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Abstract—In the second-half of the past century the expeditious
development of systems and control theory together with the
achievements of digital control and signal processing have set
the stage for a renewed interest in the study of periodic dynam-
ical systems, specially in aerospace realm, control of industrial
processes, mechanical systems, modeling of periodic time-varying
filters and networks, circuit simulation, and multirate sampled-
data systems, etc. These complicated systems are composed of
large numbers of separate devices and they are described by
very large mathematical models consisting of more and more
mathematical systems with very large dimensions. Simulations of
such systems can be unacceptably expensive and time-consuming
due to limited computer memory and CPU consumption. The
idea of model reduction is that the large models should be
replaced by smaller models which are amenable to fast and
efficient simulation and which still capture the devices’ input-
output behavior to an accepted accuracy. In this paper we review
the different approaches for model reduction of time varying
systems, and depict the numerical results showing the advantages
and disadvantages of these approaches.

Index Terms—Linear time-varying systems, Model order re-
duction, Krylov approximation, Lyapunov equations, Balanced
truncation model reduction.

I. INTRODUCTION

In this paper, we analyze the linear time-varying (LTV) sys-

tems for both continuous and discrete-time case, and study the

concepts of model reduction for those systems. A continuous-

time LTV system in general has the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0

y(t) = C(t)x(t),
(1)

where x(t) ∈ R
n, called the state vector, u(t) is the system

input, y(t) is the system output, and n is the system order

at any given time t. The matrices E(t), A(t), B(t), C(t) are

of order compatible with x(t), u(t), and y(t) and assumed to

be continuous functions of time. All the system matrices are

time-varying, periodic with period K ≥ 1 and the matrices

E(t) and A(t) can be singular at any given time t.

Formally speaking, a reduced-order system of order r for

system (1) would be a system of the form

Ẽ(t) ˙̃x(t) = Ã(t)x̃(t) + B̃(t)u(t),

ỹ(t) = C̃(t)x̃(t).
(2)

The system is of potentially smaller dimension, i.e., r << n,

and thus lower computational cost, than the original sys-

tem (1), but it is now in a form suitable for use in higher

level simulation.

A linear discrete-time periodic descriptor system with time-

varying dimensions has the form

Ekxk+1 = Akxk +Bkuk,

yk = Ckxk, k ∈ Z,
(3)

where Ek ∈ R
µk+1×nk+1 , Ak ∈ R

µk+1×nk , Bk ∈
R

µk+1×pk , Ck ∈ R
qk×nk are time-varying, and periodic with

a period K ≥ 1 . Clearly,
∑K−1

k=0
µk =

∑K−1

k=0
nk = n. The

matrices Ek are allowed to be singular for all k.

Analogous to the continuous-time case, a reduced-order

system of dimension r for system (3) would be a system of

the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk,

ỹk = C̃kx̃k, k ∈ Z,
(4)

where for each k, x̃k is an rk-dimensional vector,
∑K−1

k=0
rk =

r and r ≪ n. Apart from having much smaller state-space

dimension, the reduced-order system preserves some essential

and important characteristics of the original system.

II. PRELIMINARIES

Model reduction using projection formulation has become

a popular and well accepted technique in the field of sig-

nal analysis and electrical interconnections. Today, the best

choices for these projection subspaces, in model reduction of

LTV continuous-time systems, are Krylov subspaces. In this

approach, the lower order model is obtained such that some of

the first moments (and/or markov parameters) [1], [5], [12],

[13], [16] of the original and reduced systems are matched

where the moments are the coefficient’s of the Taylor series

expansion of the transfer function at a suitable point. Methods

based on multipoint rational approximations [11], [13] are also

efficient for particular cases.

However, model reduction for time-varying systems is much

more complex in that projections approach. Balanced trunca-

tion methods [20], [7], [4] have been applied for model reduc-

tion of LTV discrete-time case. Iterative techniques [2], [19],

[21] are also introduced for large scale problems. Therefore,

huge talents have been worked on developing the techniques

of model reduction using rational approximations and the

projection formulations.

