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Abstract— In this paper, we address a 𝕷𝟐 Proportional 

Integral (PI) observer based controller problem, for a class 

of quasi-LPV fuzzy system with faults and external 

disturbances. First, an augmented descriptor system is 

constructed where the augmented state vector consists of the 

original states, the actuator faults and sensor faults. Second, 

based on the quasi-LPV descriptor system, a robust  𝕷𝟐 PI 

observer based Estimated Dynamic State Feedback Fault 

Tolerant Controller (𝕷𝟐 PI -EDSFFTC) is designed, which is 
robust to external disturbances and both actuator and sensor 

faults. The studied system is subject to input and state 

constraints. An integrated robust controller strategy is 

adopted by a novel structure of non Parallel Distributed 

Compensation (non-PDC) control law. This ensures the 

closed-loop stability of the faulty system, and respects the 

given saturation constraints on the control input. The 

optimization problem is formulated using fuzzy Lyapunov 

function, and expressed on terms of linear matrix 

inequalities (LMIs). Finally, its application to an example is 

presented, to highlight the performance of the developed 

method. 

 
I. Introduction 

       Nowadays, the dependability and safety have become 

more important for practical engineering systems. However, 

in many real systems, the frequent occurrence of unknown 
faults often lead to performance degradation and even 

instability of the system [1-2]. In order to strengthen the 

system reliability and guarantee system stability, the faults 

estimation (FE) and fault tolerant control (FTC) have 

received considerable attention during the past few decades 

and plenty of results of these research fields have been 

reported in the literature [3-6]. Using FE/FTC results to 

design faults observer and fault estimations for nonlinear 

systems directly is a challenging issue. 

     Fortunately, quasi-LPV and LPV fuzzy model provide an 

effective way to express the complicated nonlinear systems 
via a set of local linear models interpolated by membership 

functions. As a result, the nonlinear control systems theory 

can be widely exploited to analyze and synthesize the 

nonlinear systems [7-8]. Therefore, there is a rapidly 

growing interest in FE and FTC problems for nonlinear 

system based on the quasi-LPV fuzzy method and many 

important results have been reported for the topic in the 

literature [9-13]. References [14] and [15] use optimization 

techniques to obtain the gain parameters of observers and 

controllers that are robust against the faults and disturbances. 

Meanwhile, the FE/FTC problem is considered for a class of 

nonlinear stochastic systems with actuators and sensors 

faults in [16] and [17]. Although several FE observers and 

FTCs for T-S fuzzy models with faults have been reported, 

they still have some challenging issues to be investigated, 

which motivated us to conduct the current work. In the LPV 
fault reconstruction literature, [23] proposed an observer 

applying the sliding mode methodology for fault estimation 

with application to a Boeing 747-100 LPV model with affine 

representation. In [25] fault estimation and LPV fault 

compensation are addressed, maintaining the control 

objectives, through the use of an affine LPV model of a two-

link manipulator.[26] deals with a state observer for affine 

LPV systems, with a solution computed as a linear 

combination between the parameters and their boundaries. 

Furthermore, for a winding machine system, a polytopic 

LPV sensor fault detection filter has been developed in [18], 

[19], [27]. Although the works in these references are 
applied to quasi-LPV and LPV systems, the actuator fault 

estimation remains insufficiently explored. For that, the 

main contribution of this paper corresponds to the design of 

an observer in charge of the actuator and sensor fault 

estimation simultaneously along with the system state, with 

fewer disturbances than the one presents at the system 

dynamics. Thus, the proposed observer can be used in an 

FTC framework since the faults estimation and estimated 

states generate a saturated control signal with less 

disturbance corruption. This paper is dedicated to the study 

of the observer design based on the 𝔏2 approach for quasi-

LPV system with measurable premise variable, the main 

objective is to address the FE/FTC problem for a class of 

constrained quasi-LPV fuzzy systems subject to actuator and 

sensor faults. This reconfigurable controller can be designed 

in order to maintain stability, acceptable dynamic 

performance and steady state of the overall system, despite 

the presence of faults. 

    The second section of this paper is dedicated to brief 

description of some notations and problem statements, for 

modeling of the quasi-LPV structure of studied system, 
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section III is devoted to the description of the proposed 

observer, the modified constrained FTC controller, the 

control problem definitions and the presentation of main 

results with the LMI based design conditions for 𝔏2 PI 
observer based EDSFFTC. The applicability of the method 

is studied and illustrated through simulation example to 

compare and show the applicability and performance of our 

approach which is analyzed in section IV. Finally some 

conclusions and remarks are given in section V. 

