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ABSTRACT
In column stores, which ingest large amounts of data into multi-

ple column groups, query performance deteriorates. Commercial

column stores use log-structured merge (LSM) tree on projections

to ingest data rapidly. LSM tree improves ingestion performance,

but for column stores the sort-merge maintenance phase in an LSM

tree is I/O-intensive, which slows concurrent queries and reduces

overall throughput. In this paper, we present a simple heuristic

approach to reduce the sorting and merging cost that arise when

data is ingested in column stores. We demonstrate how a Min-Max

heuristic can construct buckets and identify the level of sortedness

in each range of data. Filled and relatively-sorted buckets are writ-

ten out to disk; unfilled buckets are retained to achieve a better

level of sortedness, thus avoiding the expensive sort-merge phase.

We compare our Min-Max approach with LSM tree and production

columnar stores using real and synthetic datasets.
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1 INTRODUCTION
Column-oriented databases are a dominant backend DBMSes for

supporting business decision-making processes [6, 22]. Column-

stores, unlike their row-store counterparts, store entire columns

contiguously, often in compressed form. Applications using column-

oriented databases, typically, coalesce columns into groups. Using

column groups significantly reduces the amount of data to be read,

achieving high read performance for analytic (range-query) work-

loads in which most queries reference a column group.

In the era of big data, applications also ingest high volume data,

often, arriving at high velocity. Log-structured merge tree (LSM

tree) logs incoming data in a buffer and periodically sort-merges the

data [15, 18] into larger sorted runs. Typically used in wide-column

NoSQL databases [2, 5, 11, 13], LSM trees are increasingly available

in column-store databases for fast writes and high throughput. Each

group of columns in a column-store requires storage maintenance,

thus column-stores have a greater need for a write-optimized in-

dex than row-stores. However, using an LSM tree index structure,

which itself has a significant write amplification in a column-store

database, reduces query performance.
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In a commercial system, such as Vertica [14, 19], all column

groups must be indexed with an LSM tree to preserve the row order

in accordance with the primary key of the groups. Thus a write to

a column group must coordinate with writes in other associated

column groups for consistency. Queries, however, are often not

uniform across column groups. Some column groups are more

popular and queried more often than other less popular groups.

Query performance of popular groups rapidly deteriorates due to

concurrent writes across all groups. One of the most important

reasons to use column-oriented databases is to divide a table into

column groups, but slow write performance across groups defeats

the purpose of dividing them into groups in the first place.

One naive strategy is to split an insert into multiple individual in-

serts on column groups; this, however, will forsake the consistency

and row order between column groups. An alternate strategy is

to optimize the expensive sort-merge phase of LSM trees. The key

idea is that a fewer I/Os during sort-merge will lead to improved

query performance and maintain consistency.

Current methods optimize this phase by adding summary struc-

tures within the buffer [4], improving when to merge [9, 10], and

by measuring overlaps between buffer and on-disk data [3]. In ev-

ery proposed approach, however, the sort-merge phase sorts all
key values at periodic intervals of time. We show, analytically and

experimentally, that this complete sorting of keys causes a large

fraction of the I/O in an LSM tree. In column stores this increase

in I/O during inserts, reduces concurrent query performance, but,

more importantly, this I/O due to sorting is redundant for answer-

ing analytical workloads. Our strategy, thus, is to compensate for

the sort-merge phase of an LSM tree by approximately sorting the

incoming data. To approximately sort we select the most compact
bucket in the buffer to write to disk. The advantage of writing com-

pact buckets to disk is that unlike LSM tree we do not need to wait

for periodic intervals to merge and can write out incoming data as

fast as it arrives; the disadvantage is that buckets may be written

out that eventually requires a merge.

In this paper, we present Min-Max approach, which caches data

in a buffer, and then evicts the most compact bucket. The most

compact bucket is decided based on a sliding window method that

computes the smallest [Min, Max] range over all windows. Written

buckets on disk are indexedwith an interval B-tree to improve query

performance and avoid merge. We show that for real datasets with

stable distributions, such a strategy compensates for the sort-merge

cost of an LSM tree, but still maintains good query performance.

