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Abstract. Wind measurement from shipborne anemometer is susceptible to the 

airflow distortion due to ship hull and superstructure. The measurement bias 

needs to be minimized with regard to various meteorological and navigation 

applications. To address this problem, this study illustrates the feasibility to cor-

rect the measurement bias due to airflow distortion by applying Least Squares 

Support Vector Machine with Particle Swarm Optimization (PSO-LSSVM) 

method. The airflow field around hull and superstructure of an experimental 

ship is simulated by computational fluid dynamics (CFD) techniques. And then 

the nonlinear relationship between the airflow through conventional anemome-

ter mounting sites on the main mast and the airflow through the reference point 

above bridge is implicitly obtained using the PSO-LSSVM regression. The da-

taset of relative wind observation taken during a sea trial is used to validate the 

effectiveness of this method. The results show that the established model effi-

ciently eliminates most of the speed bias and reduces half of the direction bias 

of the mean relative wind, which indicates this method could be extended to es-

timate the undisturbed freestream on the open sea surface. 

Keywords: Ship Airflow Field, Wind Measurement, CFD, PSO, LSSVM. 

1 Introduction 

Sea surface wind plays a primary role in the air-sea momentum, heat and water vapor 

exchange process. The field measurements of sea surface wind are mostly obtained 

from conventional observation platforms such as ships, buoys and offshore stations. 

As one data source of most marine meteorological field observations, ship platform 

provides long-term and continuous sea surface wind datasets. The shipborne ane-

mometer measures the relative wind, and the true wind is calculated by the relative 

wind, ship speed and course. The data bias existed in the relative wind measurement 

is usually due to inherent characteristics of wind measurement from a moving plat-

form of bluff-body, which leads to the necessary consideration about the airflow dis-

tortion as well as platform motion. 

The airflow through the anemometer mounting site is distorted by the ship hull and 

superstructure, and makes the relative wind speed and direction measurements differ-

ent from the undistorted freestream on the open sea surface. The measurement bias of 
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the relative wind speed and direction deviates the calculation result of the true wind 

speed and direction, which further affects the calculation of the sea surface friction 

velocity *u and the drag coefficient 10D NC . For example, if the freestream speed is 

10m/s, 10% wind speed bias will result in 27% bias of the momentum flux estimation 

[1]. 

The problem of wind measurement bias due to airflow distortion on ship platforms 

has been concerned for decades. Such measurement bias cannot be reduced by im-

proving the accuracy of anemometers. The World Meteorological Organization sug-

gests that the shipborne anemometer should be mounted on well-exposed positon 

close to the front edge of the installation surface and of a certain height [2]. However, 

the anemometer cannot be mounted far enough away from ship hull and superstruc-

ture, and thus it is more appropriate to correct the measurement bias by post pro-

cessing.  

With the development of CFD techniques, the airflow distortion around ship hull 

and superstructure can be analyzed more conveniently, which facilitates the relevant 

research. Yelland et al. showed that the bias of wind speed measurements did not vary 

within the range of 5~25m/s [3]. This opinion is consistent with the suggestion of 

Moat et al. that the airflow field around ship was insensitive to the Reynolds number 

in the range of 2×10
5
~1×10

7
 [4, 5]. Popinet et al. showed that the mean wind speed 

bias depended on the upwind angle rather than the Reynolds number [6]. Griessbaum 

et al. presented that the wind measurement bias would lead to 30~50% deviation of 

the gas transport rate gk [7]. O'Sullivan et al. suggested that more CFD simulations 

with different upwind angles were necessary for wind measurement bias correction 

[8]. Wnęk et al. verified the consistency of the CFD simulation results and the exper-

imental data for LNG vessels on wind loads [9].  

This study presents an application to correct the relative wind measurement bias 

using the Least Square Support Vector Machines with Particle Swarm Optimization 

(PSO-LSSVM). In Section 2, we review the basic LSSVM formulation as well as the 

hyper-parameter selection based on PSO. Several issues associated with the modeling 

process, including CFD simulation and PSO-LSSVM modeling, are discussed in de-

tail in Section 3. In Section 4, experimental results are presented to illustrate the ef-

fectiveness of the bias correction model. Conclusions are drawn in Section 5. 

