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Abstract
Markov Logic Networks (MLNs) define a probability distribution on relational structures over varying

domain sizes. Like most relational models, MLNs do not admit consistent marginal inference over varying

domain sizes i.e. marginal probabilities depend on the domain size. Furthermore, MLNs learned on a

fixed domain do not generalize to domains of different sizes. In recent works, connections have emerged

between domain size dependence, lifted inference, and learning from a sub-sampled domain. The central

idea of these works is the notion of projectivity. The probability distributions ascribed by projective

models render the marginal probabilities of sub-structures independent of the domain cardinality. Hence,

projective models admit efficient marginal inference. Furthermore, projective models potentially allow

efficient and consistent parameter learning from sub-sampled domains. In this paper, we characterize the

necessary and sufficient conditions for a two-variable MLN to be projective. We then isolate a special

class of models, namely Relational Block Models (RBMs). In terms of data likelihood, RBMs allow us

to learn the best possible projective MLN in the two-variable fragment. Furthermore, RBMs also admit

consistent parameter learning over sub-sampled domains.

Keywords
Statistical Relational Learning, Markov Logic Networks, Lifted Inference, Projectivitiy, Weighted First
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Introduction

Statistical Relational Learning [1, 2] (SRL) is concerned with representing and learning prob-

abilistic models over relational structures. Many works have observed that SRL frameworks

exhibit unwanted behaviors over varying domain sizes [3, 4]. These behaviors make models

learned from a fixed or a sub-sampled domain unreliable for inference over larger (or smaller)

domains [4]. Drawing on the works of Shalizi and Rinaldo [5] on Exponential Random Graphs

(ERGMs), Jaeger and Schulte [6] have recently introduced the notion of projectivity as a strong

form of guarantee for good scaling behavior in SRL models. A projective model requires that

the probability of any given query, over arbitrary 𝑚 domain objects, is completely independent

of the domain size.

Jaeger and Schulte [6] identify restrictive fragments of SRL models to be projective. But whether
these fragments are complete characterization of projectivity, remains an open problem.

In this paper, our goal is to characterize projectivity for a specific class of SRL models, namely

Markov Logic Networks (MLNs) [7]. MLNs are amongst the most prominent template-based
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SRL models. An MLN is a Markov Random Field with features defined in terms of function-

free weighted First Order Logic (FOL) formulae. Jaeger and Schutle [6] show that an MLN is

projective if - any pair of atoms in each of its formulae share the same set of variables. We show

that this characterization is not complete. Furthermore, we completely characterize projectivity

for the class of MLNs with at most 2 variables in their formulae. Our charecterization leads to a

parametric restriction that can be easily incorporated into any MLN learning algorithm. We

also identify a special class of projective models, namely the Relational Block Models (RBMs).

Any projective MLN in the two variable fragment can be expressed as an RBM. We show that

the training data likelihood due to the maximum likelihood RBM is greater than or equal to the

training data likelihood due to any other projective MLN in the two variable fragment. RBMs

also admit consistent maximum likelihood estimation. Hence, RBMs are projective models that

admit consistent and efficient learning from sub-sampled domains.

The paper is organized as follows: We first contextualize our work w.r.t the related works in

this domain. We then provide some background and notation on FOL and relational structures.

We also elaborate on the fragment of FOL with at most two variables i.e. FO
2

and define the

notion of FO
2

interpretations as multi-relational graphs. We also overview some results on

Weighted First Order Model Counting. In the subsequent section, we provide a parametric

representation for any MLN in the two variable fragment. We then dedicate a section to the

main result of this paper i.e. the necessary and sufficient conditions for an MLN in the two

variable fragment to be projective. Based on the projectivity criterions we identify a special

class of models namely Relational Block Models. We dedicate a complete section to RBMs and

elaborate on their useful properties. We then move on to a formal comparison between the

previous characterizations and the presented characterization of projectivity in MLNs. Finally,

we discuss the consistency and efficiency aspects of learning for projective MLNs and RBMs.

Related Work

Projectivity has emerged as a formal notion of interest through multiple independent lines of

works across ERGM and SRL literature. The key focus of these works have been analyzing

[8, 3] or mitigating [9, 4] the effects of varying domain sizes on relational models. The major

step in formalizing the notion of projectivity can be attributed to Shalizi and Rinaldo [5]. The

authors both formalize and characterize the sufficient and necessary conditions for ERGMs to

be projective. It is interesting to note that their projectivity criterion is strictly structural i.e.

they put no restrictions on parameter values but rather inhibit the class of features that can be

defined as sufficient statistics in ERGMs. In contrast our results w.r.t MLN are strictly parametric

(which may correspond to non-trivial structural restrictions as well). With respect to SRL, the

notion of projectivity was first formalized by Jaeger and Schulte [6], they show some restrictive

fragments of SRL models to be projective. Jaeger and Schulte [10] significantly extend the

scope of projective models by characterizing necessary and sufficient conditions for an arbitrary

model on relational structures to be projective. Their characterization is expressed in terms of

the so called AHK models. But as they conclude in [10], expressing AHK models in existing

SRL frameworks remains a significant open challenge. Hence, a complete characterization of

projectivity in most SRL languages is still an open problem. Weitkamper [11] has shown that



the characterization of projectivity provided by Jaeger and Schulte [6], for probabilistic logic

programs under distribution semantics, is indeed complete. In this work, we will extend this

characterization to the two variable fragment of Markov Logic Networks.

Another correlated problem to projectivity is learning from sub-sampled or smaller domains.

In the relational setting projectivity is not a sufficient condition for consistent learning from

sub-sampled domains [6]. Mittal et. al. have proposed a solution to this problem by introducing

domain-size dependent scale-down factors [4] for MLN weights. Although empirically effective,

the scale-down factors are not known to be a statistically sound solution. On the other hand,

Kuzelka et. al. [12], provide a statistically sound approach to approximately obtain the correct

distribution for a larger domain. But their approach requires estimating the relational marginal

polytope for the larger domain and hence, offers no computational gains w.r.t learning from a

sub-sampled domain. In this work, we will provide a statistically sound approach for efficiently

estimating a special class of projective models (namely, RBM) from sub-sampled domains. We

also show that our approach provides consistent parameter estimates in an efficient manner

and is better than estimating any projective MLN in the two variable fragment (in terms of data

likelihood maximisation).

Background

Basic Definitions.

We use the following basic notation. The set of integers {1, ..., 𝑛} is denoted by [𝑛]. We use

[𝑚 : 𝑛] to denote the set of integers {𝑚, ..., 𝑛}. Wherever the set of integers [𝑛] is obvious

from the context we will use [𝑚] to represent the set [𝑚+ 1 : 𝑛]. We use 𝑘 = ⟨𝑘1, ..., 𝑘𝑚⟩ to

denote an 𝑛-partition i.e. 𝑘𝑖 ∈ Z+
and

∑︀
𝑖∈[𝑚] 𝑘𝑖 = 𝑛. We will also use multinomial coefficients

denoted by (︂
𝑛

𝑘1, ..., 𝑘𝑚

)︂
=

(︂
𝑛

𝑘

)︂
=

𝑛!∏︀
𝑖∈[𝑚] 𝑘𝑖!

First Order Logic and Relational Substructures.

We assume a function-free First Order Logic (FOL) language ℒ defined by a set of variables 𝒱 and

a set of relational symbols ℛ. We use ∆ to denote a domain of 𝑛 constants. For 𝑎1, ..., 𝑎𝑘 ∈ 𝒱∪∆
and 𝑅 ∈ ℛ, we call 𝑅(𝑎1, ...𝑎𝑘) an atom. A literal is an atom or the negation of an atom. If

𝑎1, ..., 𝑎𝑘 ∈ 𝒱 , then the atom is called a first order atom, whereas if 𝑎1, ..., 𝑎𝑘 ∈ ∆, then it’s

called a ground atom. We use ℱ to denote the set of first order atoms and 𝒢 to denote the set

of ground atoms. A world or an interpretation 𝜔 : 𝒢 → {T,F} is a function that maps each

ground atom to a boolean. The set of interpretations 𝜔, in the language ℒ and the domain ∆ of

size 𝑛, is denoted by Ω(𝑛)
. We say that 𝜔 ∈ Ω(𝑛)

, has a size 𝑛 and is also called an 𝑛-world. For

a subset I ⊂ ∆, we use 𝜔 ↓ I to denote the partial interpretation induced by I. Hence, 𝜔 ↓ I is

an interpretation over the ground atoms containing only the domain elements in I.