III. KRYLOV-SUBSPACE BASED PROJECTION METHODS

Nowadays, moment matching using Krylov subspaces is

one of the best choices in order reduction of large scale

systems and it was first proposed in [17]. In this approach,

the lower order model is obtained by matching the moments

(and/or Markov parameters) of the original and reduced-order

systems where the moments are the coefficients of the Taylor



series expansion of the transfer function about a suitable

expansion point. When the expansion point tends to infinity,

the coefficients are called Markov parameters. Well established

algorithms, such as Arnoldi [18], or two-sided Arnoldi [5]

can be used to compute a projection framework for the

reduced-order system. A very recent release of the Krylov

subspaces based order reduction technique is global Arnoldi

[19], which approximates the large, sparse systems (specially

MIMO systems) to significantly small order.

For simplicity, let us consider the system (1) in linear time-

invariant (LTI) form

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(5)

Assume that the matrices E, A present is system (5) are

nonsingular. The output function for u to y for system (5)

can be defined as ȳ(s) = H(s)ū(s), where ū(s) and ȳ(s) are

the Laplace transforms of u(t) and y(t) with x(0) = 0, and

H(s) = C(sE − A)−1B is called the transfer function of

the system. Using Krylov subspace method, the reduced-order

model is computed applying suitable projections to system (5)

given by

Ẽ(t) = V T (t)E(t)U(t), Ã(t) = V T (t)A(t)U(t),

B̃(t) = V T (t)B(t), C̃(t) = C(t)U(t),
(6)

where the matrices V and U are referred to as the left

projection matrix and the right projection matrix, respectively.

The projection matrices are calculated via Krylov subspaces,

defined in the following:

Definition 1: The order m Krylov subspace is the space

defined as

Km(A, b) = span{b, Ab,A2b, ......, Am−1b}, (7)

where A ∈ R
n×n and b ∈ R

n is called the starting vector. If

b is not a single-dimensional vector, but B = [b1, b2, . . . , bp],
then the Krylov subspace define above is called block Krylov

subspace.

In most application related models, choosing a suitable basis

for the concerned Krylov subspace is the most crucial task,

since it guarantees the better approximation of the reduced-

order model. In one-sided methods, the most popular algorithm

is the Arnoldi algorithm which finds an orthonormal basis for

a Krylov subspace [5], [18]. The classical Arnoldi method

finds a set of orthonormal vectors that can be considered

as a basis for a given Krylov subspace with one starting

vector. There are several approaches of Krylov projection

method. The list of very recent and well known methods

includes the multipoint Krylov approximation technique, and

the iterative rational Krylov algorithm (IRKA), singular value

decomposition based Krylov (SVD-Krylov) technique [2], [6].

In multipoint Krylov approximation technique [8], [13], [15],

the projection matrices are computed using the block krylov

subspaces at multi-frequency point. A recycle technique in

the Krylov subspace is applied in [8] which enables to use

the same Krylov subspace to find the projection matrices at

multiple frequency points. The advantage of the multipoint

Krylov approximation technique is that it uses the recycle

Krylov approximation scheme and hence demands no extra

cost to obtain the projector at multiple frequency-points. An

efficient reduced-order model can be approximated within

few iteration steps due to this recycle strategy. The main
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Fig. 1. Frequency response of transfer function: exact system versus reduced-
order system of order r = 3 (RF circuit).

disadvantage is the limitation of the frequency range and no

a-priori error bounds can be suggested.

On the other hand, the iterative rational Krylov algorithm

(IRKA) technique [6] is a more efficient approach where the

reduced-order model is obtained via the Krylov based multiple

interpolations. The SVD-Krylov is a two sided projection

technique which combines the SVD and the Krylov subspace

method [14]. This method first apply a simple descretization

scheme on the original periodic model, and reformulate an

equivalent time-invariant form. It then reduces it with a two

sided projection technique, where one side of this reduction

technique is SVD based Gramian approximation, and the other

side is based on Krylov based projection. The advantage of the

SVD-Krylov approximation is that it uses the recycle Krylov

scheme but an a-priori error bounds can be suggested.

