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Abstract. Efficient detection and mitigation of Distributed Denial of
Service (DDoS) attacks targeting Internet of Things (IoT) infrastructure
is a challenging task in the field of cybersecurity. Y. Jia et al. propose
Flowguard, an extraordinary solution to the mentioned problem that re-
lies on inspecting network flow statistics leveraging statistical models and
Machine Learning (ML) algorithms. Flowguard utilizes CICDD0S2019
dataset and the authors’ unique dataset. The authors did not provide
the source code or the complete dataset, yet, motivated by their find-
ings, we decided to reproduce Flowguard. However, we ran into numerous
theoretical and practical challenges. In this paper, we present all of the
issues related to Flowguard’s foundations and practical implementation.
We highlight the false and missing premises as well as methodological
flaws, and lastly, we attempt to reproduce the flow classification perfor-
mance. We dismantle Flowguard and show that it is unrelated to IoT
due to the absence of IoT devices and communication protocols in the
testbeds used for generating their and CICDD0S2019 datasets. Moreover,
Flowguard applies nonsensical statistical models, and uses an overfitted
ML model that is inapplicable in real-world scenarios. Furthermore, our
findings indicate that Flowguard’s binary ML classification results were
manipulated. They were presented in a misleading manner and improp-
erly compared against another paper’s multi-class classification results
without a reference. Our results show that Flowguard did not solve the
problem of DDoS detection and mitigation in IoT.

Keywords: Flowguard - IoT Security - DDoS Attacks.

1 Flowguard

Flowguard [4] is an edge-based Network Intrusion Detection System (NIDS) de-
signed to protect Internet of Things (IoT) devices from Distributed Denial of
Service (DDoS) attacks. Flowguard examines features of both ingress and egress
network packet flows to determine whether there is an attack. Flowguard is
based on the flow records from the CICDD0S2019 [8] dataset enhanced by the
authors’ dataset containing low-rate (Slow Request/Response) attacks and ad-
ditional DDoS attack traffic generated by the Bonesi botnet simulator [3]. Flow-
guard consists of four modules designed for different purposes: attack detection,
identification, classification, and mitigation. To achieve this, Flowguard relies on
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flow statistics, Long Short-Term Memory (LSTM), and Machine Learning (ML),
more precisely, Convolutional Neural Networks (CNN). These four steps occur
in cascade and provide malicious flow identification accuracy of over 99%, while
the attack type classification is reportedly 100%. The results indicate that Flow-
guard is an efficient solution against DDoS attacks in terms of detection rate
and computational demand. The authors have not provided any open-source
code or a replication package with the paper. However, while attempting to re-
produce the results considering the same set of configuration parameters, we ran
into many theoretical and practical issues, leading us to conclude that the pub-
lished results were manipulated. In this paper, we dismantle Flowguard into its
principal components as described by the authors, and we address the following
issues:

1. False and missing premises.
2. Flawed and nonsensical methodology for DDoS detection.
3. Validity of the results.

2 False and Missing premises

In this section, we describe the missing and false premises of the paper dis-
cussed. We primarily question Flowguard’s foundations and feasibility. In the
current section, we clarify terms and practical limitations before dismantling
Flowguard’s inner mechanisms.

2.1 Definition of a Flow

A network packet flow typically refers to a set of packets exchanged between
two points in a network. However, there are practical considerations that are
vital in implementing software that were not mentioned in the text. Despite not
clearly defining a flow, we can assume what the authors meant by analyzing the
features obtained by the CICFlowMeter tool [5] that they used. The authors do
not specify the necessary conditions for defining a flow with respect to temporal
parameters. For example, if there is a brief data exchange between points A and
B once per hour, should this be interpreted as 24 flows per day or merely a single
flow? Since Flowguard relies on flow statistics, defining the terminating condi-
tion for a flow is of fundamental importance because otherwise, every initiated
connection could turn into a lengthy and potentially infinitely long flow.