Example 1. Let us have a language with only one relational symbol 𝑅 of arity 2 and a domain
∆ = {𝑎, 𝑏, 𝑐}. Let us have the following interpretation 𝜔:



𝑅(𝑎, 𝑎) 𝑅(𝑎, 𝑏) 𝑅(𝑎, 𝑐) 𝑅(𝑏, 𝑎) 𝑅(𝑏, 𝑏) 𝑅(𝑏, 𝑐) 𝑅(𝑐, 𝑎) 𝑅(𝑐, 𝑏) 𝑅(𝑐, 𝑐)

T T F T T F T T F

then 𝜔 ↓ {𝑎, 𝑏} is given as:

𝑅(𝑎, 𝑎) 𝑅(𝑎, 𝑏) 𝑅(𝑏, 𝑎) 𝑅(𝑏, 𝑏)

T T F T

For most of our purposes, we will be able to assume w.l.o.g that ∆ = [𝑛].

FO2, 𝑚-Types and 𝑚-Tables.

FO
2

is the fragment of FOL with two variables. We will use the notion of 1-types, 2-type, and

2-tables as presented in [13]. A 1-type is a conjunction of a maximally consistent set of first

order literals containing only one variable. For example, in an FO
2

language on the unary

predicate 𝐴 and binary predicate 𝑅, 𝐴(𝑥) ∧𝑅(𝑥, 𝑥) and 𝐴(𝑥) ∧ ¬𝑅(𝑥, 𝑥) are examples of

1-types in variable 𝑥. A 2-table is a conjunction of maximally consistent first order literals

containing exactly two distinct variables. Extending the previous example, 𝑅(𝑥, 𝑦) ∧ ¬𝑅(𝑦, 𝑥)
and 𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑥) are instances of 2-tables. We assume an arbitrary order on the 1-types and

2-tables, hence, we use 𝑖(𝑥) to denote the 𝑖𝑡ℎ 1-type and 𝑙(𝑥, 𝑦) to denote the 𝑙𝑡ℎ 2-table. Finally,

a 2-type is a conjunction of the form 𝑖(𝑥) ∧ 𝑗(𝑦) ∧ 𝑙(𝑥, 𝑦) ∧ (𝑥 ̸= 𝑦) and we use 𝑖𝑗𝑙(𝑥, 𝑦) to

represent it. In a given interpretation 𝜔, we say a constant 𝑐 realizes the 𝑖𝑡ℎ 1-type if 𝜔 |= 𝑖(𝑐),
we say a pair of constants (𝑐, 𝑑) realizes the 𝑙𝑡ℎ 2-table if 𝜔 |= 𝑙(𝑐, 𝑑) and (𝑐, 𝑑) realizes the

2-type 𝑖𝑗𝑙(𝑥, 𝑦) if 𝜔 |= 𝑖𝑗𝑙(𝑐, 𝑑). We call the 2-type 𝑖𝑗𝑙(𝑦, 𝑥) the dual of 𝑖𝑗𝑙(𝑥, 𝑦) and denote

it by 𝑖𝑗𝑙(𝑥, 𝑦). We will use 𝑢 to denote the number of 1-types and 𝑏 to denote the number of

2-tables in a given FO
2

language.

Interpretations as Multi-relational Graphs.

Given an FO
2

language ℒ with interpretations defined over the domain ∆ = [𝑛], we can repre-

sent an interpretation 𝜔 ∈ Ω(𝑛)
as a multi-relational graph (𝑥,𝑦). This is achieved by defining

𝑥 = (𝑥1, ..., 𝑥𝑛) such that 𝑥𝑞 = 𝑖 if 𝜔 |= 𝑖(𝑞) and by defining 𝑦 = (𝑦12, 𝑦13, ...𝑦𝑞𝑟, ..., 𝑦𝑛−1,𝑛),
where 𝑞 < 𝑟, such that 𝑦𝑞𝑟 = 𝑙 if 𝜔 |= 𝑙(𝑞, 𝑟). We also define 𝑘𝑖 = 𝑘𝑖(𝑥) = 𝑘𝑖(𝜔) := |{𝑐 ∈
∆ : 𝑐 |= 𝑖(𝑐)}|, ℎ𝑖𝑗𝑙 = ℎ𝑖𝑗𝑙 (𝑦) = ℎ𝑖𝑗𝑙 (𝜔) := |{(𝑐, 𝑑) ∈ ∆2 : 𝜔 |= 𝑖𝑗𝑙(𝑐, 𝑑)}| and for any

𝐷 ⊆ ∆2
, ℎ𝑖𝑗𝑙 (𝐷) = ℎ𝑖𝑗𝑙 (𝜔,𝐷) := |{(𝑐, 𝑑) : 𝜔 |= 𝑖𝑗𝑙(𝑐, 𝑑) and (𝑐, 𝑑) ∈ 𝐷}|. Notice that∑︀

𝑖≤𝑗

∑︀
𝑙∈[𝑏] ℎ

𝑖𝑗
𝑙 =

(︀
𝑛
2

)︀
and

∑︀
𝑙∈[𝑏] ℎ

𝑖𝑗
𝑙 = 𝑘(𝑖, 𝑗), where 𝑘(𝑖, 𝑗) is defined in equation (3) . We

use (𝑥I,𝑦I) to represent the multi-relational graph for 𝜔 ↓ I. Throughout this paper we will

use an interpretation 𝜔 and it’s multi-relational graph (𝑥,𝑦) interchangeably.

Weighted First Order Model Counting in FO2.

We will briefly review Weighted First Order Model Counting (WFOMC) in FO
2

as presented in

[14]. WFOMC is formally defined as follows:

wfomc(Φ, 𝑛) :=
∑︁

𝜔∈Ω(𝑛):𝜔|=Φ

𝑤(𝜔)



where Φ is an FOL formula, 𝑛 is the size of the domain and 𝑤 is a weight function that maps

each interpretation 𝜔 to a positive real. First Order Model Counting (FOMC) is the special

case of WFOMC, where for all 𝜔 ∈ Ω(𝑛)
, 𝑤(𝜔) = 1. We assume that 𝑤 does not depend on

individual domain constants, which implies that 𝑤 assigns same weight to two interpretations

which are isomorphic under the permutation of domain elements.

A universally quantified FO
2

formula ∀𝑥𝑦.Φ(𝑥, 𝑦) can be equivalently expressed as

∀𝑥𝑦.Φ({𝑥, 𝑦}), where Φ({𝑥, 𝑦}) is defined as Φ(𝑥, 𝑥)∧Φ(𝑥, 𝑦)∧Φ(𝑦, 𝑥)∧Φ(𝑦, 𝑦)∧ (𝑥 ̸= 𝑦).
A lifted interpretation denoted by 𝜏 : ℱ → {T,F} assigns boolean values to first order atoms.

The truth value of the quantifier free formula Φ(𝑥, 𝑦) under a lifted interpretation 𝜏 , denoted

by 𝜏(Φ(𝑥, 𝑦)), is computed by applying classical semantics of the propositional connectives to

the truth assignments of atoms of Φ({𝑥, 𝑦}) under 𝜏 . We then define

𝑛𝑖𝑗𝑙 := |{𝜏 | 𝜏 |= Φ({𝑥, 𝑦}) ∧ 𝑖𝑗𝑙(𝑥, 𝑦)}| (1)

and 𝑛𝑖𝑗 :=
∑︀

𝑙∈[𝑏] 𝑛𝑖𝑗𝑙. First Order Model Counting for a universally quantified formula

∀𝑥𝑦.Φ(𝑥, 𝑦) is then given as:

fomc(∀𝑥𝑦.Φ(𝑥, 𝑦), 𝑛) =
∑︁
𝑘

(︂
𝑛

𝑘

)︂ ∏︁
𝑖≤𝑗

𝑖,𝑗∈[𝑏]

𝑛
𝑘(𝑖,𝑗)
𝑖𝑗 (2)

where 𝑘 = ⟨𝑘1, . . . , 𝑘𝑢⟩ is a 𝑢-tuple of non-negative integers,

(︀
𝑛
𝑘

)︀
is the multinomial coefficient

and

𝑘(𝑖, 𝑗) =

{︃
𝑘𝑖(𝑘𝑖−1)

2 if 𝑖 = 𝑗

𝑘𝑖𝑘𝑗 otherwise

(3)

Intuitively, 𝑘𝑖 represents the number of constants 𝑐 of 1-type 𝑖. Also a given constant realizes

exactly one 1-type. Hence, for a given 𝑘, we have

(︀
𝑛
𝑘

)︀
possible ways of realizing 𝑘𝑖 1-types.

Furthermore, given a pair of constants 𝑐 and 𝑑 such that 𝑐 is of 1-type 𝑖 and 𝑑 is of 1-type

𝑗, the number of extensions to the binary predicates containing both 𝑐 and 𝑑, such that the

extensions are a model of ∀𝑥𝑦.Φ(𝑥, 𝑦), is given by 𝑛𝑖𝑗 independently of all other constants.

Finally, the exponent 𝑘(𝑖, 𝑗) accounts for all possible pair-wise choices of constants given a 𝑘
vector. Equation (2) was originally proven in [15], we refer the reader to [14] for the formulation

presented here.

