/contribution of this paper is the notion that spatial-temporal
dimension is inseparable, hence it should be learned as it is ri ht from the start,
contrary to the object detection tasks and alike. In addition, the learnin must
be radual, continual, and unsuper ised all the time, and as our DLM demon-
strated, it must also practice radual rowth accordin ly. Both of these principles
are essential for an A T a ent. Conse uently, some ideas were formed from the
principles abo e, and should be refined further.
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See for example in Fi .[8 a sketch dia ram, illustratin how super ised learn-
in chan es the parameters (wei hts and biases) durin trainin in NN, where
the i en data is tuples of (input,output). The NN is structured hierarchically,
i.e. it is features of features, etc.

ence, startin from random dis-ordered wei hts (represented as rectan les
inside the DNN), see Fi .b), we radually use inputs and outputs as ma nets,
for diffusion or rearran in the wei hts in a hierarchical way, where at the end
of trainin (see Fi . [§f)), the most input-related features will be closest to the
input and most output-related features will be closest to the output. This idea is
inspired by the isual feature maps in CNN, and by Information theory in IIEII
m demonstrates diffusion of information in the encoder-decoder interpreta-
tion of a DNN. It shows that while propa atin the DNN, the input is for otten
and the output becomes more dominant. It uses Bottleneck method where the
learnin compresses the input data and simultaneously captures rele ant info
(reduce noise).

Note that when trainin on random labels, then the task is actually merely
memori ation [76], since there is no consistency in the output data. ence it also

has no enerali ation.
o il - R LB | PR
(c (d (e (f F sh.

Fig. 8. Parameter evolut o superv sed lear NN (from r ht to left .
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All the abo e demonstrates, in our opinion, that A I is not an open-ended or
an objecti e-less system, but it actually has an inner objecti e, such as or ani in
data in a utili able way, or learnin to react to the en ironment, and more.

Beyond the demonstration of or ani ation illustrated abo e, DNN is also an
efficient model and memory structure, which not only or ani es the data, but
it does so with the intention of reco erin it later, e. . it enables recallin by
associations, clues, imperfect or missin data. E. . association in NNs character-
i ed ia the multiple features an object has, which are distributed all o er the
network. The DNN also compresses data, by storin a hu e amount of patterns
in a limited and much smaller set of wei hts and biases compared to the amount
of all the samples it percei es.

For comparison, when we represent data in a tree-shape structure, then for
different problems we must apply breadth-first-search (BFS), depth-first search
(DFS), heuristic types of search, and so on. owe er, these methods are only
rarely efficient, since we do not know which of these methods best fits for a i en



16 S. Komarovsk

data. I.e., these methods work blindly on unor ani ed data. hile the brain does
the opposite - it sol es problems uickly, after or ani in data.

Another example, is when a person thinks of se eral solutions for a problem,
then he/she does not do it ia blind search, but ia associati e direct processin
(no permutations in ol ed at all). e ha e a sur i al type of processin ; it
cannot depend on a time-consumin search in some space of solutions.

Another example, is re ular binary memory systems in computin de ices,
which are hi hly inefficient in the reco ery phase. For example, it has to utili e
a binary search for an exact match.

ence, the encodin or the storin phase in a memory system is hi hly
important. It affects how well and how fast the recorded data can be uti-
li ed. Moreo er, data that was or ani ed accordin ly to pre ious but also pre-
supposed/hypothesi ed future tasks, stren then its efficient usability.

For example, [8] performed self-super ised trainin , which allows predictin
any masked data from obser ed data. This demonstrates the idea of data bein
or ani ed such that it can be tackled in multiple forms and scenarios.

5. Order in teachin

Order is important not only in the data itself, but also in the se uence we pro ide
it to the A T a ent. Similarly in humans, it has to be from simple to complex
for example.
In DL the learnin can be either incremental [12,|31] or simultaneous | 7].
owe er, there is the catastrophic for ettin phenomenon in incremental learn-
in |21], where the model abruptly for ets part of the knowled e related to a
pre iously learned task as a new task is introduced. [31] for example, uses a
successi e re ulari ation strate y to a oid this phenomenon.

5.3 Order throu h rowth

rowth is an important A I property, distin uishin it from non- rowin Al
methods such as some of the rule-based methods or the fixed structures in DL.
It is a ery important task of the A I desi ner to plan the A I a ent such that
it can e ol e and de elop further independently and autonomously.

Considerin humans, Pia et’s psycholo ical theory [24] su ests that there
are de elopmental sta es in a child’s de elopment. Moreo er, e ery sta e is nec-
essary as the basic/foundation le el from which the next le el can be reached.
These sta es accomplishment depends both on the en ironment (external) and
on heredity (internal).

Similarly, we anticipate the A I a ent to reach some sta es of rowth.

owe er, common DL methods are workin backward they start from hi hly
complex data, such as lan ua e and/or hi hly complex isionary scenery, and
try to process it, with the intention that this data (input and output) would be
approximated by some mappin function, but neither understand nor follow the
simple-to-complex rule as it should be.