I. Notations and problem statements: 

A. Notations: throughout this paper, the following notations 
are adopted to represent conveniently the different 
expressions, given a set of nonlinear function: ℎ𝑖(. ), 𝑣𝓀(. ), 
𝑖 ∈ {1… . 𝑟}, 𝓀 ∈ {1… . 𝑟𝑒} are the nonlinear scalar 
functions. This work focuses on measurable premise 
variables grouped in the vector 𝑧(𝑘), whose measurements 
can be obtained from the observer design, which depends on 
the state vector, and can be equivalently represented by a 
vector of states, expressed as ℎ𝑖(𝑧(𝑘)) and 𝑣𝓀(𝑧(𝑘)), 
satisfying the convex sum property. For a vector 𝑥 and 𝑧, 
𝑥(𝑘), 𝑧(𝑘)defined by 𝑥𝑘 , 𝑧𝑘 , x(𝑘 + 1)  defined by 𝑥𝑘+, the 
same for the other vector. 𝐼𝑟 denotes the set {1, 2,⋯ , 𝑟} , 𝐼𝑟𝑒 
denotes the set {1, 2,⋯ , 𝑟𝑒},ℜ

+ represents the set of positive 
real integer. I denote the identity matrix. An asterix * 
symbolizes the symmetric block matrices. 𝒩𝑛 denotes the set 
{1,··· , 𝑛}. 

- ℋ(𝐴) denotes the Hermitian of the matrix A, 

i.e.ℋ(𝐴)  =  𝐴 + 𝐴𝑇 .  

- ℤ + (∗) denotes ℤ + ℤ𝑇 . 

- 𝒳𝑇  >  0 means that 𝒳 is a symmetric positive 

definite matrix. 

- The single double or triple sums can be rewritten 

as:  

𝒢ℎ = ∑ ℎ𝑖(𝑧𝑘)
𝑟
𝑖=1 𝒢𝑖  ;  𝒢ℎℎ = ∑ ∑ ℎ𝑖(𝑧𝑘)

𝑟
𝑗=1 ℎ𝑗(𝑧𝑘)

𝑟
𝑖=1 𝒢𝑖𝑗   

 
B. System description: in the following section, the 
controller is derived using the descriptor form. Sufficient 
LMI constraints are derived from Lyapunov’s theory. 
Compared to [29], in the following section a constrained 
controller is proposed, for this we consider the following 
class of quasi-LPV fuzzy model subject to input saturation, 
external disturbances, actuator and sensor fault: 

{
𝑥𝑘+ = 𝐴ℎ𝑥𝑘 +𝐵ℎ𝑠𝑎𝑡(𝑢𝑘) + 𝐹𝑎𝑓𝑎,𝑘 + 𝐵𝜔𝜔𝑘                   (1. 𝑎)        

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐹𝑠𝑓𝑠,𝑘                                                                                     
                                                       

     

Where 𝑥𝑘 ∈ ℜ
𝑛𝑥,𝑢𝑘 ∈ ℜ

𝑛𝑢, {𝑓𝑎,𝑘 = 𝑓𝑠,𝑘 = 𝑓𝑘} ∈ ℜ
𝑛𝑓,𝑦𝑘 ∈

ℜ𝑛𝑦, 𝜔𝑘 ∈ ℜ
𝑛𝜔 are the state, control input, actuator-sensor 

fault, output vector, and the exogenous disturbances 

respectively. The state-space matrices: 𝐴𝑖 ,𝐵𝑖, 𝐶, 𝐵𝜔 are of 

the appropriate dimensions, 𝐹𝑎  ,  𝐹𝑠  and the matrix C 

involved in (1.a) is assumed to be a full row rank, k is a 

current samples, where  𝑖 ∈ 𝐼𝑟 represent the i-th linear right 

hand-side submodel of quasi-LPV model (1.a).  System (1.a) 

with bounded nonlinearities can be represented by a 

polytopic form: 

                                                                   

{
𝑥𝑘+ = ∑ ℎ𝑖(𝑧𝑘)(𝐸𝑖

𝑟
𝑖=1 𝑥𝑘 +𝐵𝑖𝑠𝑎𝑡(𝑢𝑘)) + 𝐹𝑎𝑓𝑎,𝑘 + 𝐵𝜔𝜔𝑘                                       

 
                                                                    

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐹𝑠𝑓𝑠,𝑘                                                                 (1. b)                                                                                                     
      

      

Where the membership function is denoted ℎ𝑖(𝑧𝑘), and  vary 

within the convex set Ω1 : 
 

𝛺1 = {ℎ𝑖(𝑧𝑘) ∈ ℜ
𝑟; ℎ𝑖(𝑧𝑘) =

[ℎ1(𝑧𝑘),…… . , ℎ𝑟(𝑧𝑘)]
𝑇; ℎ𝑖(𝑧𝑘) ≥ 0}                             (2.a) 

 
Note that ℎ𝑖(𝑧𝑘) depends on the variable 𝑧𝑘   verifying the 
convex sum property, rewritten here by convenience: 

                           ∑ ℎ𝑖(𝑧𝑘)
𝑟
𝑖=1 = 1                                     (2.b) 

 

𝑟 ∈ 𝐼𝑟: is the number of sub-models, in the right-hand side. 