The rest of this paper is organized as follows. We present an

example in Section 2. Section 3 analyses the cost of merge in LSM

trees. We introduce the Min-Max approach in Section 4. We show

the experiments in Section 5, and discuss about the related work in

Section 6. Finally, we conclude the paper in Section 7.
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Figure 1: Sample data 𝐷 to insert.

2 AN EXAMPLE: LSM TREE VSMIN-MAX
In this section, we present an example to contrast the LSM Tree

and the Min-Max approach. There are two types of LSM trees,

leveled [15] (proactive merging) and tiered (delayed merging) [9].

We illustrate the more commonly implemented leveled LSM tree

in this example; the recently proposed tiered LSM tree example is

presented in Appendix 8.1. However, we compare the costs of both

tiered and leveled LSM trees throughout this paper.

Figure 1 lists a sequence𝐷 of 32 incoming tuples (a tuple consists

of a key and data, although only the key is shown) and the order in

which they arrive.

When a buffer or a level is full, LSM tree merges sorted runs

of tuples into larger sorted runs either in the same level or in the

higher level of the tree. Figure 2a shows the state of the leveled LSM

tree before and after a merge. The data arrives at the in-memory

buffer level 𝐿0 with a size of 𝐵 = 4 (4 tuples). In this example, LSM

tree is configured with a level ratio of 𝑇 = 3 (representing the

maximum size ratio between levels in LSM tree). If a level is full,

LSM tree recursively merges data runs at a higher level.

Figure 2a illustrates five merging steps performed by the LSM

tree approach. The first four tuples (9, 10, 3, 18) are already sorted

in memory and written to disk at 𝐿1 (see row 1). In row 1, the sorted

buffer (1, 13, 20, 24) is merged with 𝐿1 sorted run (3, 9, 10, 18) to
write out the sorted sequence of eight tuples (1, 3, 9, 10, 13, 18, 20, 24)
at 𝐿1. A recursive merge is shown in row 4, in which a merge

between the levels 𝐿0 and 𝐿1 leads to a full 𝐿1 level and is thus

followed by a merge between the levels 𝐿1 and 𝐿2. The ratio of data

between any two levels is always maintained at a ratio of 3.

In cases where data is mostly sorted, an LSM tree chooses to

append sorted runs instead of merging them. For example, in row

5, a merge between levels 𝐿0 and 𝐿1 can be replaced by appending

levels 𝐿0 and 𝐿1 instead. In this case, skipping the merge causes

a small reduction in data sortedness (only tuple 5 is out of order).

However, the likelihood of such near-sorted alignment depends on

the distribution of the data. Although LSM tree can benefit from

such distribution, it is not distribution-aware.

The key idea behind the Min-Max approach is to determine a

window which is the most sorted with respect to the current buffer.

Given a window size, which is less than the buffer size, inMin-Max,
we determine the most sorted window by computing the difference

between maximum and minimum values within a window and find-

ing the minimum value over several sliding windows. We illustrate

this over the data in Figure 1 considering the same buffer capacity

of 𝐵 = 4 and a window size of 2.

For example, in the first row buffer contains tuples (9, 10, 3, 8) and
then sort those tuples (3, 9, 10, 18). The window [9, 10] is the most

sorted amongst all windows, it is selected and written to disk as a

bucket since its value range is smallest. Next, the tuples with keys

1 and 13 will be loaded in the row 2. Every time a window worth

of data fills up, a new bucket is written to disk and cleared from

(a) Inserting the sample data 𝐷 using leveled LSM trees.

(b) Inserting the sample data 𝐷 using Min-Max.

Figure 2: The behavior of leveled LSM tree and Min-Max.

the buffer. The last column in Figure 2b summarizes the buckets

written during the ingestion of input data.