2.2 DDoS Attack Types

The authors state that there are many ways to classify DDoS attack types, but
they choose to focus only on IoT DDoS attacks. However, they fail to provide a
reference or a reason why Flooding and Slow Request/Response are IoT DDoS
attacks, whereas other types are supposedly not applicable to IoT.
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Flooding attacks are said to be based on massive disguised network packets,
but there are no references to the claim that flooding attacks necessarily con-
sist of massive packets. For instance, flooding attacks consisting of low-payload
packets can be just as harmful to IoT devices [10]. Furthermore, it is unclear
how these attacks are or can be disguised, as flooding attacks are easily dis-
tinguishable by their bandwidth consumption. The authors proceed to describe
subtypes of Naive Flooding attacks and claim that naive flooding attacks, as
a consequence, fill an unspecified buffer on the victim’s end. After that buffer
is full, the victim can no longer serve legitimate users. However, Flooding at-
tacks aim to overwhelm the victim’s network infrastructure rather than fill a
buffer. Once the resources are exhausted, the victim may become unresponsive
to legitimate requests due to the high volume of malicious traffic [12].

2.3 Description of the Slowhttp DoS Attack

The authors claim that slow request/response attackers hold the communication
channel and exhaust the victim’s resources by spoofing high-workload requests or
responses. However, slow DoS attacks typically do not consume a lot of resources
in terms of CPU or memory usage on the victim server [11]. Instead, they aim to
exhaust available network connections by tying them up with slow or incomplete
requests. The authors also claim that the attacker segments the legitimate HTTP
packets into tiny fragments and sends them as slowly as possible within the
maximum allowed communication time. However, Slowhttptest sends incomplete
requests rather than fragmented ones [9]. Furthermore, applications typically
cannot create fragmented packets, as the network layer handles fragmentation.

2.4 Convolutional Neural Networks

The authors state they choose CNNs for flow inspection because of their ability
to deal with classification in unrelated domains. Their explanation is based on
a false equivalency between network flow classification and tasks such as image,
audio, and text classification. The cited papers demonstrate the effectiveness of
CNNs in the domains unrelated to network flow data. Consequently, the reason-
ing behind the application of CNNs to network flow classification is misleading,
as the cited references do not support the appropriateness of CNNs for this type
of data.

2.5 Practical Implementation

Flowguard is a proof-of-concept software that utilizes a large dataset of flows to
generate results. It is unknown which programming language was used to write
Flowguard. Nevertheless, the authors emphasize low delay in detecting malicious
flows, based solely on ML inference time, without considering the time required
for the program to obtain the packets, parse them, and form flow statistics.
Moreover, they fail to address the time required for a flow to appear malicious
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compared to the training data, considering that some of the flows in the CICD-
Do0S2019 describe more than 10 minutes of network traffic. This is particularly
an issue with the initial scanning of each new flow. Additionally, since the entire
dataset consists of flow statistics, benign flows can turn malicious and launch
attacks undetected if they have a sufficiently long benign history, as drastically
altering the statistics may require plenty of time.

3 Methodological Issues

The inner mechanisms of the Flowguard are complex and overcomplicated with-
out justification. The cascade order of actions performed on flows involves statis-
tical analysis, followed by applying an LSTM model to identify malicious flows
(binary classification) and CNN to classify the attacks to choose one of the two
mitigation strategies and update the malicious flow statistics database. The mit-
igation strategy involves dropping the session in case of slow request/response
attacks and dropping a flow in case of flooding attacks. It is not stated why
sessions should not be dropped in case of flooding attacks. The authors state
that Flowguard should be upgradable to handle zero-day attacks. However, the
remainder of the paper neither mentions zero-day attacks nor addresses the
upgradability or any other enhancements of Flowguard.

3.1 Dataset

Before getting into the implementation details, we have to discuss the training
datasets. The authors opted for CICDDo0S2019 to train a defense mechanism
against what they called IoT attacks. However, the mentioned dataset is un-
related to IoT, as its victim devices are Windows operating system (OS) PCs
and a Ubuntu OS server hosting a website. The computers are locally connected
via an Ethernet link. Additionally, the benign dataset in CICDD0S2019 is not
IoT-specific either, as the background traffic was generated by mimicking hu-
man interactions across protocols like HTTP, HTTPS, FTP, SSH, and email,
which contrasts with the typical device-to-device communication present in IoT
environments [7].

The authors decided to enrich their training dataset by using a DDoS bot-
net simulator and Slowhttptest to generate additional data at the rate of 10,000
packets per second. To achieve this, they set up a testbed consisting of vir-
tual machines on a single Windows OS PC. The constructed dataset consists
of roughly a million packets per attack type. An eye-catching detail is that for
flooding attacks, there are also roughly a million flows per attack type. There-
fore, most flood attack flows consist of just a single packet, thus beating the
purpose of flow-based detection. Regarding the slow request/response attacks,
a rate of 10,000 packets per second does not seem very slow, hence defying the
purpose of a low-rate attack by turning it into a high-rate one. Moreover, the
authors did not explain how they achieved a fixed attack rate with an attack that
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periodically sends packets and does not offer an option to set the rate manually
[1].