 

     The augmented form is adopted. The quasi-LPV system 
(1.a) can be equivalently rewritten in the following compact 

descriptor singular form:  
                                          

{
𝐸∗𝑥𝑘+

∗ = 𝐴ℎ
∗ 𝑥𝑘

∗ + 𝐵ℎ
∗𝑠𝑎𝑡(𝑢𝑘) + 𝐹𝑎

∗𝑓𝑘 +𝐵𝜔
∗𝜔𝑘                                             

𝑦𝑘 = 𝐶
∗𝑥𝑘

∗ + 𝐹𝑠𝑓𝑘                                                                    (3. 𝑎)                 
                                   

Where:  𝑥𝑘
∗ = [

𝑥𝑘
𝑥𝑘+

] ∈ ℜ𝑛𝑥∗  ; 𝐸∗ = 𝑑𝑖𝑎𝑔[𝐼 0] ; 𝐴ℎ
∗ =

[
0 𝐼
𝐴ℎ −𝐼

]; 𝐵ℎ
∗ = [

0
𝐵ℎ
] ; 𝐹𝑎

∗ = [
0
𝐹𝑎
] ; 𝐵𝜔

∗ = [
0
𝐵𝜔
].            (3.b)  

 

II. Control problem     

A. Control law: In order to satisfy the desired constrained 

controller performance (EDSFFTC), the augmented 

controller design, is defined for system (4.a): 
 

          {
𝐸𝑥𝐹∗
∗ 𝑥𝐹,𝑘

∗ = 𝐴𝐹ℎ
∗ 𝑃ℎ2

−1∗𝑥𝐹,𝑘
∗ +𝐵𝐹ℎ

∗ 𝑃ℎ1
−1∗�̂�𝑘

∗                    

𝑢𝑘 = 𝐶𝐹ℎ
∗ 𝑃ℎ2

−1∗𝑥𝐹,𝑘
∗ +𝐷𝐹ℎ

∗ 𝑃ℎ1
−1∗�̂�𝑘

∗                              
 (4.a)     

                                                                                       

Where: 𝑃ℎ1
∗ = 𝑑𝑖𝑎𝑔[𝑃ℎ1 0]; 𝑃ℎ2

∗ = 𝑑𝑖𝑎𝑔[𝑃ℎ2 0]; 

𝐴𝐹ℎ
∗ = [

0 𝐼
𝐴𝐹ℎ −𝐼

] ; 𝐵𝐹ℎ
∗ = [

0 0
𝐵𝐹ℎ 0

] ; 𝐶𝐹ℎ
∗ = [𝐶𝐹ℎ 0]; 

𝐷𝐹ℎ
∗ = [𝐷𝐹ℎ 0] and 𝐸𝑥𝐹∗

∗ = 𝑑𝑖𝑎𝑔[𝐼𝑥𝐹 0].                     (4.b) 

           

      The gains 𝑃ℎ1
∗ , 𝑃ℎ2

∗ , 𝐴𝐹ℎ
∗ , 𝐵𝐹ℎ

∗ , 𝐶𝐹ℎ
∗  and 𝐷𝐹ℎ

∗  are matrices 

controllers to be determined, 𝑥𝑘
∗ is the estimated augmented 

state variable of 𝑥𝑘
∗. 

The architecture of the proposed constrained FTC controller 
design is based on the scheme depicted in Figure 1. 

 
 Figure 1. The proposed EDSFFTC design scheme. 



 

System (1.a) achieves observability conditions, as detailed in 

[31]. To derive the controller laws, a PI observer is 

synthesized to estimate both faults and states for system 

(1.a) and has the singular form:                                                                     

{
 
 

 
 
 𝐸∗𝑥𝑘+

∗ = 𝐴ℎ
∗ �̂�𝑘

∗ + 𝐵ℎ
∗𝑢𝑘 + 𝐹𝑎

∗𝑓𝑘 + 𝐿𝑃ℎ
∗ (𝑦𝑘 − �̂�𝑘)                                        

�̂�𝑘 = 𝐶
∗�̂�𝑘

∗ + 𝐹𝑠𝑓𝑘                                                                                                 

𝑓𝑘+ = 𝑓𝑘 − 𝐿𝐼ℎ(𝑦𝑘 − �̂�𝑘)                           

𝑢𝑘 = 𝐶𝐹ℎ
∗ 𝑃ℎ2

−1∗𝑥𝐹,𝑘
∗ +𝐷𝐹ℎ

∗ 𝑃ℎ1
−1∗�̂�𝑘

∗                 

𝐸𝑥𝐹∗
∗ 𝑥𝐹,𝑘+

∗ = 𝐴𝐹ℎ
∗ 𝑃ℎ2

−1∗𝑥𝐹,𝑘
∗ +𝐵𝐹ℎ

∗ 𝑃ℎ1
−1∗�̂�𝑘

∗      

                                                       

                                                                     

(5.a) 

Where: 𝐿𝑃ℎ
∗ = [

0
𝐿𝑃ℎ

]                                                         (5.b)                      

𝐿𝑃𝑗
∗ : is the augmented proportional gain for estimating the 

augmented variable state. 