Families of Probability Distributions and Projectivity.

We will be interested in probability distributions over the set of interpretations or equivalently

their multi-relational graphs. A family of probability distributions {𝑃 (𝑛) : 𝑛 ∈ N} specifies, for

each finite domain of size 𝑛, a distribution 𝑃 (𝑛)
on the possible 𝑛-world set Ω(𝑛)

[10]. We will

mostly work with the so-called exchangeable probability distributions [10] i.e. distributions

where 𝑃 (𝑛)(𝜔) = 𝑃 (𝑛)(𝜔′) if 𝜔 and 𝜔′
are isomorphic. A distribution 𝑃 (𝑛)(𝜔) over 𝑛-worlds

induces a marginal probability distribution over 𝑚-worlds 𝜔′ ∈ Ω(𝑚)
as follows:

𝑃 (𝑛) ↓ [𝑚](𝜔′) =
∑︁

𝜔∈Ω(𝑛):𝜔↓[𝑚]=𝜔′

𝑃 (𝑛)(𝜔)



Notice that due to exchangeability 𝑃 (𝑛) ↓ I is the same for all subsets I of size 𝑚, hence we can

always assume any induced 𝑚-world to be 𝜔 ↓ [𝑚]. We are now able to define projectivity as

follows:

Definition 1 ([10]). An exchangeable family of probability distributions is called projective if for
all 𝑚 < 𝑛:

𝑃 (𝑛) ↓ [𝑚] = 𝑃 (𝑚)

When dealing with probability distributions over multi-relational representation, we denote

by (𝑋,𝑌 ) the random vector where, 𝑋 = (𝑋1, . . . , 𝑋𝑛) and each 𝑋𝑖 takes value in [𝑢]; and

𝑌 = (𝑌12, 𝑌13, . . . , 𝑌𝑞𝑟, . . . , 𝑌𝑛−1,𝑛) where 𝑞 < 𝑟 and 𝑌𝑞𝑟 takes values in [𝑏].

A Parametric Normal Form for MLNs

A Markov Logic Network (MLN) Φ is defined by a set of weighted formulas {(𝜑𝑖, 𝑎𝑖)}𝑖, where

𝜑𝑖 are quantifier free, function-free FOL formulas with weights 𝑎𝑖 ∈ R. An MLN Φ induces a

probability distribution over the set of possible worlds 𝜔 ∈ Ω(𝑛)
:

𝑃
(𝑛)
Φ (𝜔) =

1

𝑍(𝑛)
exp
(︁ ∑︁
(𝜑𝑖,𝑎𝑖)∈Φ

𝑎𝑖.𝑁(𝜑𝑖, 𝜔)
)︁

where 𝑁(𝜑𝑖, 𝜔) represents the number of true groundings of 𝜑𝑖 in 𝜔. The normalization

constant 𝑍(𝑛) is called the partition function that ensures that 𝑃
(𝑛)
Φ is a probability distribution.

Theorem 1. Any Markov Logic Network (MLN) Φ = {(𝜑𝑖, 𝑎𝑖)}𝑖 on a domain of size 𝑛, such that
𝜑𝑖 contains at-most two variables, can be expressed as follows:

𝑃
(𝑛)
Φ (𝜔) =

1

𝑍(𝑛)

∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(𝑡𝑖𝑗𝑙)
ℎ𝑖𝑗
𝑙 (4)

where 𝑠𝑖 and 𝑡𝑖𝑗𝑙 are positive real numbers and 𝑘𝑖 is 𝑘𝑖(𝜔) and ℎ𝑖𝑗𝑙 is equal to ℎ𝑖𝑗𝑙 (𝜔).

Proof. Let Φ = {(𝜑𝑖, 𝑎𝑖)}𝑖 be an MLN, such that 𝜑𝑖 contains at-most two variables. Firstly,

every weighted formula (𝜑(𝑥, 𝑦), 𝑎) ∈ Φ that contains exactly two variables is replaced by

two weighted formulas (𝜑(𝑥, 𝑥), 𝑎) and (𝜑(𝑥, 𝑦) ∧ (𝑥 ̸= 𝑦), 𝑎). The MLN distribution 𝑃
(𝑛)
Φ is

invariant under this transformation. Hence, Φ can be equivalently written as {(𝛼𝑞(𝑥), 𝑎𝑞)}𝑞 ∪
{(𝛽𝑝(𝑥, 𝑦), 𝑏𝑝)}𝑝, where {𝛼𝑞(𝑥)}𝑞 is the set of formulas containing only the variable 𝑥 and

{𝛽𝑝(𝑥, 𝑦)}𝑝 is the set of formulas containing both the variables 𝑥 and 𝑦. Notice that every

𝛽𝑝(𝑥, 𝑦) entails 𝑥 ̸= 𝑦.

Let us have𝜔 ∈ Ω(𝑛)
, where we have a domain constant 𝑐 such that𝜔 |= 𝑖(𝑐). Now notice that

the truth value of ground formulas {𝛼𝑞(𝑐)}𝑞 in 𝜔 is completely determined by 𝑖(𝑐) irrespective

of all other domain constants. Hence, the (multiplicative) weight contribution of 𝑖(𝑐) to the

weight of 𝜔 can be given as exp(
∑︀

𝑞 𝑎𝑞1𝑖(𝑥)|=𝛼𝑞(𝑥)). We define 𝑠𝑖 as follows:

𝑠𝑖 = exp(
∑︁
𝑞

𝑎𝑞1𝑖(𝑥)|=𝛼𝑞(𝑥)) (5)



Clearly, this argument can be repeated for all the domain constants realizing any 1-type in

[𝑢]. Hence, the (multiplicative) weight contribution due to 1-types of all domain constants and

equivalently due to the groundings of all unary formulas, is given as

∏︀
𝑖∈[𝑢] 𝑠

𝑘𝑖
𝑖 .

We are now left with weight contributions due to the binary formulas {(𝛽𝑝(𝑥, 𝑦), 𝑏𝑝)}𝑝.

Due to the aforementioned transformation, each binary formula 𝛽(𝑥, 𝑦) contains a conjunct

(𝑥 ̸= 𝑦). Hence, all groundings of 𝛽(𝑥, 𝑦) such that both 𝑥 and 𝑦 are mapped to the same

domain constants evaluate to false. Hence, we can assume that 𝑥 and 𝑦 are always mapped to

distinct domain constants. Let us have an unordered pair of domain constants {𝑐, 𝑑} such that

𝜔 |= 𝑖𝑗𝑙(𝑐, 𝑑). The truth value of any binary ground formula 𝛽(𝑐, 𝑑) and 𝛽(𝑑, 𝑐) is completely

determined by 𝑖𝑗𝑙(𝑐, 𝑑) irrespective of all other domain constants. Hence, the multiplicative

weight contribution due to the ground formulas {𝛽𝑝(𝑐, 𝑑)}𝑝∪{𝛽𝑝(𝑑, 𝑐)}𝑝 is given as 𝑡𝑖𝑗𝑙, where

𝑡𝑖𝑗𝑙 is defined as follows:

exp

(︃∑︁
𝑝

𝑏𝑝1𝑖𝑗𝑙(𝑥,𝑦)|=𝛽𝑝(𝑥,𝑦) +
∑︁
𝑝

𝑏𝑝1𝑖𝑗𝑙(𝑥,𝑦)|=𝛽𝑝(𝑦,𝑥)

)︃
(6)

Hence, the weight of an interpretation 𝜔 under the MLN Φ is given as∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(𝑡𝑖𝑗𝑙)
ℎ𝑖𝑗
𝑙

Definition 2. Given an MLN in the parametric normal form given by equation (4). Then 𝑓𝑖𝑗 is
defined as

∑︀
𝑙∈[𝑏] 𝑡𝑖𝑗𝑙.

We will now provide the parameterized version of the partition function 𝑍(𝑛) due to Theorem

1.

Proposition 1. Let Φ be an MLN in the form (4), then the partition function 𝑍(𝑛) is given as:

𝑍(𝑛) =
∑︁
𝑘

(︂
𝑛

𝑘

)︂ ∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

(𝑓𝑖𝑗)
𝑘(𝑖,𝑗)

(7)

where 𝑘(𝑖, 𝑗) is defined in equation (3).

Sketch. The proposition is a parameterized version of equation (2), where

∏︀
𝑖∈[𝑢] 𝑠

𝑘𝑖
𝑖 takes into

account the weight contributions due to the 1-type realizations and 𝑓𝑖𝑗 is essentially a weighted

version of 𝑛𝑖𝑗 i.e. given a pair of constants 𝑐 and 𝑑 such that they realize the 𝑖𝑡ℎ and the

𝑗𝑡ℎ 1-type respectively, then 𝑓𝑖𝑗 is the sum of the weights due to the 2-types realized by the

extensions to the binary predicates containing both 𝑐 and 𝑑.