In summary, the training dataset intended to defend against IoT DDoS at-
tacks was created without using a single IoT device or machine-to-machine com-
munication. Instead, it was generated using computers mimicking human be-
havior that were connected via Ethernet or virtual machines on a local network,
whereas IoT environments typically use wireless communications. Therefore, we
conclude that the dataset used for training Flowguard is unfit for the IoT-related
tasks.

3.2 Statistical Analysis

The initial step in dealing with the flows involves statistical analysis, or flow
filtration, as the authors named it. The process consists of checking each flow’s
ten feature statistics against the average value obtained through training, and if
they closely match (within 1% deviation), then it is safe to say that the new flow
is malicious and mitigation takes place. The authors mention four feature sets for
the four types of DDoS attacks they are defending against (three types of flood
and slow attacks), so we can assume that each new flow is compared against
four feature sets. This process only occurs once for each new flow, so it does not
make sense to compare its features against an average set of values of the entire
training dataset in which some entries describe lengthy flows. Furthermore, it is
hard to determine whether even the exact entries from the training dataset would
fit into the set 1% deviation of the entire dataset’s average values for the ten
chosen features. It is unclear why the threshold is set to exactly 1% and why they
use exactly ten features. The authors did not present a performance evaluation
of this step; hence, its success rate in detecting DDoS attacks is unknown. All
of the flows that pass this step proceed to the next module in the cascade.

The DDoS attack detection module is supposed to determine suspicious net-
work behavior and pass flows for further analysis if deemed necessary. The au-
thors boldly assume that IoT traffic is typically static, where sensors periodically
send data. This assumption excludes many IoT applications and devices despite
Flowguard being initially described as a solution that generally works in IoT.
For instance, audio and video streaming services are entirely omitted, even from
a theoretical perspective.

The authors propose using yet another statistical method for detecting DDoS
attacks, but this time over aggregated traffic instead of individual flows. The
method to detect DDoS attacks is now described using a time series, as shown
in (1), to obtain D(t), shown in (2), whose value is used to make decisions.
If D(t) is higher than a set threshold, all flows will be forwarded for further
inspection. Otherwise, only a tiny portion of flows will be sent for inspection,
but only after a certain period of D(¢) being lower than the threshold. There are
no instructions on how to obtain the threshold value. We assume that if D(t)
is above the threshold, the flows will be instantly sent (event-driven algorithm)
for further inspection, whereas in other cases, the system is time-based. The
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assumption is that if D(¢) is high, many flows are malicious, while if it is low,
only some may be malicious.

This assumption is unjustified, as in the described static environment, just a
single high-bandwidth flow is sufficient to cause anomalous traffic to spike. On
the contrary, if D(t) is small, and an attack is happening, it may go undetected
indefinitely.

T(t) = P(t) + V() + A(¢) (1)

Traffic at time ¢ is T'(t), while P(¢) is the stable traffic rate, V (¢) represents
the variance, and A(t) accounts for the anomaly due to unknown sources. The
authors claim it is hard to obtain P(¢) and V'(t), so they introduce their estimates
P'(t) and V'(t) without explaining the techniques used to estimate the newly
introduced variables. After removing the unnecessary brackets from the original
paper’s equation, we obtain the following:

T(t) - P'(t)

PO ="

(2)

D(t) is a variable that the authors use to compare against a fixed threshold
to determine whether there is an ongoing DDoS attack. T'(¢) is easily obtain-
able, but dismantling it into the three mentioned components is challenging.
However, to clarify what the authors meant, we put equation (1) into (2) to get
the following equation:

V() + A(t) + P(t) — P'(t)
Vi(#)

D(t) = (3)

If we assume that P’(t) and V'(t) are accurate estimates of P(t) and V (¢),
we can use them interchangeably and neglect the minor differences to simplify
the explanation of the equation.