𝐿𝐼𝑗𝓀 : is the integral gain for estimating the fault. 

 

Definition 1: The equations (6) define the 𝔏2 PI observer for 

the augmented system (3.a), for arbitrary initial conditions: 

𝑥∗(0), 𝑓(0)  and a stabilizing input 𝑢𝑘, the following 

relations are true: 

                            lim
𝑘→∞

(𝑥𝑘
∗ − 𝑥𝑘

∗) = 0                        (6.a) 

                             lim
𝑘→∞

(𝑓𝑘 − 𝑓𝑘) = 0                        (6.b) 

 

The estimation error between the system (4.a) and the 

observer (5.a) is given by: 𝑒0,𝑘
∗ = 𝑥𝑘

∗ − 𝑥𝑘
∗                           (7) 

The fault error is defined by: 𝑒𝑓,𝑘 = 𝑓𝑘 − 𝑓𝑘                       (8) 

        (20) 

Also, we define the augmented vector: �̅�𝑘 = [
�̅�𝑘
∗

𝑓𝑘
] and 𝑒𝑘 =

[
𝑒0,𝑘
∗

𝑒𝑓,𝑘
]: 

                                                                                                                                                                                         

{

ℰ̅�̅�𝑘+ = �̅�ℎℎ�̅�𝑘 − ℬ̅𝑒𝑒𝑘 − ℬ̅ℎ𝜓(𝑢𝑘) + ℬ̅𝜔𝜔𝑘                   

𝑦𝑘 = �̅��̅�𝑘                                                                                    

𝑢𝑘 = 𝔊ℎ𝔓ℎ
−1�̅�𝑘 −𝒟𝐹ℎ̂Ρ

ℎ
−1∗𝑒𝑘                                              

 

(10.a)       
                                      

And 

{
𝐸𝑒𝑒𝑘+ = 𝔄ℎℎ𝑒𝑘 −ℬℎ𝜓𝑘 + ℬ𝜔𝜔𝑘  

𝑢𝑘 = 𝔊ℎ𝔓ℎ
−1�̅�𝑘 − 𝒟𝐹ℎΡ

ℎ
−1∗𝑒𝑘         

                              (10.b) 

 

ℰ̅ = 𝑑𝑖𝑎𝑔[�̅� 𝐼𝑓]    ;    �̅�ℎℎ = [
�̅�ℎℎ
∗ �̅�𝑎

∗

[0] 𝐼𝑓
]  ;   ℬ̅ℎ =

[
�̅�ℎ
∗

[0]
] ;  ℬ̅𝜔 = [

�̅�𝜔
∗

[0]
]   ℬ̅𝑒 = 𝑑𝑖𝑎𝑔[�̅�𝑒 [0]]   ;    �̅� = [�̅� 𝐹𝑠]    

;     𝔊ℎ = [�̅�ℎ [0]]   ;    𝔓ℎ
−1 = 𝑑𝑖𝑎𝑔[𝒫ℎ

−1∗ [0]];    𝒟𝐹ℎ =
[𝐷𝐹ℎ̂

∗ [0]]; Ρℎ
−1∗ = 𝑑𝑖𝑎𝑔[𝑃ℎ1

−1∗ [0]];    𝔄ℎℎ =

[
(𝐴ℎℎ

∗ − 𝐿𝑃ℎ
∗ 𝐶∗) (𝐹𝑎

∗−𝐿𝑃ℎ
∗ 𝐹𝑠)

𝐿𝐼ℎ𝐶
∗ (𝐿𝐼ℎ𝐹𝑠 + 𝐼𝑒𝑓)

].                                   (10.c)                                                                                                           

                                         

Now, we consider the augmented system as follows ∶  𝜂𝑘 =

[
�̅�𝑘
𝑒𝑘
] (11), by combining the system (9) and the error 

dynamics (10), the closed-loop quasi-LPV system is 

obtained as follows:   

                                                                                                              

{
 

 
𝐸𝜂𝑘+ = 𝒰ℎℎ𝜂𝑘 −ℳℎ𝜓(𝑢𝑘) +  𝒪𝜔𝜔𝑘                                 
𝑦𝑘 = 𝒬𝜂𝑘                                                                                     

𝑢𝑘 = 𝒥ℎℙℎ
−1𝜂𝑘                                                                           

𝜓(0) = 0                                                                                    

 