IV. NUMERICAL RESULTS OF KRYLOV-SUBSPACE BASED

PROJECTION METHODS

In this section, we consider numerical results of a simple ex-

ample where the data is obtained from a small radio frequency

(RF) circuit simulator as per [7]. We compare the similar

results coming from different Krylov projection techniques

of model reduction. The circuit system consists of 5 nodes,

and is excited by a local oscillator (LO) at 2 KHz driving

the mixer. The corresponding time-varying system is obtained

around a steady state of the circuit at the oscillatory frequency;

a total of M = 129 timesteps are used to describe the steady-

state waveform. For the model reduction procedure, the input

function B(t) is a constant column vector, corresponding to

the continuous small-signal input. To analyze the circuit, we

consider a period of T = 1ms for the steady state analysis. The

final discretized model is a real LTI system of order N = 645.

The reduced-order model is generated by matching four

moments of the Krylov subspace generated for every ex-

pansion point. We use the rank revealing QR factorization

for the formulation of the projected matrix with tolerance,

tol = 10−5.
We obtain a reduced-order model of order r = 3 . Fig. 1

shows a very nice matching of the baseband transfer functions

HTD(s) and H̃TD(s), and the relative error in Fig. 2 is very

small which reflects the efficiency of the reduced-order model.

In Fig 3 we depict the bode plots of the original and the

reduced-order models. They show a very nice matching and

very negligible error.
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order r = 3.

V. BALANCED-TRUNCATION PROJECTION METHOD

A popular model reduction technique for LTV systems in

discrete-form is the Balanced-truncation (BT) approach where

the original state space system is transformed into a balanced

form whose reachability and observability Gramians become

diagonal and equal [2], [3], [4], [20]. The balanced truncation

method truncates all those states of the balanced system that

are both difficult to reach and to observe. An important

property of this method is that asymptotic stability is preserved

in the reduced order system and an a priori error bound can

be computed. Model order reduction of periodic systems using

balanced-truncation has been considered in [3], [20].

We assume that the set of periodic matrix pairs

{(Ek, Ak)}
K−1

k=0
is periodic stable [3]. The periodic matrix

equations that arise in the context of periodic control and

model order reduction (MOR) of periodic systems can be

represented by the following generalized periodic discrete-time

Lyapunov equations (PDALEs) [2], [3]

AkXkA
T
k − EkXk+1E

T
k = −BkB

T
k , (8)

and

AT
kQk+1Ak − ET

k QkEk = −CTCk, (9)

where Pk, Qk are called the periodic controllability Gramian,

and the observability Gramian of the periodic system, respec-

tively. Here PK = P0, QK = Q0 are periodic.

The numerical solutions of (8) and (9) have been considered

in [3] for time-varying matrix coefficients in descriptor form.

The method proposed there is based on an initial reduction of

the periodic matrix pairs {(Ek, Ak)}
K−1

k=0
to the generalized

periodic Schur form [21], [10] and on solving the resulting

generalized periodic Sylvester and Lyapunov equations. As

a result, the method is computationally expensive and not

suitable for large scale problem.

An efficient approach which works with the cyclic lifted

representation of (3) and the corresponding lifted form of

(8) has been considered in [7]. In practice, one should avoid

these direct methods for large-scale problems because the

computational complexity because they require computational

complexity of O(Kn3
max), where nmax = max((nk). Itera-

tive solutions of (8) and (9) using their corresponding lifted

structures have been considered in [2]. A generalized version

of the alternating direction implicit (ADI) method and the

Smith method are proposed there for the solutions of (8) and

(9) using their corresponding lifted structures, respectively.

The main focus of this iterative computation is to preserve

the block diagonal structure of the approximate solution at

each iterative step. Unfortunately, this is not observed at each

iteration steps of the generalized ADI method proposed in [2].

The generalized reflexive inverses of periodic descriptor

systems via the corresponding lifted representation has been

considered in [21]. Model reduction of periodic descriptor

system (3) exploiting the generalized reflexive inverses of

periodic matrix pairs has been considered in [9].