Projectivity in Markov Logic Networks

We present the necessary and sufficient conditions for an MLN to be projective in the two

variable fragment. The complete proofs are provided in the appendix.

Lemma 1 (Sufficiency). A Markov Logic Network in the two variable fragment is projective if all
the 𝑓𝑖𝑗 have the same value i.e. ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real number 𝐹 .

Sketch. The key idea of the proof is that if ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , then the partition function

factorizes as 𝑍(𝑛) = (𝐹 )(
𝑛
2)
(︁∑︀

𝑖∈[𝑢] 𝑠𝑖

)︁𝑛
. Now, defining 𝑝𝑖 =

𝑠𝑖∑︀
𝑖 𝑠𝑖

and 𝑤𝑖𝑗𝑙 =
𝑡𝑖𝑗𝑙
𝐹 , allows us

to re-define the MLN distribution (4) equivalently as follows:

𝑃
(𝑛)
Φ (𝜔) =

∏︁
𝑖∈[𝑢]

𝑝𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙

𝑖𝑗𝑙 (8)

Here,

∑︀
𝑖 𝑝𝑖 = 1 and

∑︀
𝑙 𝑤𝑖𝑗𝑙 = 1. Hence, 𝑃

(𝑛)
Φ (𝜔) is essentially a (labeled) stochastic block

model, which are known to be projective [5].

We will now prove that the aforementioned sufficient conditions are also necessary.

Lemma 2 (Necessary). If a Markov Logic network in the two variable fragment is projective then,
all the 𝑓𝑖𝑗 have the same value i.e. ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real number 𝐹 .

Sketch. We begin by writing the projectivity condition in the multi-relational representation:

𝑃
(𝑛+1)
Φ ↓ [𝑛](𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′) =

∑︁
𝑥[𝑛]=𝑥′

𝑦[𝑛]=𝑦′

𝑃
(𝑛+1)
Φ (𝑋 = 𝑥,𝑌 = 𝑦) (9)

Multiplying and dividing equation (9) by 𝑍(𝑛) and using simple algebraic manipulations we

get that for all 𝑥′
:

𝑍(𝑛+ 1)

𝑍(𝑛)
=
∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥

′)
𝑖𝑗 (10)

Now, the LHS of equation (10) is completely independent of 𝑥′
, whereas RHS is dependent on

𝑥′
. It can be shown that this is possible iff 𝑓𝑖𝑗 does not depend on 𝑥′

, which in turn is possible

iff 𝑓𝑖𝑗 does not depend on 𝑖 and 𝑗 i.e. ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real 𝐹 .

We are finally able to provide the following theorem.

Theorem 2. A Markov Logic Network (MLN) Φ = {(𝜑𝑖, 𝑎𝑖)}𝑖, such that 𝜑𝑖 contains at-most two
variables is projective if and only if all the 𝑓𝑖𝑗 (as given in Definition 2) have the same value i.e.
∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real number 𝐹 .

In the next section, we will show that the conditions in Theorem 2 correspond to a special

type of probability distributions. We will characterize such distributions and then investigate

their properties.



Relational Block Model

In this section we introduce the Relational Block Model (RBM). We show that any projective

MLN in the two variable fragment can be expressed as an RBM. And any RBM can be expressed

as a projective MLN. Furthermore, we show that an RBM is a unique characterization of a

projective MLN in the two variable fragment.

Definition 3. Let 𝑛 be a positive integer (the number of domain constants), 𝑢 be a positive integer
(the number of 1-types), 𝑏 be a positive integer (the number of 2-tables), 𝑝 = (𝑝1, ..., 𝑝𝑢) be a
probability vector on [𝑢] = {1, ..., 𝑢} and 𝑊 = (𝑤𝑖𝑗𝑙) ∈ [0, 1]𝑢×𝑢×𝑏, where 𝑤𝑖𝑗𝑙 = 𝑤𝑖𝑗𝑙 (𝑤𝑖𝑗𝑙 is
the conditional probability of domain elements (𝑐, 𝑑) realizing the 𝑙𝑡ℎ 2-table, given 𝑖(𝑐) and 𝑗(𝑑)).
The multi-relational graph (𝑥,𝑦) is drawn under RBM(𝑛, 𝑝,𝑊 ) if 𝑥 is an 𝑛-dimensional vector
with 𝑖.𝑖.𝑑 components distributed under 𝑝 and 𝑦 is a random vector with its component 𝑦𝑞𝑟 = 𝑙,
where 𝑙 ∈ [𝑏], with a probability 𝑤𝑥𝑞𝑥𝑟𝑙 independently of all other pair of domain constants.

Thus, the probability distribution of (𝑥,𝑦) is defined as follows, where 𝑥 ∈ [𝑢]𝑛 and 𝑦 ∈ [𝑏](
𝑛
2)

𝑃 (𝑋 = 𝑥) :=
𝑛∏︁

𝑞=1

𝑝𝑥𝑞 =
𝑢∏︁

𝑖=1

𝑝𝑘𝑖𝑥𝑖

𝑃 (𝑌 = 𝑦|𝑋 = 𝑥) :=
∏︁

1≤𝑞<𝑟≤𝑛

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟

=
∏︁

1≤𝑖≤𝑗≤𝑢

∏︁
1≤𝑙≤𝑏

(𝑤𝑖𝑗𝑙)
ℎ𝑖𝑗
𝑙

In the following example, we show how RBMs can model homophily.

Example 2 (Homophily). Let us have an FO2 language with a unary predicate 𝐶 (representing
a two colors) and a binary predicate 𝑅. We wish to model a distribution on simple undirected
graphs i.e. models of the formula 𝜑 = ∀𝑥𝑦.¬𝑅(𝑥, 𝑥)∧ (𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥)) such that same color
nodes are more likely to have an edge. Due to 𝜑 the 1-types with ¬𝑅(𝑥, 𝑥) as a conjunct have
a probability zero. Hence, we can assume we have only two 1-types: 1(𝑥) = 𝐶(𝑥) ∧ ¬𝑅(𝑥, 𝑥)
and 2(𝑥) = ¬𝐶(𝑥) ∧ ¬𝑅(𝑥, 𝑥) (representing two possible colors for a given node). Similarly due
to 𝜑, we have only two 2-tables 1(𝑥, 𝑦) : 𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑥) and 2(𝑥, 𝑦) : ¬𝑅(𝑥, 𝑦) ∧ ¬𝑅(𝑦, 𝑥)
(representing existence and non existence of edges). We can now easily define homophily by
following parameterization of an RBM. 𝑝1 = 𝑝2 = 0.5 i.e. any node can have two colors with equal
probability. Then we can define 𝑤111 = 0.9, 𝑤112 = 0.1, 𝑤221 = 0.9, 𝑤222 = 0.1, 𝑤121 = 0.1
and 𝑤122 = 0.9.

Theorem 3. Every projective Markov Logic Network in the two variable fragment can be expressed
as an RBM.

Proof. The proof follows from the sufficiency proof in Lemma 3. Notice that in the proof, we

derive equation (8) (equivalently, equation (21) in the appendix), which is exactly the expression

for RBM. Hence, any projective MLN can be converted to an RBM by defining 𝑝𝑖 and 𝑤𝑖𝑗𝑙 as

follows:

𝑝𝑖 =
𝑠𝑖∑︀
𝑖 𝑠𝑖

𝑤𝑖𝑗𝑙 =
𝑡𝑖𝑗𝑙∑︀
𝑙 𝑡𝑖𝑗𝑙

(11)



Theorem 4. Every RBM can be expressed as a projective MLN in the two variable fragment.

Proof. Given an RBM as defined in definition 3 with parameters {𝑝𝑖, 𝑤𝑖𝑗𝑙}, let us have a projective

MLN Φ such that every 1-type 𝑖(𝑥) is a formula in the MLN with a weight log 𝑝𝑖. Φ also has

a weighted formula 𝑖𝑗𝑙(𝑥, 𝑦) for every 2-type, such that 𝑖 ≤ 𝑗. The weight for 𝑖𝑗𝑙(𝑥, 𝑦) is

log(𝑤𝑖𝑗𝑙) if 𝑖𝑗𝑙(𝑥, 𝑦) ̸= 𝑖𝑗𝑙(𝑦, 𝑥), and is 0.5 log(𝑤𝑖𝑗𝑙) if 𝑖𝑗𝑙(𝑥, 𝑦) = 𝑖𝑗𝑙(𝑦, 𝑥). It can be seen

from definition of 𝑠𝑖 (5) and 𝑡𝑖𝑗𝑙 (6), that for Φ, 𝑠𝑖 = 𝑝𝑖 and 𝑡𝑖𝑗𝑙 = 𝑤𝑖𝑗𝑙. Hence, due to (4), we

have that:

𝑃
(𝑛)
Φ (𝜔) =

1

𝑍(𝑛)

∏︁
𝑖∈[𝑢]

𝑝𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(𝑤𝑖𝑗𝑙)
ℎ𝑖𝑗
𝑙 (12)

In the MLN Φ,

∑︀
𝑖 𝑠𝑖 =

∑︀
𝑖 𝑝𝑖 = 1 and

∑︀
𝑙 𝑡𝑖𝑗𝑙 =

∑︀
𝑙 𝑤𝑖𝑗𝑙 = 𝑓𝑖𝑗 = 1. Hence, using Proposition

1, we have that 𝑍(𝑛) = 1. Hence, completing the proof.