(11.a) 

With : 𝐸 = 𝑑𝑖𝑎𝑔[ℰ̅ 𝐸𝑒]   ;  𝒰ℎℎ = [
�̅�ℎℎ −ℬ̅𝑒
0 𝔄ℎℎ

]   ;    

ℳℎ = [
ℬ̅ℎ

ℬℎ

]     ;    𝒪𝜔 = [
ℬ̅𝜔
ℬ𝜔
]  ;   𝒬 = [�̅� [0]] ; 𝒥ℎ =

[𝔊ℎℎ 𝒟𝐹ℎ]     ; ℙℎ
−1 = [𝔓ℎ

−1 Ρℎ
−1∗]  ; 𝒪𝜔 = [

ℬ̅𝜔
ℬ𝜔
].     (11.b) 

 

Moreover, to handle the non-linearity 𝑠𝑎𝑡(𝑢𝑘) the dead-zone 

function 𝜓(𝑢𝑘)  will be employed: 

                                𝜓(𝑢𝑘(𝑙)) = 𝑢𝑘(𝑙) − 𝑠𝑎𝑡(𝑢𝑘(𝑙))                 (12) 

    We use the generalized sector condition proposed by [20] 

to deal with the dead zone function. Also, the set �̃�𝑢 =
{𝑥𝑘 ∈ ℜ

𝑛�̃�: |𝑢𝑘(𝑙) − 𝑣𝑘(𝑙)| ≤ 𝑢max(𝑙); 𝑙 ∈ 𝐼𝑛𝑙},(13) with the 

auxiliary signal 𝑣𝑘(𝑙) = χℎ𝑣ℙℎ
−1𝜂𝑘 used as a degree of 

freedom in the design conditions and the condition: 

𝜓(𝑢𝑘(𝑙))
𝑇
�̃�ℎ(𝑙)

−1
[𝜓(𝑢𝑘(𝑙)) − 𝑣𝑘(𝑙)] ≤ 0 holds.   Due to the 

saturating actuators, only initial conditions in a subset of 

ℒ𝑣yield the trajectories of (3.a) to converge to the origin. 

Such a subset is denoted by ℒ𝑣, being called the domain of 
attraction. The determination of DoA is not an easy task 

even for small order systems since it can be non-convex, 

open, and in some cases, unbounded [20] Therefore, an 

estimate of the DoA ⊆ 𝔻𝜂 is computed, usually the largest 

possible. One way to construct the estimate DoA is to 

employ level sets taken from the Lyapunov function 

associated with the closed-loop system. To this end, a non 

quadratic Lyapunov function is considered: 𝑉(𝜂𝑘) =
𝜂𝑘
𝑇𝐸𝑇Πℎ

−1𝐸𝜂𝑘 ≤ 𝜌 (14), if there exist a function given by 

(16) fulfilling the Lyapunov conditions for stability of (3.a), 

a level set associated with the Lyapunov function can be 

defined as in the following lemma: 

 

Lemma 1: suppose that 𝑉(𝜂𝑘) given in (14) is a Lyapunov 

function for system (14.a). Then, a possible level set is given 

by: 

ℒ𝑣 = ⋂ ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌)𝑧∈Ω1

= ⋂ ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌)𝑟

𝑖=1           (15) 

 

For > 0 , and : 

 

 ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌) = {𝜂𝑘 ∈ ℜ

𝑛𝜂 : 𝜂𝑘
𝑇𝐸𝑇Πℎ

−1𝐸𝜂𝑘 ≤ 𝜌}           (16)  

        

For the proof, see of this lemma can be founded in [21]. 

 

Assumption 1: The state trajectories of quasi-LPV 
descriptor system (14.a) are contained within the following 

polyhedral set (validity domain), 𝔻𝜂 ∈ ℜ
𝑛𝜂×𝑛𝜂 defined as 

follows: 

                 𝔻𝜂 = {𝜂𝑘 ∈ ℜ
𝑛𝜂 :𝒩𝑞

𝑇𝜂𝑞 ≤ 1, 𝑞 ∈ 𝐼𝑛𝑞}            (17)                                                 



Where the given matrix 𝒩𝑞 ∈ ℜ
𝑛𝜂 , represents the state 

constraints of system (7.a), with:  𝒩𝑞 =

[𝒩𝑚
∗ 0𝑛𝑢×𝑛𝑥𝐹

0𝑛𝑢×𝑛𝑓 0𝑛𝑢×𝑛𝑒0
0𝑛𝑢×𝑛𝑒𝑓] ; 𝒩𝑚

∗ =

[𝒩𝑚 0]                                                                 (18) 