2 PSO-LSSVM Regression 

The LSSVM proposed by Suykens and Vandewalle [10] has been extensively applied 

to nonlinear regression and system modeling [11, 12, 13]. The algorithm complexity 

of LSSVM is reduced greatly by solving linear algebraic instead of the computation-

ally hard quadratic programming problem in the standard SVM. The nonlinear regres-

sion problem can be written as: 
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The Lagrange multiplier is introduced to solve the above equality-constrained optimi-

zation problem: 
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The conditions for optimality are given by: 
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After eliminating w and i , one gets the following linear system: 
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with: 

 

 

 

 

 

1 2

1 2

,

, , ,

1 1,1, ,1

, , ,

,

T

N

T

v

T

n

i j i j

y y y y

K x x

   

    

    


   

 

 (5) 

Eq. (4) can be solved for the parameters i and b by the least squares method. There-

fore, the resulting model for nonlinear regression becomes: 
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The PSO algorithm as an optimization technique introduced by Eberhart and Kennedy 

well simulates the social behavior of groups such as birds randomly looking for food 

[14]. In PSO, each single solution is taken as a particle in the search space. All of the 

particles have fitness values which are evaluated by fitness function. According to the 

fitness values, the particles move towards better solution areas by changing the ve-

locity and location as follow: 
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where ix , iv are the location and velocity of the i th particle, 0w is the symbol for iner-

tial weight, 1c and 2c represent learning rates which are positive constants, 1r and 2r  
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describe two random numbers between zero and one, bestp is the best previous position 

recorded by the i th particle, and bestg is the best global position among the entire parti-

cles throughout searching history. 

In solving the hyper-parameter selection of LSSVM including the kernel parameter 

and regularization parameter, each particle is requested to represent a potential solu-

tion, namely hyper-parameters combination [15]. In this study, the LSSVM with radi-

al basis function (RBF) kernel is trained to model the wind measurement bias, and 

thus each particle in PSO represents candidate values of regularization parameter 

and kernel parameter . To define the fitness value, five-fold cross validations with 

training dataset for each particle and the mean squared error (MSE) is taken as the 

fitness value. The bias correction modeling based on PSO-LSSVM is described in 

Section 3.2. 

3 Bias Correction  Modeling 

The distorted airflow at the anemometer mounting site under different conditions of 

freestream velocity and upwind angle are obtained by CFD simulations. Then the 

nonlinear relationship between the distorted airflow and the undistorted freestream is 

modeled by means of the PSO-LSSVM. 

3.1 CFD Simulation 

In this study, an experimental ship is taken as an example to research on bias correc-

tion method of shipborne anemometer measurement. The dimension of the computa-

tional domain is 6L(length)×6L(width)×1.6L(height) where L is the length of the 

ship. As illustrated in Fig.1, the ship is placed at the center of the bottom surface of 

the computational domain, and rotated in each CFD simulation case to achieve differ-

ent upwind angles (0~360° at 10° intervals). The impact of ship swing is not consid-

ered in this study. 

To simulate the relative wind measurement process onboard, the freestream en-

tered from the inlet of the computational domain flows past the ship hull and super-

structure. The velocity of freestream at the inlet is set with a logarithmic profile.  

    * 0/ ln /vu u k z z  (8) 

Wind speed at the height of 10 meters above sea level 10Nu is set as 5m/s, 10m/s and 

20m/s respectively in CFD simulation cases of the same upwind angle. The Kalman 

constant
vk is set as 0.4, and the roughness length 0z is set as 2mm. 

To capture the boundary layers effects along the walls of the ship model, a tetrahe-

dral mesh of 2×10
6
 elements with 5 prismatic layers on the model’s surface is gener-

ated (Fig.2). The first layer thickness is proportional to the wall distance y+, which is 

close to 30. Similar to the wind tunnel test, the no-slip condition is specified on the 
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ship hull, superstructure and the walls of the computational domain. At the outlet zero 

pressure condition was imposed. 

 

Fig. 1. Dimension of the computation domain 

The turbulence closure scheme selected is  -RNG k  two-equation model which has 

been extensively used in industrial applications. The convection term is discretized 

using the second-order upwind scheme, and the diffusion term is discretized using the 

central difference scheme. Each solution was obtained by applying SIMPLE algorithm 

to solve the steady three-dimensional incompressible RANS equations. The conver-

gence residual is set as 10E-4.  

 

Fig. 2. Computational mesh 

The speed and direction of the airflow through different wind measurement points on 

the experimental ship are extracted from the CFD simulation results. Besides the con-

ventional wind measurement points on the both sides of the main mast, an additional 

anemometer used as reference was installed temporarily above the bridge during a sea 

trial.  

In order to validate the CFD simulation results, the ratio of wind speed measured 

by the anemometers on the mast and the reference anemometer above the bridge is 

quantified under different upwind angles (Fig.3). The ratio calculated from CFD sim-

ulation results is consistent with the average value calculated from the experimental 

dataset. Since the airflow mainly comes from the bow during ship voyage, no meas-

urement presents in certain upwind angles. 
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Fig. 3. Comparison of the wind speed ratios from CFD results and experimental dataset at the 
measurement site on the (a) port side and (b) starboard side 

3.2 PSO-LSSVM Modeling 

Since that it is difficult to carry out simultaneous field measurement of the undistorted 

sea surface wind, the relationship between the airflow through conventional anemom-

eter mounting sites on the main mast and the airflow through the reference point 

above bridge is obtained based on PSO-LSSVM modeling, although the airflow 

through the reference measurement point will also be affected by the presence of the 

ship hull and superstructure. If the method could effectively reduce the wind meas-

urement bias with respect to the reference measurement point, it could be applied to 

estimate the undisturbed freestream on the open sea surface by replacing the variables 

of airflow speed and direction taken from the reference measurement site with the one 

taken from the inlet of the computational domain.  