In this particular example, unlike LSM Tree, Min-Max runs do

not require a merge as the distribution already writes nearly-sorted

buckets. Table 1 shows the cost of the LSM-Tree and the Min-Max
in number of merges and number of I/O operations. Leveled-LSM

requires 6 merges with 36 writes and 20 reads; Tiered-LSM requires

2 merges with 28 writes and 8 reads. Meanwhile, Min-Max does

not require any merges. The number of writes is equal to the total

number of written buckets (32/2 = 16 buckets)

Next, we examine read query performance using key-range

queries. Without loss of generality queries𝑄1,𝑄2 and𝑄3 have key-

ranges [10, 12], [19, 20] and [14, 20], respectively. Table 2 presents
number of I/Os needed for each query. Tiered-LSM requires more



On Lowering Merge Costs of an LSM Tree SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

Table 1: Merge cost with different methods

Leveled-LSM Tiered-LSM Min-Max

#of merges 6 2 0

#of I/Os (Writes) 36 I/O 28 I/O 16 I/O

#of I/Os (Reads) 20 I/O 16 I/O 0 I/O

I/O than both Leveled-LSM andMin-Max in all three queries. Leveled-
LSM exhibits the best performance, but Min-Max query perfor-

mance is equivalent for 𝑄1, 𝑄2 and 𝑄3.

Table 2: Query cost with different methods

Range Query Leveled-LSM Tiered-LSM Min-Max

𝑄1 : [19, 20] 2 I/O 2 I/O 2 I/O

𝑄2 : [11, 12] 2 I/O 3 I/O 2 I/O

𝑄3 : [14, 20] 4 I/O 5 I/O 4 I/O

Despite lower merge and I/O costs, there are several challenges

for the Min-Max approach. First, we need to efficiently determine

the most sorted bucket. In this example we used a sliding window

approach, but in general, sliding a window, data tuple at a time is

computationally expensive. Second, it is equally likely that a bucket

which is most sorted currently is considered poorly sorted as new

data arrives. Third, the function Min-Max itself might be a poor

estimator of sortedness depending on the attribute. In Section 4 we

propose an efficient index using Min-Max, which uses a reverse

index to address the first issue and an interval B-tree to address the

second issue. We leave the analysis of the quality of the |𝑚𝑎𝑥 −𝑚𝑖𝑛 |
function as part of future work.

3 THE MERGE COSTS IN LSM TREE
In the previous example we compared the merge cost in LSM trees

with a Min-Max bucket eviction approach on a small example data.

In this section, we mathematically determine the number of merges

in a LSM tree, a quantity which influences the total I/O cost of LSM

trees.

Table 3 presents the parameters governing the merge cost in

an LSM tree. Given 𝑁 data entries and a buffer of size 𝐵, the total

number of buffers that will be ingested by an LSM tree is 𝑀 =

⌊𝑁 /𝐵⌋. Given𝑇 as the ratio of data entries between two consecutive

levels, the total number of levels in an LSM tree is 𝐿 = ⌊𝑙𝑜𝑔𝑇𝑀⌋ + 1.

Number of merges is recursively defined based on 𝐿, the number

of levels in an LSM tree and 𝑀 , the total number of buffers. To

compute the number of merges, we observe that
𝑀
𝑇 𝑖 is the number

of buffers at any 𝐿−𝑖 level.We consider the floor of
𝑀
𝑇 𝑖 because when

the last buffer arrives, i.e., the
⌈
𝑀
𝑇 𝑖

⌉𝑡ℎ
buffer, it is nto accomodated

in the current level, but instead the merge with the higher level

happens. In tiering merges happen whenever this last buffer arrives

and so number of times merges happen is simply the sum of number

of buffers at any 𝐿−𝑖 level (Equation 2). In leveling, a merge happens

every time data from the previous level is merged with level 𝑖 i.e.,⌊
𝑀

𝑇 𝑖−1

⌋
. However, this factor must be discounted by

⌈
𝑀
𝑇 𝑖

⌉
which is

the number of times level 𝑖 is empty, and therefore no merge is

needed (Equation 1).