 
B.LMI-Based design conditions of constrained descriptor 
system: this work is concerned with proposing a systematic 
method to design a controller such that the closed-loop 
system satisfies the following properties, presents a new 
LMI-based method to design an estimated constrained FTC, 
besides a sufficient condition to solve the following control 
problem: 
 

Property 1 [local stability]: Given a scalar 𝛼′, the initial 

condition 𝜂(0) belong to a specific set in the state-space, 

which ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌) is a region of asymptotic stability 

(RAS) for the saturated system (3.a). In the presence of 

disturbances, the controller guarantees that the trajectories of 

(3.a) are bounded, there exist a matrix �̃�𝑖 > 0 and a positive 

scalar 𝜌 > 0  such that, for any 𝜂 (0) ∈ ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌) and 

𝜔𝑘 ≠ 0, the trajectories of the saturated system remains 

inside the polyhedral set 𝔻𝜂 , and do not leave the ellipsoid 

ℰ(𝐸𝑇Πℎ
−1𝐸, 𝜌), and converges exponentially to the 

equilibrium point with a decay rate less than 𝛼′, satisfying 

the following property: 

 
Property 2: [ 𝕷𝟐 gain-performance ] Given vector 𝒩𝑞 

defined in assumption 1, and a positive scalar 𝛿 depending 
in the type of disturbances involved in the dynamics of 
system (3.a), see [20] we distinguish two following control 
problems: 
 
Control problem 1: when 𝜔𝑘 ≠ 0.There exist positive 
scalar 𝜌 and 𝛾 such that ∀ 𝜂𝑘 ∈ ℒ𝑣\{0}, the corresponding 
closed-loop trajectory (14.a) remains inside the validity 

domain  𝔻𝜂 defined in (19). Moreover the 𝔏2-gain of the 

state vector 𝑥𝑘 is bounded as follows: 
 
                  ‖𝜂𝑘‖2

2 < 𝛾2‖𝜔𝑘‖2
2 + 𝜌, ∀𝑘 > 0                   (19)   
                      

where the objective is to attenuate the effects of exogenous 

input 𝜔𝑘 on the augmented state space by minimizing γ and 

𝜌.    
 
Control problem 2: Consider the quasi-LPV descriptor 
model design with a polytopic controller (14.a) such that: 
ℒ𝑣 ⊆ 𝔻𝜂 ∩ 𝔻𝑢 as large as possible, and is a contractively 

invariant set with respect to the closed-loop system. The 
problem is reformulated to design the observer gains to 
guarantee asymptotic convergence to zero despite the 
mismatches. 
 
The objective now is to compute the gains of observers based 
controller (5.a), to ensure the stability of the closed loop 
system (14.a) guarantying the trajectories tracking 
performance for all 𝜔𝑘 ≠ 0, sufficient conditions to achieve 
this objective are given through the following theorem: 
 

Theorem 1 : For a given the discrete-time quasi-LPV system 

(3.a) with a nonlinearities parameter uncertainties 𝑧𝑘 ∈
Ω1and Ω2 under input saturation with the proposed observer 

based controller (5.a), whose validity domain is defined by 

𝔻𝜂 , is locally exponentially stable if there exist a matrices:  

𝑃𝑖1 = 𝑃𝑖1
𝑇 > 0, 𝑃𝑖2 = 𝑃𝑖2

𝑇 > 0 , {𝑃𝑖1 , 𝑃𝑖2} ∈ ℜ
𝑛𝑥×𝑛𝑥 , 𝜒𝑗1 ∈

ℜ𝑛𝑢×𝑛𝑥 , 𝜒𝑗2 ∈ ℜ
𝑛𝑢×𝑛𝑥,  𝐴𝐹𝑗 ∈ ℜ

𝑛𝑥×𝑛𝑥 , 𝐵𝐹𝑗 ∈ ℜ
𝑛𝑥×𝑛𝑥, 

𝐶𝐹𝑗 ∈ ℜ
𝑛𝑢×𝑛𝑥 , 𝐷𝐹𝑗 ∈ ℜ

𝑛𝑢×𝑛𝑥 

for any diagonal gain matrix 𝑆𝑗 ∈ ℜ
𝑛𝑢×𝑛𝑢 a positive 

scalars: �̅� = √𝛾2, 𝜌, where (𝑖, 𝑗) ∈ (𝐼𝑟 × 𝐼𝑟), such that the 

following inequalities hold: 

 

{
𝑚𝑖𝑛 𝛾,̅ 𝜌                  

𝐸𝑇ℙ𝑖
−1𝐸 > 0          

                                                           (20)                                                                                                                                                     

𝜌 + 𝛾2𝛿 < 1                                                                      (21)                           

[
−𝐸𝑇ℙ𝑖

−1𝐸 ∗

ℐ𝑗(𝑙) − 𝜒𝑗(𝑙)
−𝑢max (𝑙)