The flowchart of the PSO-LSSVM modeling is shown in Fig. 4. Compared to the 

airflow speed, the direction of the airflow through measurement site on the main mast 

is relatively less affected by the ship hull and superstructure. Thus the direction of the 

airflow through measurement site on the main mast is selected as the input variable.  

The output variables are the ratio of the airflow speed through measurement site on 

the main mast to the airflow speed through the reference measurement site above the 

bridge, as well as the direction difference between the airflow through measurement 

sites on the main mast and the airflow through the reference measurement site above 

the bridge.  

(a) (b)
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Fig. 4. Schematic diagram of the wind-bias correction 

The relationship between the input and output variables is implicitly obtained using 

LSSVM regression with RBF kernel. The optimal hyper-parameter selection is solved 

by PSO, in which particles represents candidate values of regularization parameter 

and kernel parameter . The particle number is 30. The maximum number of itera-

tions is 100. And the inertial weight 0w , learning rates 1c and 2c for the PSO algorithm 

are set as 0.9, 1.5, 1.5 respectively. 
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where i

mastwd is the direction of the airflow through the measurement site on the main 

mast, ir is the ratio of the airflow speed through the measurement site on the main 

mast to the airflow speed through the reference measurement site, and
i is the direc-

tion difference between the airflow through measurement site on the main mast and 

the airflow through the reference measurement site above the bridge.  

To reduce the wind measurement bias, the relative wind speed and direction are 

corrected according to corresponding ir and
i , then the corrected relative wind 

measurements from both sides on the main mast are merged by vector averaging. 

4 Results And Discussion 

In order to validate the effectiveness of the established bias correction model, the 

relative wind measurements from corresponding sites on the experimental ship were 

collected during a sea trial. The relative wind was measured at the frequency of 1Hz 

and move averaged with time window of 120s. The measurements from the anemom-

eters installed on both sides of the main mast were input to the model respectively, 

then the outputs from the model were merged by vector averaging, and finally the 
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result was compared to the measurement from the reference anemometer above the 

bridge.  

 

Fig. 5. Correction effects on (a) relative wind speed and (b) relative wind direction 

In the sample data, the mean relative wind speed on the main mast is 92% on average 

of the one above the bridge. It indicates that the wind speed bias is about one tenth of 

the referenced mean relative wind speed. The direction difference of the mean relative 

wind between the measurements on the main mast and above the bridge is 13.4°. As 

shown in Fig. 5, after correction by the established model, the wind measurements by 

the anemometer installed on the main mast are closer to the measurements by the 

anemometer installed above the bridge, which illustrates that relationship between the 

airflow through different wind measurement sites is well estimated by the PSO-

LSSVM regression.  

 

Fig. 6. Scatter plot of corrected wind speed ratio vs. direction difference 

The scatter plot (Fig. 6) illustrates the ratio of the mean relative wind speed and the 

difference of the mean relative wind direction before and after the bias correction. 
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The Root Mean Square (RMS) of the ratio of the mean relative wind speed r was im-

proved from 0.92 to 1.01, and meanwhile the RMS of the difference of the mean rela-

tive wind direction  was reduced from 13.4° to 6.8°.  

It should be noted that the correction effect is not satisfactory for measurements of 

certain wind speed and direction. One of the possible causes is the differences be-

tween the CFD simulations and the actual environment conditions of the experimental 

ship at sea including the atmospheric turbulence and the sea state. It would benefit the 

accuracy of the established model if different wind speed profiles and turbulence 

settings under finer upwind angle intervals are considered. 

5 CONCLUSION 

The PSO-LSSVM method is applied to address the problem of wind measurement 

bias due to airflow distortion caused by the presence of the ship hull and superstruc-

ture. The empirical results demonstrated that the implicit relationship between airflow 

through different wind measurement sites implicitly obtained by PSO-LSSVM model-

ing using CFD simulation is consistent with the one in the experimental data. The 

established model eliminates most of the wind speed bias of the mean relative wind 

speed, and the direction bias of the mean relative wind measurements was reduced by 

half. Considering the operability to measure the undistorted sea surface wind during 

sea trial, the airflow through the measurement site above the bridge was selected as 

reference. To estimate the undisturbed freestream on the open sea surface, the refer-

enced airflow would be replaced with the airflow at the inlet of the computational 

domain. It is required to validate the established model with the simultaneous field 

measurements of the undisturbed sea surface wind. Moreover, the atmospheric stabil-

ity and sea state is not considered in CFD simulations. The effects of wind bias cor-

rection in more complicated conditions will be investigated in future work. 
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