Proposition 2. Given two RBMs with probability distribution𝑃 ′ and𝑃 ′′ and parameters {𝑝′𝑖, 𝑤′
𝑖𝑗𝑙}

and {𝑝′′𝑖 , 𝑤′′
𝑖𝑗𝑙}. If 𝑃 ′ = 𝑃 ′′, then, 𝑝′𝑖 = 𝑝′′𝑖 and 𝑤′

𝑖𝑗𝑙 = 𝑤′′
𝑖𝑗𝑙.

Proof. The proposition is a consequence of the fact that the parameter 𝑝𝑖 is marginal probability

of an arbitrary constant 𝑐 realizing the 𝑖𝑡ℎ 1-type and 𝑤𝑖𝑗𝑙 is the conditional probability of an

arbitrary pair of constants (𝑐, 𝑑) realizing the 𝑙𝑡ℎ 2-table given 𝑖(𝑐) and 𝑗(𝑑). Hence, two RBMs

that disagree on the 𝑝𝑖 and 𝑤𝑖𝑗𝑙 cannot assign the same probability mass to marginal probability

of 𝑖(𝑐) and 𝑖𝑗𝑙(𝑐, 𝑑) and hence, cannot be the same distribution.

Corollary 1 (of Proposition 2). Given two projective MLNs Φ′ and Φ′′ such that they have
the same probability distributions 𝑃Φ′ and 𝑃Φ′′ , with there respective RBMs parameterized by
{𝑝′𝑖, 𝑤′

𝑖𝑗𝑙} and {𝑝′′𝑖 , 𝑤′′
𝑖𝑗𝑙}. Then we must have that 𝑝′𝑖 = 𝑝′′𝑖 and 𝑤′

𝑖𝑗𝑙 = 𝑤′′
𝑖𝑗𝑙.

Hence, RBMs are a unique representation for projective MLNs in the two variable fragment.

Previous Characterizations of Projectivity

Jaeger and Schulte [6] show that an MLN is projective if it’s formulae 𝜑𝑖 satisfy the property

that any two atoms appearing in 𝜑𝑖 contain exactly the same variables. Such MLNs are also

known as 𝜎-determinate [16]. We now show that in the two variable fragment, Theorem 2 leads

to a strictly more expressive class of MLNs.

Proposition 3. Given an MLN Φ = {𝜑𝑖, 𝑎𝑖}𝑖 such that any two atoms appearing in 𝜑𝑖 contain
exactly the same variables or equivalently that the MLN is 𝜎−determinate. Then:

∀𝑖, 𝑗, 𝑖′, 𝑗′ ∈ [𝑢],∀𝑙 ∈ [𝑏] : 𝑡𝑖′𝑗′𝑙 = 𝑡𝑖𝑗𝑙 (13)



Proof. We first write an equivalent MLN Φ′ = {𝛼𝑞(𝑥), 𝑎𝑞} ∪ {𝛽𝑝(𝑥, 𝑦), 𝑏𝑝} as presented in

proof of Theorem 1. Due to the conditions provided in the proposition, all the atoms in 𝛽𝑝(𝑥, 𝑦)
contain both the variables 𝑥 and 𝑦. Using the definition of 𝑡𝑖𝑗𝑙 from (6), and the fact that none

of the 𝛽𝑝(𝑥, 𝑦) have an atom with only one variable, we have that the value of 𝑡𝑖𝑗𝑙 depends only

on the 𝑙𝑡ℎ 2-table, irrespective of the 1-types 𝑖 and 𝑗. This is because, none of the first order

atoms in the 𝑖𝑡ℎ and the 𝑗𝑡ℎ 1-type appear in 𝛽𝑝(𝑥, 𝑦). Hence, 𝑡𝑖𝑗𝑙 only depends on 𝑙, giving us

equation (13).

Proposition 3 is a stricter condition than Theorem 2. In the following, we prove that 𝜎-

determinate MLNs cannot express all the projective MLNs in the two variable fragment.

Theorem 5. There exists a projective MLN in the two variable fragment which cannot be expressed
as a 𝜎−determinate MLN.

Proof. Let us have a 𝜎-determinate MLN Φ, since Φ is projective, we can create it’s equivalent

RBM (due to Theorem 4), say 𝑃 . Let {𝑝𝑖, 𝑤𝑖𝑗𝑙} be the parameters of 𝑃 . Due to equation (11)

and Proposition 3, we have that 𝑤𝑖𝑗𝑙 = 𝑤𝑖′𝑗′𝑙 for all 𝑖, 𝑗, 𝑖′, 𝑗′. Due to existence of a projective

MLN for every RBM (from Theorem 4), we can always create an MLN Φ′
for which the RBM

parameters 𝑤𝑖𝑗𝑙 ̸= 𝑤𝑖′𝑗′𝑙 for some 𝑖, 𝑗, 𝑖′, 𝑗′. Since, RBMs uniquely characterize the probability

distributions due to MLNs (from Corollary 1), Φ′
can not be expressed as an MLN such that

𝑤𝑖𝑗𝑙 = 𝑤𝑖′𝑗′𝑙. Hence, Φ′
can not be expressed as a 𝜎-determinate MLN.

In the following example, we provide an MLN which cannot be written as a 𝜎−determinate

MLN.

Example 3. Let us have a binary predicate 𝑅. We have only two 1-types 𝑅(𝑥, 𝑥) (say 1(𝑥)) and
¬𝑅(𝑥, 𝑥) (say 2(𝑥)) and four 2-tables, 𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑥) (say 1(𝑥, 𝑦)), 𝑅(𝑥, 𝑦) ∧ ¬𝑅(𝑦, 𝑥) (say
2(𝑥, 𝑦)), ¬𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑥) (say 3(𝑥, 𝑦)) and ¬𝑅(𝑥, 𝑦) ∧ ¬𝑅(𝑦, 𝑥) (say 4(𝑥, 𝑦)). An MLN Φ,
with the following 2-types as weighted formulas, cannot be expressed as a 𝜎−determinate MLN:

111(𝑥, 𝑦) : log 7 114(𝑥, 𝑦) : log 4

124(𝑥, 𝑦) : log 64 221(𝑥, 𝑦) : log 8

In parametric normal form, 𝑡111 = exp(2 log 7), 𝑡114 = exp(2 log 4), 𝑡124 = exp(log 64)
and 𝑡221 = exp(2 log 8). All the other 𝑡𝑖𝑗𝑙, such that 𝑖𝑗𝑙(𝑥, 𝑦) is not a dual of
111(𝑥, 𝑦), 114(𝑥, 𝑦), 124(𝑥, 𝑦) or 221(𝑥, 𝑦), are equal to exp(0) i.e. 1. It can be verified that
𝑓𝑖𝑗 = 67 for all 𝑖, 𝑗 ∈ [2], hence, this MLN is projective due to Theorem 2. Using Theorem 3, we can
express this distribution as an RBM, such that 𝑤111 = 72

67 and 𝑤114 = 42

67 . If 𝑤111 ̸= 𝑤114 then
necessarily 𝑡111 ̸= 𝑡114 (as 𝑤𝑖𝑗𝑙 is defined as 𝑡𝑖𝑗𝑙

𝑓𝑖𝑗
and 𝑓𝑖𝑗 is the same for all 𝑖, 𝑗 in Φ and in any

equivalent MLN, due to Theorem 2). Due to uniqueness of RBM parameters for any set of projective
MLNs expressing the same distribution (Corollary 1), we have that in all MLNs equivalent to Φ,
𝑡111 ̸= 𝑡114. Hence, using Proposition 3, we have that any MLN expressing the same distribution as
Φ cannot be expressed as a 𝜎−determinate MLN.



Maximum Likelihood Learning

In a learning setting, for an MLN {𝜑𝑖, 𝑎𝑖} in the two variable fragment, we are interested in

estimating the set of parameters 𝜃 = {𝑎𝑖} that maximize the likelihood of a training example

such that the learnt MLN is projective. As analyzed in [17, 12], we will focus on the scenario

where only a single possible world 𝜔 ∈ Ω(𝑛)
is observed. We estimate 𝜃 by maximizing the

likelihood

𝐿(𝑛)(𝜃|𝜔) = 𝑃
(𝑛)
𝜃 (𝜔) (14)

Notice that although every projective MLN can be equivalently defined as an RBM, the

maximum likelihood parameter estimate for an RBM is not the same as the parameter estimate

for an MLN such that it is projective.