2

𝜌⁄
] < 0                                       (22) 

[
−𝐸𝑇ℙ𝑖

−1𝐸 ∗

 𝒩𝑞(𝑙)
−1

𝜌⁄
] < 0                                                  (23) 

 

{
𝔗𝑖𝑖 < 0                                                                                                                                                                                    
2

𝑟 − 1
𝔗𝑖𝑖+𝔗𝑖𝑗+𝔗𝑗𝑖 < 0   (𝑖, 𝑗) ∈ (𝐼𝑟 × 𝐼𝑟), 𝑖 ≠ 𝑗                                                                                                

 

                                                                                           (24) 

Where the quantity 𝔗𝑖𝑗 is defined in (26):                                                                                                                                                                

𝔗𝑖𝑗 = [
Ψ ∗
Θ12
𝑇 −𝛩22

] < 0                                                (25.a)           

where: 

 Ψ =

[
 
 
 
 
 
Ψ11 ∗ ∗ ∗ ∗
ℙ𝑖 −𝐼𝑛𝜂×𝑛𝜂 ∗ ∗ ∗

𝜒𝑗 0𝑛𝑢×𝑛𝜂 −2𝑆𝑗 ∗ ∗

0 0𝑛𝑢×𝑛𝜂 0𝑛𝑢×𝑛𝑢 −𝛾2𝐼 ∗

𝒰𝑖𝑗ℙ𝑖 0𝑛𝜂×𝑛𝜂 −ℳ𝑖𝑆𝑗 𝒪𝜔 −ℙ𝑖]
 
 
 
 
 

< 0  (25.b)     

Θ12
𝑇 = [

[𝐿𝑗
∗𝐶∗ 0𝑛𝜂×𝑛𝜂 0𝑛𝑢×𝑛𝑢 0𝑛𝑢×𝑛𝑢 0𝑛𝜂×𝑛𝜂]

[0𝑛𝜂×𝑛𝜂 0𝑛𝜂×𝑛𝜂 0𝑛𝑢×𝑛𝑢 0𝑛𝑢×𝑛𝑢 𝐼𝑛𝜂×𝑛𝜂]
]  

(25.c)                  

𝛩22 = [
𝜀(2𝐼 − ℙ𝑖) ∗

0𝑛𝑥∗×𝑛𝑥∗ 𝜀−1(2𝐼 − ℙ𝑖)
]                              (25.d)                                        

and: ℐ𝑗 = [𝔊𝑗 𝔇𝐹𝑗] = [𝐷𝐹𝑗
∗ 𝐶𝐹𝑗

∗ 0 𝐷𝐹𝑗
∗ 0]         (25.e)            

𝜒𝑗(𝑙) = [𝐷𝐹𝑗
∗ 𝐶𝐹𝑗

∗ 0 𝐷𝐹𝑗
∗ 0]                                    (25.f)   

With : ℙ𝑖 = Π𝑖 
 

Remark : The LMI set (25) can brings conservatism into the 

observer design due to the LMI dimension, the number of 

models, and the requirement of a Lyapunov 

matrices 𝑃ℎ1, 𝑃ℎ2. To reduce the conservatism, relaxed 

conditions can be obtained. Then, without loss of good 

compromise between complexity and conservatism, the 

relaxation LMIs set given by [31] can be considered. 
 

Proof: the demonstration is omitted for the sake of brevity. 

 

III. Illustrative example: 



       This section gives design examples for the nonlinear 

model following control. Recall the simple nonlinear system 

defined in [32], with matrices system as follows : 

 

𝐴1 = [
1 −𝛽
−1 −0.5

]  ; 𝐴2 = [
1 𝛽
−1 −0.5

] ; 𝐵1 = [
5 + 𝛽
2𝛽

] ; 

𝐵2 = [
5 − 𝛽
2𝛽

] ; 𝐵𝜔 = [
0.1
0
] ; 𝐹𝑎 = [

1
0
] ; 𝐶 = [1 0.2]; 𝐹𝑠 =

2  and 𝛽 = 2.65.                                                       (26) 

 

The membership function’s  : 

ℎ1 =
𝑥1,𝑘+𝛽

2𝛽
  ; ℎ2 = (1 − ℎ1).                                            (27) 

The initial conditions are: 𝑥0 = [0.3 0.1] , 𝑥0 =
[0 −0.1].The maximal saturation level 𝑢𝑚𝑎𝑥 = 0.01. The 

state constraints are : 𝔻𝜂 = {|𝑥1,𝑘| ≤ 1, |𝑥2,𝑘| ≤ 𝛽}, an the 

actuator and sensor fault are assumed to be an additive 

signal (abrupt fault) such as: 

 

                        𝑓𝑘 = {
0.1    ;  𝑖𝑓 8𝑠 ≤ 𝑡 ≤ 20𝑠
0     ;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