A(t)
VI(t)

D(t)=1+ (4)

In other words, the authors suggest that a spike in anomalous traffic or a
drop in variance are signs of malicious traffic. While high bandwidth intuitively
indicates there could be a flooding attack, there is no reference or explanation as
to why low variance would be an indicator of malicious traffic. For instance, in
[6], the authors present a large standard deviation, and thus variance increases
during the flooding DDoS attacks. It is unclear why the authors chose the ratio
of anomalous traffic to variance as a metric because no supporting literature or
explanation has been provided. It is also unclear how the differences between
the actual and estimated parameters play a role in DDoS detection, such as
P(t) — P'(t) and V(t)/V'(t). Additionally, it undefined what happens in case
V'(t) is zero.
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3.3 Machine Learning

If the statistical methods identify potentially malicious flows, the flow handling
module will perform an ML-based analysis on each flow to determine it. The first
step in this cascade is to perform a binary classification using LSTM. If the flow
is deemed malicious, it will be sent to the classification module; otherwise, it will
be considered benign. The choice of LSTM is justified by its ability to deal with
sequential data, implying scanning the same flow sequentially over time, which is
not the case, making this choice misleading. Furthermore, this raises a question
of what happens with benign flows if the value of D(¢) is continuously above the
threshold. According to the algorithm, all flows should be inspected. However,
there is no mention of a whitelist, meaning that the benign flows return to
the pool of all flows considered for DDoS detection right after inspection. This
behavior leads to an infinite loop due to the algorithm’s event-driven nature,
which strives to minimize the detection time. Therefore, the benign flows are
repeatedly scanned as long as the D(t) value is above the threshold.

To perform binary detection using LSTM, the authors choose a set of 40
out of 83 extracted features because the other 43 supposedly do not carry any
relevant information. Within the selected features, they name flow-specific iden-
tifiers such as flow ID as well as source and destination IP addresses. This results
in model overfitting because these values are arbitrary in real-world scenarios.
To demonstrate model overfitting in the CICDD0S2019 dataset, we choose the
exact features named in the paper and estimate their reminder based on the de-
scriptions provided. Nonetheless, the results shown in Fig. 1 univocally confirm
model overfitting.
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Fig. 1. Feature importance scores of the RF binary classifier.
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In the case of detecting a malicious flow, the next step is to classify it by
applying a CNN multi-class classifier. The authors proposed using 80 features for
training the CNN model, omitting only three out of 83 available features. The
selection of features contradicts their previous statement, due to which they
omitted 43 supposedly useless features for binary classification. In other words,
the authors claim that 40 features are sufficient for a 98.9% accurate binary
classification, while 40 additional features play no role in binary classification,
yet they can be used for a 99.9% accurate multi-class classification. We assume
that the remaining three features (RST Flag Cnt, PSH Flag Cnt, and ECE Flag
Count) were omitted from both CNN and LSTM training datasets.

4 Validity of the Results

In this section, we discuss the results presented by the authors and challenge
their claims and validity. The authors train Flowguard using the CICDD0S2019
dataset present their approach and compare its performance against other ML
algorithms proposed in the original CICDD0S2019 paper. Except for LSTM, the
classification results obtained in the Flowguard paper appear to be 100% match-
ing with ones obtained in CICDD0S5S2019, including an error showing a lower F1
score than both accuracy and precision for the Naive Bayesian classifier. We
show CICDDo0S2019 and Flowguard’s classification performance results exactly
as presented in the original papers in Fig. 2.

The most obvious flaw in this comparison is that in CICDDo0S2019, the au-
thors applied ML algorithms for multi-class classification over a dataset of 80
features. While they did not mention specific training and testing dataset sizes,
we can assume the ratio of 80% for training and 20% for testing based on the
statement of using five-fold cross-validation. On the other hand, Flowguard uti-
lizes binary classification over a set of 40 features in datasets whose training-to-
testing size ratio is in the range of 95.2% / 4.8% to 99.6% / 0.4%, with training
dataset sizes ranging from 2 to 30 million and testing dataset being fixed at
100 thousand flows. The authors mention variable training dataset sizes without
providing a reason or mentioning the methodology used to form the training
and test datasets. This dataset distribution poses a problem since some attack
types have significantly more samples than others. Benign samples account for
merely 0.16% of the entire dataset, translating to roughly 160 benign samples in
a 100 thousand sample dataset. In summary, the authors of Flowguard obtained
the same classification results as the authors of CICDD0S2019 while using an
entirely different methodology without explicitly referencing the results used in
their work. The only mention of CICDD0S2019 is that in Flowguard they tested
the four proposed ML algorithms.