We will now provide, the maximum likelihood estimator for an RBM.

Proposition 4. Given a training example 𝜔 ∈ Ω(𝑛), the maximum likelihood parameter estimate

for an RBM is given as, 𝑝𝑖 = 𝑘𝑖
𝑛 and 𝑤𝑖𝑗𝑙 =

ℎ𝑖𝑗
𝑙

𝑘(𝑖,𝑗) .

Proposition 4 can be derived by maximizing the log likelihood due to the distribution given

in Definition 3.

We will now see how maximum likelihood parameter estimate can be obtained for an MLN

such that the MLN is projective.

Given an MLN {𝜑𝑖, 𝑎𝑖}𝑖 in the two variable fragment, where 𝜃 = {𝑎𝑖}𝑖 are unknown

parameters to be estimated, due to Theorem 1, we can define 𝑠𝑖(𝜃) and 𝑡𝑖𝑗𝑙(𝜃), such that the

likelihood is given as:

𝐿(𝜃|𝜔) = 1

𝑍(𝑛)

∏︁
𝑖∈[𝑢]

𝑠𝑖(𝜃)
𝑘𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(𝑡𝑖𝑗𝑙(𝜃))
ℎ𝑖𝑗
𝑙 (15)

Defining 𝐹 (𝜃) as

∑︀
𝑙 𝑡𝑖′𝑗′𝑙(𝜃) for some fixed 𝑖′ and 𝑗′, the maximum likelihood parameter

estimates such that the estimated MLN is projective, can be then obtained by solving the

following optimization problem:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜃

:
[︁∑︁
𝑖∈[𝑢]

𝑘𝑖 log 𝑠𝑖(𝜃) +
∑︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∑︁
𝑙∈[𝑏]

ℎ𝑖𝑗𝑙 log 𝑡𝑖𝑗𝑙(𝜃)

− 𝑛 log (
∑︁
𝑖∈[𝑢]

𝑠𝑖(𝜃))−
(︂
𝑛

2

)︂
log𝐹 (𝜃)

]︁
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗(𝜃) = 𝐹 (𝜃)

(16)

Notice that due to factorization of 𝑍(𝑛) under projectivity (see Lemma 3),

−𝑛 log (
∑︀

𝑖∈[𝑢] 𝑠𝑖(𝜃)) −
(︀
𝑛
2

)︀
log𝐹 (𝜃) represents − log(𝑍(𝑛)). The above optimization

can be solved through any conventional optimization algorithm. It can be seen that this

problem has a much lesser overhead as far as computing log(𝑍(𝑛)) is concerned. But the

additional constraints may counter act this gain. Furthermore, in many cases it may happen

that no non-zero weights exist that satisfy the constraints and in that case the problem will

return zero weights for the MLN formulas.



Theorem 6. Given a training example 𝜔 ∈ Ω(𝑛), then there is no parameterization for any
projective MLN in the two variable fragment that has a higher likelihood for 𝜔 than the maximum
likelihood RBM for 𝜔.

Proof. Let 𝐿 be the likelihood of 𝜔 due to the maximum likelihood RBM. Let 𝐿′
be the likelihood

of 𝜔 due to a projective MLN Φ, such that 𝐿′ > 𝐿. Now, due to Theorem 3, Φ can be expressed

as an RBM. Hence, we can have an RBM such that the likelihood of 𝜔 is 𝐿′
, but 𝐿′ > 𝐿 which

is a contradiction. Hence, we cannot have a projective MLN that gives a higher likelihood to 𝜔
than the maximum likelihood RBM.

Theorem 6 shows us that if a data source is known to be projective (i.e. we know that

marginals in the data will be independent of the domain at large) then in terms of likelihood,

specially in the case of large relational datasets, we are better off in using an RBM than an

expert defined MLN. This can also be argued from efficiency point of view as RBMs admit much

more efficient parameter estimates.

We will now move on to the question: are parameters learned on a domain of size 𝑛, also good
for modelling domain of a different size 𝑚 ? This question is an abstraction of many real world

problems, for example, learning over relational data in presence of incomplete information [18],

modelling a social network from only sub-sampled populations [19], modelling progression of

a disease in a population by only testing a small set of individuals [20] etc.

Jaeger and Schulte [6] formalized the afore mentioned notions in the following two criterions:

𝐸𝜔[argmax
𝜃

log𝐿(𝑚)(𝜃|𝜔′)] = argmax
𝜃

log𝐿(𝑛)(𝜃|𝜔) (17)

argmax
𝜃

𝐸𝜔[log𝐿
(𝑚)(𝜃|𝜔′)] = argmax

𝜃
log𝐿(𝑛)(𝜃|𝜔) (18)

It is easy to see, by law of large numbers, that RBMs satisfy both these criterions. On the

other hand the same can not be said about the maximum likelihood estimates for projective

MLNs as described in (16).

Conclusion

In this work, we have characterized the class of projective MLNs in the two-variable fragment.

We have also identified a special class of models, namely Relational Block Model. We show that

the maximum likelihood RBM maximizes the training data likelihood w.r.t to any projective

MLN in the two-variable fragment. Furthermore, RBMs admit consistent parameter learning

from sub-sampled domains, potentially allowing them to scale to very large datasets, especially

in situations where the test data size is not known or changes over time.

From an applications point of view, the superiority of RBMs in terms of training likelihood

maximization and consistent parameter learning can potentially make them a better choice

over an expert defined MLN, especially when training set is large and the test domain size is

unknown or varies over time. We plan to investigate such capabilities of RBMs and projective



MLNs in future work, especially in comparison to models like Adaptive MLNs [9] and Domain

Size Aware MLNs [4].

On the theoretical front, the imposed independence structure due to projectivity clearly

resembles the AHK models proposed in [10]. In future works, we aim at investigating this

resemblance and generalizing our work to capture complete projectivity criterion for all the

MLNs.
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Appendix

A.1 : Lemma 3 [Sufficiency]

Lemma 3 (Sufficiency). A Markov Logic Network in the two variable fragment is projective if all
the 𝑓𝑖𝑗 have the same value i.e. ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real number 𝐹 .

Proof. Let ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 . Hence, due to Proposition 1, we have:

𝑍(𝑛) =
∑︁
𝑘

(︂
𝑛

𝑘

)︂ ∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

(𝐹 )𝑘(𝑖,𝑗) (19)

=
∑︁
𝑘

(︂
𝑛

𝑘

)︂ ∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖 (𝐹 )(
𝑛
2) = 𝐹 (𝑛2)

(︁∑︁
𝑖∈[𝑢]

𝑠𝑖

)︁𝑛
(20)

Let 𝑝𝑖 =
(︁

𝑠𝑖∑︀
𝑖 𝑠𝑖

)︁
and 𝑤𝑖𝑗𝑙 =

(︁
𝑡𝑖𝑗𝑙
𝐹

)︁
. Hence,

𝑃
(𝑛)
Φ (𝜔) =

1

(
∑︀

𝑖∈[𝑢] 𝑠𝑖)
𝑛(𝐹 )(

𝑛
2)

∏︁
𝑖∈[𝑢]

𝑠𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(𝑡𝑖𝑗𝑙)
ℎ𝑖𝑗
𝑙

=
∏︁
𝑖∈[𝑢]

(︁ 𝑠𝑖∑︀
𝑖∈[𝑢] 𝑠𝑖

)︁𝑘𝑖 ∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

(
𝑡𝑖𝑗𝑙
𝐹

)ℎ
𝑖𝑗
𝑙

=
∏︁
𝑖∈[𝑢]

𝑝𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙

𝑖𝑗𝑙

Using the multi-relational representation, 𝑃
(𝑛)
Φ (𝜔) can be equivalently expressed as:

𝑃
(𝑛)
Φ (𝑋 = 𝑥,𝑌 = 𝑦) =

∏︁
𝑞∈[𝑛]

𝑝𝑥𝑞

∏︁
𝑞,𝑟∈[𝑛]
𝑞<𝑟

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟 (21)

Let (𝑋 ′,𝑌 ′) be the random vector containing 𝑋𝑞 and 𝑌𝑝,𝑞 with 𝑝 < 𝑞 ∈ [𝑚]. Clearly, our goal

is to show that

𝑃
(𝑛)
Φ ↓ [𝑚](𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′) = 𝑃

(𝑚)
Φ (𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′)

Now, the marginal distribution over the 𝑚-worlds (𝑋 ′,𝑌 ′), due to 𝑃
(𝑛)
Φ (𝑋 = 𝑥,𝑌 = 𝑦) can

be expressed as:

𝑃
(𝑛)
Φ ↓ [𝑚](𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′) =

∑︁
𝑥[𝑚]=𝑥′

𝑦[𝑚]=𝑦′

𝑃
(𝑛)
Φ (𝑋 = 𝑥,𝑌 = 𝑦)



=
∑︁

𝑥[𝑚]=𝑥′

𝑦[𝑚]=𝑦′

∏︁
𝑞∈[𝑛]

𝑝𝑥𝑞

∏︁
𝑞,𝑟∈[𝑛]
𝑞<𝑟

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟

=
∏︁
𝑞∈[𝑚]

𝑝𝑥𝑞

∏︁
𝑞,𝑟∈[𝑚]
𝑞<𝑟

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟 ×

(︃∑︁
𝑥[𝑚]
𝑦[𝑚]

∏︁
𝑞∈[𝑚]

𝑝𝑥𝑞

∏︁
𝑞,𝑟∈[𝑚]
𝑞<𝑟

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟

∏︁
𝑞∈[𝑚]
𝑟∈[𝑚]

𝑤𝑥𝑞𝑥𝑟𝑦𝑞𝑟

)︃

=
∏︁
𝑖∈[𝑢]

𝑝
𝑘𝑖(𝑥

′)
𝑖

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙 (𝑦′)

𝑖𝑗𝑙

×

(︃∑︁
𝑥[𝑚]
𝑦[𝑚]

∏︁
𝑖∈[𝑢]

𝑝
𝑘𝑖(𝑥[𝑚])

𝑖

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙 (𝑦[𝑚])

𝑖𝑗𝑙

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙 ([𝑚]⊗[𝑚])

𝑖𝑗𝑙

)︃

where 𝐴⊗𝐵 = 𝐴×𝐵∪𝐵×𝐴. Notice that

∏︀
𝑖∈[𝑢] 𝑝

𝑘𝑖(𝑥
′)

𝑖

∏︀
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︀
𝑙∈[𝑏]𝑤

ℎ𝑖𝑗
𝑙 (𝑦′)

𝑖𝑗𝑙 is 𝑃
(𝑚)
Φ (𝑋 ′ =

𝑥′,𝑌 ′ = 𝑦′). Hence, in order to complete the proof, we will now show that for any 𝑥′
:∑︁

𝑥[𝑚]
𝑦[𝑚]

∏︁
𝑖∈[𝑢]

𝑝
𝑘𝑖(𝑥[𝑚])

𝑖

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙 (𝑦[𝑚])

𝑖𝑗𝑙

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

∏︁
𝑙∈[𝑏]

𝑤
ℎ𝑖𝑗
𝑙 ([𝑚]⊗[𝑚])

𝑖𝑗𝑙 = 1 (22)

The LHS of equation (22) can be written as:∑︁
∑︀

𝑘=𝑛−𝑚

(︂
𝑛−𝑚

𝑘

)︂ ∏︁
𝑖∈[𝑢]

𝑝𝑘𝑖𝑖
∏︁

𝑖,𝑗∈[𝑢]
𝑖≤𝑗

(
∑︁
𝑙

𝑤𝑖𝑗𝑙)
𝑘(𝑖,𝑗)

∏︁
𝑖,𝑗∈[𝑢]
𝑖≤𝑗

(
∑︁
𝑙

𝑤𝑖𝑗𝑙)
𝑘𝑖(𝑥

′)×𝑘𝑗
(23)

By definition, for any 𝑖, 𝑗 ∈ [𝑢],
∑︀

𝑙 𝑤𝑖𝑗𝑙 = 1 , and

∑︀
𝑖 𝑝𝑖 = 1. Hence, expression (23) can be

written as:

∑︁
∑︀

𝑘=𝑛−𝑚

(︂
𝑛−𝑚

𝑘

)︂ ∏︁
𝑖∈[𝑢]

𝑝𝑘𝑖𝑖 =

(︃∑︁
𝑖

𝑝𝑖

)︃𝑛−𝑚

= 1

Hence, completing the proof.

A.2 : Lemma 4 [Necessary]

Lemma 4 (Necessary). If a Markov Logic network in the two variable fragment is projective then,
all the 𝑓𝑖𝑗 have the same value i.e. ∀𝑖, 𝑗 ∈ [𝑢] : 𝑓𝑖𝑗 = 𝐹 , for some positive real number 𝐹 .

Proof. Let us have a markov logic network Φ over a domain [𝑛+ 1]. Let 𝑋 and 𝑌 be random

vectors representing multi-relational graphs on the domain [𝑛+ 1]. Let 𝑋 ′
and 𝑌 ′

be random

vectors representing multi-relational graphs on the domain [𝑛]. Then :



𝑃
(𝑛+1)
Φ ↓ [𝑛](𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′) =

∑︁
𝑥[𝑛]=𝑥′

𝑦[𝑛]=𝑦′

𝑃
(𝑛+1)
Φ (𝑋 = 𝑥,𝑌 = 𝑦)

=
∑︁

𝑥[𝑛]=𝑥′

𝑦[𝑛]=𝑦′

1

𝑍(𝑛+ 1)

∏︁
𝑞∈[𝑛+1]

𝑠𝑥𝑞

∏︁
𝑞,𝑟∈[𝑛+1]

𝑞<𝑟

𝑡𝑥𝑞𝑥𝑟𝑦𝑞𝑟

=
1

𝑍(𝑛)

∏︁
𝑞∈[𝑛]

𝑠𝑥𝑞

∏︁
𝑞,𝑟∈[𝑛]
𝑞<𝑟

𝑡𝑥𝑞𝑥𝑟𝑦𝑞𝑟

𝑍(𝑛)

𝑍(𝑛+ 1)

∑︁
𝑥𝑛+1
𝑦𝑞,𝑛+1

𝑠𝑥𝑛+1

∏︁
𝑞∈[𝑛]

𝑡𝑥𝑞𝑥𝑛+1𝑦𝑞,𝑛+1

= 𝑃
(𝑛)
Φ (𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′)

𝑍(𝑛)

𝑍(𝑛+ 1)

∑︁
𝑥𝑛+1
𝑦𝑞,𝑛+1

𝑠𝑥𝑛+1

∏︁
𝑞∈[𝑛]

𝑡𝑥𝑞𝑥𝑛+1𝑦𝑞,𝑛+1

Due to projectivity we have that:

𝑃
(𝑛)
Φ (𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′) = 𝑃

(𝑛+1)
Φ ↓ [𝑛](𝑋 ′ = 𝑥′,𝑌 ′ = 𝑦′)

Hence,

𝑍(𝑛+ 1)

𝑍(𝑛)
=
∑︁
𝑥𝑛+1
𝑦𝑞,𝑛+1

𝑠𝑥𝑛+1

∏︁
𝑞∈[𝑛]

𝑡𝑥𝑞𝑥𝑛+1𝑦𝑞,𝑛+1

which can be equivalently written as:

𝑍(𝑛+ 1)

𝑍(𝑛)
=
∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

(︁∑︁
𝑙∈[𝑏]

𝑡𝑗𝑖𝑙

)︁
𝑘𝑗(𝑥

′)

Now,

∑︀
𝑙∈[𝑏] 𝑡𝑗𝑖𝑣 = 𝑓𝑗𝑖 = 𝑓𝑖𝑗 . Hence:

𝑍(𝑛+ 1)

𝑍(𝑛)
=
∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥

′)
𝑖𝑗

Hence, for any choice of the domain size 𝑚 and for any choice of 𝑚-worlds (𝑥,𝑦) and (𝑥′,𝑦′),
we have that: ∑︁

𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥)
𝑖𝑗 =

∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥

′)
𝑖𝑗 (24)

which implies
1

that:

∀𝑖, 𝑗, 𝑖′, 𝑗′ ∈ [𝑢] : 𝑓𝑖𝑗 = 𝑓𝑖′𝑗′

Hence, completing the proof.

1

For a rigorous proof of why this is true, see Lemma 5 and Lemma 6 in Appendix A.3



A.3 : Auxiliary Lemmas for Lemma 4

In proof of Lemma 4 we argue that, for any choice of the domain size 𝑚 and for any choice of

𝑚-worlds (𝑥,𝑦) and (𝑥′,𝑦′), we have that:∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥)
𝑖𝑗 =

∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗(𝑥

′)
𝑖𝑗 (25)

This implies that:

∀𝑖, 𝑗, 𝑖′, 𝑗′ ∈ [𝑢] : 𝑓𝑖𝑗 = 𝑓𝑖′𝑗′ (26)

We will first infer a slightly stricter equation from (25). 𝑥 and𝑥′
can have any 1-type cardinalities,

say 𝑘 = ⟨𝑘1(𝑥)...𝑘𝑢(𝑥)⟩ = ⟨𝑘1...𝑘𝑢⟩ and 𝑘′ = ⟨𝑘1(𝑥′)...𝑘𝑢(𝑥
′)⟩ = ⟨𝑘′1...𝑘′𝑢⟩ respectively, such

that

∑︀
𝑖∈[𝑢] 𝑘𝑖 =

∑︀
𝑖∈[𝑢] 𝑘

′
𝑖 = 𝑚. Hence, we can conclude that, for all 𝑘 and 𝑘′

such that∑︀
𝑖∈[𝑢] 𝑘𝑖 =

∑︀
𝑖∈[𝑢] 𝑘

′
𝑖, we have that:∑︁

𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗
𝑖𝑗 =

∑︁
𝑖∈[𝑢]

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘′𝑗
𝑖𝑗 (27)

Hence, our goal is to prove that (27) implies (26). We formally prove this statement in Lemma 6.