Let us assume that Pk, and Qk be full rank Gramians

for k = 0, 1, . . . ,K − 1 of system (3). Then the Cholesky

factorizations of the Gramians are given by

Pk = RkR
T
k , Qk = LkL

T
k .

We then compute the singular value decomposition

LT
kEk−1

Rk = [Uk,1, Uk,2]

[

Σk,1

Σk,2

]

[Vk,1, Vk,2]
T ,

(10)

where [Uk,1, Uk,2], [Vk,1, Vk,2] are orthogonal, Σk,1 =
diag(σk,1, . . . , σk,rk), Σk,2 = diag(σk,rk+1

, . . . , σnk
), with

σk,1 ≥ · · · ≥ σk,rk > σk,rk+1
≥ . . . ≥ σk,nk

> 0
are called the Hankel singular values, of system (3), for

k = 0, 1, . . . ,K − 1. It should be noted that for a balanced

system, truncation of states related to the small causal Hankel

singular values does not change system properties essentially

[7].

We then compute the projection matrices as

Sk,r = [Lk+1Uk+1,1Σ
−1/2
k+1,1], Tk,r = [RkVk,1Σ

−1/2
k,1 ],

and finally a reduced-order system of dimension r̄ =
(r0, r1, . . . , rK−1) of (3) can be found as [3]

Ẽk = ST
k,rEkTk+1,r, Ãk = ST

k,rAkTk,r,

B̃k = ST
k,rBk, C̃k = CkTk,r,

(11)

where Ẽk ∈ R
rk+1×rk+1 , Ãk ∈ R

rk+1×rk , B̃k ∈ R
rk+1×mk ,

C̃k ∈ R
pk×rk are K-periodic matrices,

∑K−1

k=0
rk = r, and

rk ≤ nk, n ≪ r.

Let H(z) = C(zE − A)−1B be the transfer function of the

original lifted system, and H̃(z) be the transfer function of the

corresponding reduced-order lifted system [1], [2]. Then the

reduced order model has the following H∞-norm error bound

(see, e.g. [20], [1])

‖H − H̃‖H∞
≤ 2 trace (diag(Σ0,2, . . . ,ΣK−1,2)), (12)

where Σk,2, k = 0, 1, . . . ,K−1, contains the truncated causal

Hankel singular values.
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Fig. 4. Normalized residual norms for the causal reachability and observ-
ability lifted projected Lyapunov equations.

VI. NUMERICAL RESULTS OF BALANCING BASED

PROJECTION METHODS

We consider an artificial periodic discrete-time descriptor

system on index-1 from [2, Example 1], which is reformulated

from its original model in [3, Example 1]. In this reformula-

tion, the periodic descriptor system has µk = nk = 404, mk =
2 and pk = 3 for the periodicity K = 10, i.e., k = 0, 1, . . . , 9.

The original lifted system has order n = 4040.

The normalized residual norms at each iteration steps for

solving the controllability and observability lyapunov equa-

tions are shown in Fig. 4. A reduced-order model was ob-

tained by truncating the states corresponding to the small-

est Hankel singular values satisfying σk,j < 10−4. The

computed reduced-order model has subsystems of orders

(9, 9, 9, 9, 9, 9, 9, 9, 10, 9). Note that stability is preserved in

the reduced-order system.
Fig. 5 (a) shows the norms of the frequency responses

H(eiω) and H̃(eiω) of the original and reduced-order lifted

systems for a frequency range [0, 2π]. We observe a good

match of the system norms. Finally, in Fig. 5(b), we display

the absolute error ‖H(eiω) − H̃(eiω)‖∞ and the error bound

given in (12).

VII. CONCLUSION

This article reviews the model reduction techniques for time

varying systems, both continuous and discrete-time cases. We

also analyze the advantages and disadvantages of different

methods and their suitabilities for different model’s frame-

work. Comparative numerical results are also presented to

show the efficiencies of different MOR approaches.
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