D amca d volv Neural Net ork for eve t dscrm ato 17

5.4 Efficiency verse Effectiveness

e should not construct A I based on cumbersome or complicated models, since
it may hurt the model’s further de elopment, as it occasionally occurs in rule-
based modelin . And we ha e to build an A I without expectin it to be stable
or perfect ri ht away, immediately at first execution. This is a wron attitude
towards actual intelli ence.

On the contrary, we ha e to i e it the time to de elop, just as an infant
baby or a child does, and not demand from it to i e always correct answers.
In other words, just as a human does, we should allow the A I a ent to make
mistakes, based on partial understandin , and learn from it not as a new input,
but as another step in a more eneral and mature step of de elopment, i.e., as a
more eneral point of iew o er the data it encountered durin its lifetime (like
life-lessons after hardship and obstacles).

e can see a resemblance to this idea in the comparison between serial think-
in erse parallel one |16{17]. In serial thinkin we prefer a conclusi e jud ment
and fast results with an emphasis on certainty. In parallel, howe er, it is about be-
in fluent and non-jud mental in fa or of fluency and multiple solutions/options
to ether with their probabilities. I.e. allowin and embracin uncertainty instead
of fi htin it. The same is here, model-based methods and control are mostly
desi ned for fast and ood results, to pro e effecti eness. But human intelli ence
shows, that it takes years for an infant to ather lin uistic capabilities and fine
motor sensin . It takes many months, in which the baby mumbles or pronounce
poorly and has a ross motor skills (e. . in mo ement and drawin ). This obser-

ation supports the idea that the more the A Iis eneral, in dealin with di erse
knowled e, the more effort it re uires to adapt and learn this knowled e. And
the opposite is true also - the more the A T is specific, like current control/ML
methods, the more it fits to be effecti e in narrow sets of data and it is faster in
results.

Similarly, [3 | mentions the Occam’s ra or approach, that a more complex
model with more parameters, will be able to explain a wider ran e of data, how-
e er, a simpler model will necessarily assi n a hi her probability to the narrow
ran e in which the data of interest lies. The same effect is in robust control erse
nominal one [37].

All the abo e can be summed up to the difference between efficiency and ef-
fecti eness [1], where efficiency concentrates on the best exploitation of a ailable
resources, while effecti eness is about the performance measure of how well the

oal is achie ed. Conse uently, the A T a ent must be efficient more than effec-
ti e, since we are less interested in some specific desired outcomes, but rather a
ood thinkin machine that can be alidated only in the lon run.

5.5 GI desi n su estions

Our simple belief is that humans are the only ones ha in consciousness and
experiencin the world ia both feelin s and mind. e do not think A I can
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be built as a li in a ent just like humans, and e en if do - we do not think
it is an issue. Our iew of an A T is simply as a processin unit. e do not
mind if it does not understand as stated in the Chinese room ar ument or if it
does not ha e consciousness or feelin s. All we care about is that it can sol e
problems and be creati e. Its purpose, in our eyes, is to act as an en ineer or a
researcher. ence, it does not matter if it processes data, while humans percei e
it as knowled e. hat matters is that we know the way humans know. hen
the A Ia entisinstructed to do somethin , it processes our re uest, and finally
its output return to humans.

In our opinion, sol in separately intelli ent aspects cannot be e entually
assembled into a full A I a ent. I.e. we cannot assemble it from pieces, e. . from
modules ori inatin in narrow AI. Instead, we should account for all aspects
ri ht from the be innin , because it is a holistic system. This approach has been
ad ocated by many neuro-science studies, showin that they could not locate
separable operatin re ions for different tasks, in the brain.

Additionally, it is difficult for us to know how human intelli ence actually
works and particularly how it e ol es, because we acknowled e it only in its final
state, in adulthood. e ha e no access to the early sta es of its de elopment,
certainly not directly, e. . how a baby or a child sees the world internally. e
can only analy e it implicitly, ia external measures, such as experiments.

6 Appendix - rior nowledge and NAS

6.1 Prior nowled e in DNNs

Prior knowled e can appear in many forms. One form is structure’s eneral type,
such as CNN and RNN. As shown from the studies in the field of traffic si nal
control | 11431|63},/73,/7 |, these NNs present better prediction results in accuracy
and stability compared to other ML methods, such as support- ector-machines
(SVMs) and random forest. Nonetheless, it is due to bein tailored to their
particular problem, ha in fewer ariables and containin more prior knowl-
ed e, compared to fully-connected (FC) layers of re ular/ anilla NN. ence, the
transformation from FC to CNN or RNN can be iewed as locali ation, where
the network structure is desi ned specifically for the data it handles. Another ex-
ample of prior knowled e is when the input is in a raphical form, which re uires
an appropriate raph NN model to handle it.