Before proving Lemma 6, we will need to prove the following auxiliary lemma.

Lemma 5. Let (𝑥𝑖)𝑚𝑖=1,(𝑦𝑖)𝑚𝑖=1 and (𝑎𝑖)
𝑚
𝑖=1 be tuples of positive non-zero reals. If for all positive

integers 𝑛:
𝑚∑︁
𝑖=1

𝑎𝑖𝑥
𝑛
𝑖 =

𝑚∑︁
𝑖=1

𝑎𝑖𝑦
𝑛
𝑖 (28)

then the set of entries in (𝑥𝑖)
𝑚
𝑖=1 and the set of entries in (𝑦𝑖)

𝑚
𝑖=1 are the same.

Proof. Let {𝑢𝑖}𝑝𝑖=1 and {𝑣𝑖}𝑞𝑖=1 be the set of unique entries in (𝑥𝑖)
𝑚
𝑖=1 and (𝑦𝑖)

𝑚
𝑖=1 respectively.

Also, without loss of generality, we may assume an ordering such that 𝑢1 > 𝑢2 > ... > 𝑢𝑝 and

𝑣1 > 𝑣2 > ... > 𝑣𝑞 and also that 𝑞 ≥ 𝑝. We can rewrite (28) as:

∀𝑛 ∈ Z+ :

𝑝∑︁
𝑖=1

𝑐𝑖𝑢
𝑛
𝑖 =

𝑞∑︁
𝑖=1

𝑑𝑖𝑣
𝑛
𝑖 (29)

As 𝑛 grows the leading term on LHS is 𝑐1𝑢
𝑛
1 and on the RHS is 𝑑1𝑣

𝑛
1 . Hence, it must be :

∀𝑛 ∈ Z+ : 𝑐1𝑢
𝑛
1 = 𝑑1𝑣

𝑛
1

Since, 𝑢1, 𝑣1, 𝑐1 and 𝑑1 are non-zero positive reals, we can conclude that 𝑢1 = 𝑣1 and 𝑐1 = 𝑑1.

Hence, we may subtract 𝑐1𝑢
𝑛
1 from both sides in (29) to get :

∀𝑛 ∈ Z+ :

𝑝∑︁
𝑖=2

𝑐𝑖𝑢
𝑛
𝑖 =

𝑞∑︁
𝑖=2

𝑑𝑖𝑣
𝑛
𝑖 (30)

We may now repeat the aforementioned argument and infer that 𝑢2 = 𝑣2 and 𝑐2 = 𝑑2.

Furthermore, repeating this argument 𝑝 times, we can infer that {𝑢𝑖}𝑝𝑖=1 = {𝑣𝑖}𝑝𝑖=1, leaving us

with 0 =
∑︀𝑝

𝑖=𝑞−𝑝+1 𝑑𝑖𝑣
𝑛
𝑖 , which is a contradiction as 𝑑𝑖 and 𝑣𝑖 are positive reals. Hence, we

must have that 𝑝 = 𝑞. Hence, we have that {𝑢𝑖}𝑝𝑖=1 = {𝑣𝑖}𝑞𝑖=1. Hence, completing the proof.



Since, 𝑓𝑖𝑗 = 𝑓𝑗𝑖, we can see {𝑓𝑖𝑗} as a symmetric 𝑢 × 𝑢 matrix (𝑓𝑖𝑗) in R𝑢×𝑢
>0 . Hence, the

statement that equation (27) implies equation (26) can be formally written as the following

Lemma.

Lemma 6. Let 𝑆 = (𝑓𝑖𝑗) ∈ R𝑢×𝑢
>0 be a symmetric matrix and let (𝑠𝑖)𝑢𝑖=1 ∈ R𝑢

>0. If for all
𝑘 = ⟨𝑘1, ..., 𝑘𝑢⟩ and 𝑘′ = ⟨𝑘′1, ..., 𝑘′𝑢⟩ such that 𝑘𝑖, 𝑘′𝑖 ∈ Z+ and

∑︀𝑢
𝑖=1 𝑘𝑖 =

∑︀𝑢
𝑖=1 𝑘

′
𝑖, we have

that:
𝑢∑︁

𝑖=1

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘𝑗
𝑖𝑗 =

𝑢∑︁
𝑖=1

𝑠𝑖
∏︁
𝑗∈[𝑢]

𝑓
𝑘′𝑗
𝑖𝑗 (31)

then
∀𝑖, 𝑗, 𝑖′, 𝑗′ : 𝑓𝑖𝑗 = 𝑓𝑖′𝑗′

Proof. Let 𝑘 be such that 𝑘𝑝 = 𝑛, let 𝑘𝑖 = 0 for all 𝑖 ̸= 𝑝. Let 𝑘′
be such that 𝑘′𝑞 = 𝑛 and 𝑘′𝑖 = 0

for all 𝑖 ̸= 𝑞. Then due to (31), we have that:

∀𝑛 ∈ Z+ :

𝑢∑︁
𝑖=1

𝑠𝑖(𝑓𝑖𝑝)
𝑛 =

𝑢∑︁
𝑖=1

𝑠𝑖(𝑓𝑖𝑞)
𝑛

(32)

Hence, due to Lemma 5, we have that the entries in (𝑓𝑖𝑝)
𝑢
𝑖=1 and (𝑓𝑖𝑞)

𝑢
𝑖=1 form the same set. A

similar argument can be repeated for any pair of columns. Hence, all columns in 𝑆 have the

same set of entries, we denote the set of such entries as 𝑈 .

Let 𝑛 = 𝑢𝑘 where 𝑘 ∈ Z+
. Let 𝑘 be such that 𝑘𝑖 = 𝑘 for all 𝑖 ∈ [𝑢]. Let 𝑘′

be such that

𝑘′𝑞 = 𝑛 and 𝑘′𝑖 = 0 for all 𝑖 ̸= 𝑞. Then due to (31), we have that:

∀𝑘 ∈ Z+ :
𝑢∑︁

𝑖=1

𝑠𝑖
∏︁
𝑝∈[𝑢]

𝑓𝑘
𝑖𝑝 =

𝑢∑︁
𝑖=1

𝑠𝑖(𝑓𝑖𝑞)
𝑢𝑘

∀𝑘 ∈ Z+ :
𝑢∑︁

𝑖=1

𝑠𝑖(
∏︁
𝑝∈[𝑢]

𝑓𝑖𝑝)
𝑘 =

𝑢∑︁
𝑖=1

𝑠𝑖(𝑓
𝑢
𝑖𝑞)

𝑘

As 𝑘 grows the leading term on left hand side and right hand side must agree for the equality to

hold. Let 𝑐𝑖′(
∏︀

𝑝∈[𝑢] 𝑓𝑖′𝑝)
𝑘

and 𝑑𝑖′′(𝑓
𝑢
𝑖′′𝑞)

𝑘
be the leading terms on RHS and LHS respectively.

Hence,

∀𝑘 ∈ Z+ : 𝑐𝑖′(
∏︁
𝑝∈[𝑢]

𝑓𝑖′𝑝)
𝑘 = 𝑑𝑖′′(𝑓

𝑢
𝑖′′𝑞)

𝑘
(33)

Using Lemma 5, we have that

∏︀
𝑝∈[𝑢] 𝑓𝑖′𝑝 = 𝑓𝑢

𝑖′′𝑞 . Now, 𝑓𝑖′′𝑞 has to be equal to the maximum

term in 𝑈 , say 𝑚. Also,

∏︀
𝑝∈[𝑢] 𝑓𝑖′𝑝 is a product of all the terms in the 𝑝𝑡ℎ matrix column of 𝑆.

Since, each matrix column has the same set of terms 𝑈 , we have that

∏︀
𝑝∈[𝑢] 𝑓𝑖′𝑝 ≤ 𝑚𝑢

. But

due to (33), we have that,

∏︀
𝑝∈[𝑢] 𝑓𝑖′𝑝 = 𝑚𝑢

, which is possible iff:

∀𝑖, 𝑗, 𝑖′, 𝑗′ : 𝑓𝑖𝑗 = 𝑓𝑖′𝑗′
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