To clarify the ambiguities, we tested all of the mentioned ML algorithms
using methodology identical to Flowguard’s 30 million training samples scenario
to perform binary classification on the CICDD0S2019 dataset. In our case, the
testing dataset contained 175 randomly selected benign samples. While we ac-
knowledge that this methodology is not representative, we proceed with the
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RF 0.77 | 056 | 0.62
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b) CICDD0S2019

Fig. 2. Classification results as shown in a) Flowguard [4] and b) CICDDo0S2019 [§]
papers.

experiment in an attempt to reproduce Flowguard’s results. The results shown
in Fig. 3 indicate a significant discrepancy between our findings and Flowguard’s
results. Contrary to Flowgurd’s results, our findings show that all of the clas-
sifiers perform much better than they reported. The results indicate that all
classifiers outperform LSTM, with ID3 and RF exhibiting impeccable perfor-
mance, thus contradicting the results presented in the Flowguard paper. In the
case of applying weighted average metrics, all models perform similarly because
misclassifying 175 benign samples cannot drastically affect results over a 100
thousand samples dataset. Therefore, we show more detailed results in the Ta-
ble 1. Due to a substantial difference in the number of benign and malicious
samples in the datasets, we can conclude that the binary LSTM classification
performance metrics presented in Flowguard are misleading. The list of exact
features and source code will be available on the GitHub repository. [2].
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Classifier Class Precision Recall F1-Score Support
Benign  1.00 1.00 1.00 175
ID3 Malicious 1.00 1.00 1.00 100159

Macro avg ~ 1.00 1.00 1.00 100334
Weighted avg 1.00 1.00 1.00 100334

Accuracy 1.00 100334
Benign  0.14 1.00 0.24 175
Naive Bayes Malicious 1.00 0.99 0.99 100159

Macro avg  0.57 0.99 0.62 100334
Weighted avg 1.00 0.99 0.99 100334

Accuracy 0.9891 100334
Benign 1.00 1.00 1.00 175
Random Forest Malicious 1.00 1.00 1.00 100159

Macro avg 1.00 1.00 1.00 100334
Weighted avg 1.00 1.00 1.00 100334
Accuracy 1.00 100334

Benign  1.00 0.10 0.19 175
Logistic Regression Malicious 1.00 1.00 1.00 100159
Macro avg 1.00 0.55 0.59 100334
Weighted avg ~ 1.00 1.00 1.00 100334

Accuracy 0.9984 100334
Benign  0.00 0.00 0.00 175
LSTM Malicious ~ 1.00 1.00 1.00 100159

Macro avg 0.50 0.50 0.50 100334
Weighted avg ~ 1.00 1.00 1.00 100334
Accuracy 0.9982 100334
Table 1. Performance metrics for different binary classifiers on the CICDDo0S2019
dataset.
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5 Conclusion

In this paper, we examined Flowguard, a seemingly perfectly suited network flow-
based detection and mitigation mechanism against DDoS attacks targeting IoT
devices. We discussed the reproducibility challenges of the proposed system and
questioned the credibility of its efficiency. Our findings indicate that Flowguard
fundamentally lacks a comprehensive overview of DDoS attacks, and its relevance
to IoT is questionable due to several critical issues. The authors fail to justify why
only four selected DDoS attack types are considered IoT-specific. They provide
incorrect descriptions of some attacks and rely on a training dataset that does
not include IoT devices or communication protocols. Moreover, the authors fail
to define what constitutes a flow and the criteria for terminating flows, causing
practical issues.

Upon further analysis of the DDoS attack detection mechanisms in Flow-
guard, we found an application of nonsensical statistical properties for malicious
flow detection that the authors did not justify and whose effectiveness was not
demonstrated. Flowguard heavily relies on the dataset’s flow-specific features
such as Flow ID and source and destination IP addresses, making it inappli-
cable in real-world scenarios where these features always differ. Furthermore,
there are reasons to believe that the binary classification results were copied
from another paper’s multi-class classification without a reference rather than
obtained through experimentation. We validated these hypotheses through ex-
periments, showing a considerable discrepancy in comparison to Flowguard’s
findings, suggesting that they were made in such a manner to make Flowguard
appear significantly better. Additionally, we show that justification for the usage
of LSTM is false and that the classifier performed the worst, misclassifying every
single benign sample as malicious. In summary, we conclude that the problem
of timely DDoS detection in IoT, leveraging flow statistics, was not solved by
Flowguard.

Disclosure of Interests. The authors do not have any competing interests to declare
that are relevant to the content of the article.
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