Table 3: Notations used in this paper

Parameter Description

𝑁 The total number of data entries

𝐵 The buffer size (Level 𝐿0)

𝑀 = ⌊𝑁 /𝐵⌋ The total number of buffers

𝑇 The ratio between two consecutive levels

𝐿 = ⌈𝑙𝑜𝑔𝑇𝑀⌉ + 1 The total number of levels

𝑚𝑙𝑒𝑣𝑒𝑙 ,𝑚𝑡𝑖𝑒𝑟 The total number of merges

in Leveled/Tiered-LSM

𝑚𝑙𝑒𝑣𝑒𝑙 =

𝐿−1∑
𝑖=1

(⌊
𝑀

𝑇 𝑖−1

⌋
−
⌈
𝑀

𝑇 𝑖

⌉)
(1)

𝑚𝑡𝑖𝑒𝑟 =

𝐿−1∑
𝑖=1

⌊
𝑀

𝑇 𝑖

⌋
(2)

The number of I/Os in level and tiered LSM tree are proportional

to the number of merges respectively for each merging policy.

Appendix 8 presents how read and write costs are related to number

of merges.

4 MIN-MAX
The basic idea in Min-Max is to buffer data as in LSM tree but

determine data bucket(s) to write to disk, which will lead to least

merge cost. To determine this bucket, Min-Max uses a sliding win-

dow approach in which it computes the difference between the

maximum and minimum values in the window. The window which

has the smallest difference value represents the most sorted bucket
amongst the window choices in the buffer, which will be written to

the disk. Therefore, Min-Max evicts this window as a bucket. The

min-max approach is an online approach to determining the most

relevant window, without assuming anything about the incoming

data distribution. A formal proof about the competitive ratio of this

approach is beyond the scope of the current paper.

Algorithm 1 presents theMin-Max approach.Min-Maxmaintains

a sorted cache 𝐶 with a window𝑊 . The cache accepts windows(s)

worth of data at a time, and maintains data according to key-order

(Line 2). If cache size reaches its limit, window(s) are evicted (Lines

4-6) based on the smallest |𝑀𝑎𝑥 −𝑀𝑖𝑛 | value. Sliding the window

on a per eviction basis can be computationally expensive. In our

implementation, we maintain a reverse index pointing to windows

where data was inserted so that windows which do not have in-

coming data need not be computed for |𝑀𝑎𝑥 −𝑀𝑖𝑛 | value again.
In our implementation, we also set the window size as equal as the

I/O size in LSM tree (bucket size).

The Min-Max approach does not completely sort the data on

disk as in an LSM tree. There are two choices for Min-Max to

carry maintenance tasks: one, sort the data at periodic intervals, or

alternatively let it remain unsorted and use indexes to ameliorate

the cost of computing queries. We use an interval B-tree (IB-tree)

to index the written out buckets. In an IB-tree, buckets are indexed
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Algorithm 1:Min-Max

1 Min-Max ():
input : Sorted cache 𝐶 , cache size 𝑆𝑖𝑧𝑒

event : Every time a data tuple 𝐷 is inserted

2 Find a position in sorted cache 𝐶 to insert 𝐷

3 𝑆𝑖𝑧𝑒 += 1

4 if (𝑆𝑖𝑧𝑒 == CACHE_LIMIT) then
5 Evict-Window(𝐶, 𝑆𝑖𝑧𝑒)
6 𝑆𝑖𝑧𝑒 -= WINDOW_SIZE

Figure 3: The data structure of IB-Tree.

using their min-max key ranges. The leaves and internal nodes

of this tree store interval ranges sorted on the low value of the

interval ranges. The range of values [𝐿,𝐻 ] of an internal node of

a tree is the key range of the low key boundary of buckets in its

sub-tree. Meanwhile,𝑀𝑎𝑥𝑖 of a node indicates the highest value of

the high key boundary of buckets in its sub-tree. Using this max

value bounds the search. The size of node is a factor of page size (i.e.,

𝑘 ∗4𝐾𝐵) so that all nodes in IB-Tree can be efficiently stored on disk.

The node’s entry in a IB-Tree keeps its data (i.e., 𝐵𝑢𝑐𝑘𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ) 1

in all types of nodes (leaf or non-leaf nodes).

There are a few of advantages of using IB-Tree. First, IB-tree

indexes on the bucket (i.e., group of tuples) instead of projection

tuple, its size is reduced by the number of tuples in a bucket. Second,

it reduces the time to search for a bucket from𝑂 (𝑁 ) to𝑂 (𝑙𝑜𝑔𝑁 ) [1,
7] (similar to the search cost in B-Tree). Third, IB-Tree is designed

for either full or partial loading in memory.