Other forms are the hyper-parameters and the re ulari ation method, e. .
dropout or constraints. Another form is the decision about sharin or roupin
| 8] or separatin features/ ariables. For example, when traffic data is set apart
from weather data [36], or when road features are separated from station features
[34] and then fused later (how later is also a prior knowled e to be decided upon).
Tasks can also be separated into roups [34]. Finally, [3 | su ests sparsifyin
the NN, e. . remo in connections in CNN, or roupin /sharin parameters,
results in fewer parameters, more prior knowled e and efficiency, and redundancy
elimination.
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owe er, these structures can be too restricted or best perform for narrow
data ariations. ence, many studies try different hyper-parameters or architec-
tures, to et better performance, e. . they use Network Architecture Search. NAS
consists of many approaches, e. . AutoML [7], Neuroe olution, hypernetwork,
Meta-learnin (learnin o er learnin ) [40] and more, which are all searchin for
an architecture or adaptin a i en architecture, to better fit the data.

6. Networ rchitecture Search (N S)

Motivation One moti ation for NAS, can be found in [26], which demonstrates
that NN is best for performance if its structure is appropriate to the data it is
trained upon. Not too many neurons nor too few.

This optimal number of neurons and layers represents the most appropriate
features to describe the trained data. Any other structure may result in some
kind of spreadin o er some features that are not really representati e of the
data.

ence, since the usual DNN only uesses the number of features at each
layer, then it is re uired to check se eral structures. Dynamic NN deals with
this issue, by keepin only the rele ant and true features.

A similar approach is in [10], where instead of the usual differentiable DNNs
they use concepts neurons, in what is called essence neural networks (ENNs),
which allow symbolic reasonin and more. For example, it can learn rules to be
extended and applied to other tasks or inputs, hence representin abstraction.
It is as if differentiable ( ia D) neurons are continuous features, while ENNs
are the discreti ed ersion of it, to make the features represent meanin ful and
whole features.

This discreti ation idea may also explain why sometimes pre-trained unsu-
per ised learnin DNNs (e. . SAEs or DBNs) work better than some wei ht
initiali ation, before trainin on some super ised learnin task(s). It is due to
clusterin , which perhaps may be into some concepts. Surprisin ly, this is the
exact method ENN uses to learn its (sub-)concepts.

A similar idea appears in dropout or sparse NNs (or attention), such as

00 le’s PaLM, due to ha in the most desirable amount of neurons in a NN,
i.e. that represent full features and not a mashup of them.

Research Firstly, in NAS, the search space for models is defined /restricted. For
example, rid and random search are often used in hyper-parameter tunin .

NAS has arious approaches, such as reinforcement learnin (RL), E olu-
tionary Al orithms (EA), and ypernetworks.

hen EA is used for NAS it is referred to as Neuroe olution [2 |. It is usually
used in arious search tasks, such as in the eneration of DNNs, hyperparameters,
NN buildin blocks, acti ation functions, and e en the al orithms for learnin
(rules). For example, in NEAT [1 |, it is used to replace back-propa ation with
enetic Al orithm ( A) or combine them both, in searchin for wei hts.
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* rowin based on experiences is embedded in the perception experiences of
the DNN, i.e. in the isitations o er neurons and wei hts, e. . by countin
these isitations/occurrences.

* Small data perform best in a small model, while bi data perform best in a
lar e model. See [13].

* The DLM percei es input and updates its wei hts accordin ly to the DL
methodolo vy, i.e. feed-forward perception and back-propa atin wei ht adap-
tation.

* In addition to the pre ious assumption - an external super isin al orithm,
that controls the chan es in the DNN architecture, is assumed.

7. Issues

Some of the issues that should be addressed are presented.

One issue can be in the reco erability, i.e. the ability to restore once deleted
elements. One possible solution assumes that the infant first should row up, and
only later refine its cate ori ation, i.e. first phase is only enlar in the network.
Then, in a bi enou h network, a node/connection remo al can be in, because
then the a ent accumulated enou h confidence/experience.

Another issue in dynamic structure NN could be splittin or deletin fea-
tures that are supposed to be fre uent or rare, yet they should be left as they
are. Similar issue is discussed in plastic neural as method | |. One possible
solution is 1ia relati e fre uency, i.e. to ha e some min-max ran e of relati e
fre uency amon neurons (e. . for all of them or for each le el), which will not
be split/deleted. Only those extremely fre uent/rare outside of this ran e would
be split/deleted.

Finally, the proposed DLM has one ob ious limitation. It has a sin le func-
tion, which is e ent discrimination, in different resolutions. ence, its role in
A Tis limited to perceptual or actuator modules, to differentiate procedural or
conceptual e ents.

Moreo er, the DLM tackles instant e ents, i.e. it does not enerali e into
classes of e ents. It only learns instances of basic and complex e ents, which
becomes a combinatorial issue, due to the enormous possible combinations to
define a composite e ent.

7.3 Optional additions to the DLM

The proposed DLM could also benefit from other optional additions

* Besides bein an e ent, the task/output could be also an object or an action.

* The inner neurons could also be updated.

* Allow reallocation of acti ated-to ether neurons to be in proximity to each
other, to ease computation.

The model should be constrained in all its adapti e parameters, such as
the number of total layers and number of neurons per layer, to eliminate
redundancy and encoura e competition/trade-offs.
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* The neurons can be adapti e in their function, thus ha in different func-
tions, such as con olutional, recurrent, recursi e, or attentional.
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