5 EXPERIMENT
Systems Experiments were conducted on a desktop computer with

an Intel Core i7-3770 3.4Ghz (8 cores), 8GB of main memory, 1 TB

SATA HDD and 256 GB Intel SATA SSD 600p, and Ubuntu 16.04

64-bit operating system.

Dataset & Queries Experiments used real-world data from the

New York City Taxi (NYC) dataset [17] with nearly 148 million

of data records. Three different projections were deployed for

each indexing approach: 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛1 (29 columns, indexed on 𝐼𝐷),

𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛2 (4 columns, indexed on 𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) and 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛3

(5 columns, indexed on 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 ). Table 4 summarizes the set

of read queries used to measure performance. Key range refers to

a delta in the indexed attribute value, i.e., range between 𝑋 and

1𝐵𝑢𝑐𝑘𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝑒𝑟 points to physical bucket stored on disk (composed of 𝑓 𝑖𝑙𝑒𝐼𝐷

and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ).

𝑋+ < 𝑘𝑒𝑦𝑟𝑎𝑛𝑔𝑒 >, where 𝑋 refers to the value of the indexed at-

tribute (𝑡𝑟𝑖𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝐼𝐷 , or 𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡 ). Selectivity refers to

the ratio between the number of query result tuples to the total

database tuples. Our implementation is available at [12]

Note that the cost of IB-Tree in our implementation is small

(≤ 100𝐾𝐵) and considered as negligible (IB-Tree only keeps the

pointer of buckets and their key ranges).

Table 4: Query Range and Selectivity.

Range Query Key Range Selectivity

Q1 0.003 0.003

Q2 0.005 0.006

Q3 0.020 0.015

Q4 0.030 0.026

Q5 0.055 0.050

5.1 The Merge costs of LSM tree in Columnar
databases

Columnar databases store data tables by column where each col-

umn is stored separately. This allows a query to access that precise

data that it needs. In general, each column can be stored separately,

but this leads to high tuple reconstruction cost. Column grouping

(or projection in C-Store [19] or Vertica [14]) is one way to re-

duce the tuple reconstruction cost. The idea is to group a subset of

columns together, to benefit query operations that accesses all these

columns. This group of columns is called projection in C-Store [19]

or Vertica [14]. Column stores trade storage for improved tuple

reconstruction cost and query access. For instance, it is possible to

replicate columns across projections as well as support a superpro-
jection with all columns. We assume a simplified columnar store

model in which there are partitioned projections with no replication

of columns across projections, and no superprojections.

Figure 4 shows both the number of merges (bar charts) and the

amount of read and write data (lines) of different data-set sizes. The

y-axis on the left presents the amount of read and write data of the

lines; meanwhile the y-axis on the right presents the total number

of merges of the bar charts. Clearly tiered LSM causes fewer merges

than levelled LSM but in both the cases the number is dominated by

the constant factors that are multiplied on a per level basis. These

constants play a significant role in a column database as shown

in Figure 4. In this experiment we measure the total number of

merges with different size of data in a columnar store. The column

store has two configurations: 5 projections with each projection

has 3 columns, and 1 projection with all columns. As shown in this

Figure, while the number of merges of single LSM Tree is quite

reasonable, those of multiple LSM Trees are multiplied by the factor

of the number of projections and the 𝑇 factor. The amount of read

and write data of those candidates are proportional to the number

of merges and number of projections. In contrast, Min-Max has

negligible merges.

5.2 Loading Costs
Figures 5 summarizes the loading costs for the Min-Max and LSM

tree approaches on both HDD with the different data-set sizes. The
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Figure 4: The total number of merges during data-loading
with tiered and levelled LSM trees. Multiple LSM trees on
columnar stores, single LSM tree on one column and Min-
Max. The columnar has 5 projections each of projection has
3 columns; whereas on-column keep the data in only one
projection (all columns).

Figure 5: Loading runtimes on HDD with different dataset
sizes.

LSM tree runtimes include the costs for reorganizing data in all pro-

jections. It’s worth emphasizing that the results of LSM tree are for

one-time bulk-load ingestion, whereas continuous data ingestion

or incremental data loading will likely lead to additional cluster-

ing/optimization overheads. Meanwhile, Min-Max is an on-line

process that does not incur any additional overheads for incremen-

tal data loading.

We observed thatMin-Max significantly improved data load time

for the column-oriented DBMS on an HDD; it was, on average, 17

times faster than LSM tree across all tested data-sets.

5.3 Read Query I/O
We evaluate our method by using the list of queries mentioned in

Table 4. Figure 6 presents the total number of accessed I/O of Min-
Max and LSM tree. As shown in this figure, LSM tree have better

query performance in all five queries.Min-Max takes more I/O than

LSM tree. On average,Min-Max was 49.7% percent higher LSM tree.

This is obvious since data in LSM tree are regularly ordered in all

levels.

Figure 6: Total number of I/Os of different queries.

6 RELATEDWORK
While many DBMSes including key-value stores, relational DBMSes

or columnar stores suffer from poor write performance, the log-

structure merge tree (LSM tree) [15, 18] is a common solution for

this problem. The main idea is to transform small random writes

into large sequential writes by buffering and reorganizing data in a

large buffer before flushing them to disk at a batch. For example,

LevelDB [11], BigTable [5], HBase [2], Cassandra [13] are some key-

value stores apply LSM tree, while MySQL [16] and SQLite4 [8] are

relational DBMSes that support LSM tree indexing. Other enhanced

variations of LSM tree used in Monkey [9] and Dostoevsky [10] to

further improve the DBMS performance by using BloomFilter and

changing merging policies. However, the main drawback of LSM

tree, i.e., large write amplification
2
still remains.

In [20, 21], we introduced the primary idea of approximate sort-

ing to lower maintenance costs. However, these index structures

do not exploit available buffer cache to sort data in main memory.

Using main memory efficiently for improved write performance

is explored in TRIAD [3]. TRIAD (i) keeps hot-entries longer in

the main memory; (ii) optimizes the tiered merging policy by al-

lowing for overlaps between runs in a level; and (iii) improves the

efficiency of writes in a commit-log. TRIAD, however, still relies on

LSM tree at the back end. It also does not address the query lookup

performance. In this work we have suggested an alternate way for

compensating the merge cost while efficiently using main memory.

7 CONCLUSION
In this paper, we presented a simple, yet efficient strategy (Min-
Max) for lowering the maintenance costs of an LSM-tree. Often

maintenance costs increase with the size of data. In Min-Max ap-

proach we show that if distribution is stable the maintenance cost

is significantly lowered by observing distribution and using simple

statistics for writing data to disk. We have shown this as a viable

method in column stores, which have a high cost of using LSM

trees.
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2
Write amplification is the ratio of total write IO performed by the DBMS to the

total data in the DBMS. High write amplification increases the loading cost on storage

devices.
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Figure 7: Data loading with tired and tiered LSM-Trees.
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8 APPENDIX
8.1 Example: Tiered LSM-Tree
The Figure 7 shows the Tiered LSM-Tree behavior during the data

ingestion (Sample data D - Figure 1).

8.2 LSM-Tree merge costs
The the number of writes and reads of Tiered-LSM and Leveled-LSM

are presented in Formulas ( 3 and 5) and ( 4 and 6).

𝑛𝑅𝑤 =

𝐿−1∑
𝑖=1

(⌊
𝑀

𝑇 𝑖−1

⌋
−
⌊
𝑀

𝑇 𝑖

⌋)
𝐵𝑇 𝑖−1

𝑃
(3)

Proof. Formula 3 can be proved as follows. The Tier-LSM has L

levels (𝑖 .𝑒 ., [0;𝐿−1]). Since Level 0 is the head of LSM resided main-

memory we only consider levels in [1;𝐿 − 1]. Given 𝑀 = ⌊𝑁 /𝐵⌋,
at level 𝐿 = 1, we have 𝑀 times level 𝐿 = 0 get full and flush a

run to level 𝐿 = 1. Among these 𝑀 times, there are ⌊𝑀
𝑇
⌋ times

level 𝐿 = 1 get full and all data will be written to level 𝐿 = 2

instead of level 𝐿 = 1. In level 𝐿 = 1, 𝑟𝑢𝑛 = 𝐵. Therefore, we have:
𝑟𝑢𝑛
𝑃

∗ (𝑀 − ⌊𝑀
𝑇
⌋) = 𝐵

𝑃
∗ (𝑀 − ⌊𝑀

𝑇
⌋) write IO. At level 𝐿 = 2: we

have ⌊𝑀
𝑇
⌋ times level 𝐿 = 1 get full and flush a run to level 𝐿 = 2.

Among these ⌊𝑀
𝑇
⌋ times, there are ⌊ 𝑀

𝑇 2
⌋ times level 𝐿 = 2 get full

and all data will be written to level 𝐿 = 3 instead of level 𝐿 = 2. In

level 𝐿 = 2, 𝑟𝑢𝑛 = 𝐵𝑇 . Therefore, we have: 𝑟𝑢𝑛
𝑃

∗ (⌊𝑀
𝑇
⌋ − ⌊ 𝑀

𝑇 2
⌋) =

𝐵𝑇
𝑃

∗ (⌊𝑀
𝑇
⌋ − ⌊ 𝑀

𝑇 2
⌋) write IO. At Level 𝐿 = 𝑖 (1 ≤ 𝑖 ≤ 𝐿 − 1):

we have ⌊ 𝑀
𝑇 𝑖−1 ⌋ times level 𝐿 = 𝑖 − 1 get full and flush a run to

level 𝐿 = 𝑖 . Among these ⌊ 𝑀
𝑇 𝑖−1 ⌋ times, there are ⌊𝑀

𝑇 𝑖 ⌋ times level

𝐿 = 𝑖 get full and all data will be written to level 𝐿 = 𝑖 + 1 instead

of level 𝐿 = 𝑖 . In level 𝐿 = 𝑖 , 𝑟𝑢𝑛 = 𝐵𝑇 𝑖−1. Therefore, we have:

𝑟𝑢𝑛 ∗ (⌊ 𝑀
𝑇 𝑖−1 ⌋ − ⌊𝑀

𝑇 𝑖 ⌋) = 𝐵𝑇 𝑖−1
𝑃

∗ (⌊ 𝑀
𝑇 𝑖−1 ⌋ − ⌊𝑀

𝑇 𝑖 ⌋) write IO. Therefore
the total number of writes:

𝑛𝑅𝑤 =
∑𝐿−1
𝑖=1 (⌊ 𝑀

𝑇 𝑖−1 ⌋ − ⌊𝑀
𝑇 𝑖 ⌋) ∗ 𝐵𝑇 𝑖−1

𝑃
.

□

𝑛𝐿𝑤 =

𝐿−1∑
𝑖=1

[ ⌊
𝑀

𝑇 𝑖

⌋
(𝑇 + 1)𝑇 𝑖𝐵

2𝑃
+

(⌊
𝑀

𝑇 𝑖−1

⌋
%𝑇

) (⌊
𝑀

𝑇 𝑖−1

⌋
%𝑇 + 1

)
𝑇 𝑖−1𝐵
2𝑃

]
(4)

𝑛𝑅𝑟 =

𝐿−1∑
𝑖=1

[ ⌊
𝑀

𝑇 𝑖

⌋
(𝑇 − 1)𝐵

𝑃

]
=𝑚𝑇

[
(𝑇 − 1)𝐵

𝑃

]
(5)

𝑛𝑉𝑟 =

𝐿−1∑
𝑖=1

[ ⌊
𝑀

𝑇𝑖

⌋
(𝑇 − 1)𝑇 𝑖𝐵

2𝑃
+

(⌊
𝑀

𝑇 𝑖−1

⌋
%𝑇

) (⌊
𝑀

𝑇 𝑖−1

⌋
%𝑇 − 1

)
𝑇 𝑖−1𝐵
2𝑃

]
(6)

Similar methods can be applied to have the total number of IOs

(write) in Leveled-LSM (Formulas 4) and (read) for Tiered-LSM and

Leveled-LSM shown in Formulas 5 and 6.
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