                  (28) 

 

Solving the LMIs of theorem 1, the unknown gains of the PI 

observer are obtained. The constant 𝛼′, 𝛿 and 𝜀 are selected: 

0.05 ; 0.2  and 1, since the main objective is to estimate the 

state variables and the faults, the value of matrix 𝐿𝑃𝑗, 

𝐿𝐼𝑗 , 𝐴𝐹𝑗 , 𝐵𝐹𝑗 , 𝐶𝐹𝑗 and  𝐷𝐹𝑗 are selected as: 

 

𝐿𝑃1 = [
3.0026
2.0030

] ; 𝐿𝑃2 = [
1.0161
−2.0308

]; 𝐿𝐼1 = −0.3961  ;𝐿𝐼2 =

−0.3979 . 

𝐴𝐹1 = 10
−5 [−0.1403 0.2828

0.2822 −0.5659
]; 𝐴𝐹2 =

10−4 [
−0.0075 −0.0017
0.0633 −0.1264

] ; 

𝐵𝐹1 = [
−0.0075 −0.0017
−0.0012 −0.0128

]; 𝐵𝐹2 = [
−0.0075 −0.0017
0.0633 −0.1264

] 

𝐶𝐹1 = 10
−5[0.4251 0.2861]; 

𝐶𝐹2 = 10
−5[0.3509 −0.7099]. 

𝐷𝐹1 = [−0.0040 −0.0247] ; 𝐷𝐹2 = [0.0040 0.0243]. 

𝑃1_1 = [
−0.8003 −0.1244
−0.1244 −0.2034

] ; 𝑃1_2 =

[−0.4992 0.1401
0.1401 −0.2947

] ; 

𝑃2_1 = [
0.4337 −0.0020
−0.0020 0.3514

] ; 𝑃2_2 =

[ 0.4333 −0.0056
−0.0056 0.3557

]. 

Which are used to construct the PI observer (5.a), 

implemented in simulation. The simulation results a carried 

out with level attenuation 𝛾 = 3.3379,  the obtain constant: 

𝜌 = 0.2930. 

 
Figure 2: the control inputs. 

The input disturbance signal , is a persistent sinusoidal 

signal defined by: 𝜔𝑘 = 0.1sin(𝑘). In this case, the 

measurement fault is shown in Fig.6, Fig.3 shows states 

estimation, which we observe that the actuator fault is well 
attenuated, and Fig.2 shows the stabilizing control input. 

Fig.4 the output signal and its estimate, the estimation and 

fault error in Fig.5 and Fig.7 respectively converge towards 

zero. These simulation results demonstrate the applicability 

of the method for estimating actuator and sensor faults, 

states of quasi-LPV system, which is stabilized despite the 

presence of fault and with an important input saturation 

appearing in the beginning as well as the disturbance and 

actuator fault are well attenuated. 

 

 
Figure 3: States variables and theirs estimate. 

 

 
Figure 4: The output signal and its estimate. 

 

 
Figure 5: The estimation errors. 
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Figure 6: The fault and its estimate. 

 
Figure 7: The fault error. 

 
Figure 8: Auxiliary state’s variable. 

 

IV. Conclusion 

      In this work, a 𝔏2PI observer based controller for 

state, actuator and sensor faults estimation was 

proposed. It was considered that the quasi-LPV system 

was affected by external disturbance in the input of the 

system. The used strategy was based on the 𝔏2 

performance criteria to be robust against disturbance 
and faults. Furthermore, it was demonstrated that the 

proposed approach is suitable to estimate system states 

and actuator and sensors faults by a quasi-LPV 

Proportional-Integral observer based controller and 

stabilize the states and controller into equilibrium point. 

Finally, a numerical example was presented to show the 

effectiveness and applicability of the proposed 

approach.  

 

References: 

 
1. C. Edwards, S. K. Spurgeon, and R. J. Patton, “Sliding mode observers for fault 

detection and isolation”. Automatica, vol. 36, no. 4, pp. 541–553, 2000. 

2.  X J Su, X X Liu, and Y D Song, ”Event-triggered sliding mode control for 

multi-area power systems”, IEEE Trans. on Industrial Electronics, vol. 64, no. 

8, pp. 6732–6741, 2017. 

3. D. Koenig, “Unknown input proportional multiple–integral observer design for 

linear descriptor systems: application to state and fault estimation,” IEEE Trans. 

Autom. Control, vol. 50, no. 2, pp. 212–217, 2005. 

4.  D. J. Lee, Y. Park and Y. Park, “Robust H∞ sliding mode descriptor observer 

for fault and output disturbance estimation of uncertain systems,” IEEE Trans. 

Automat. Control, vol 57, no. 11, pp. 2928–2934, 2012.  

5. X. J. Li, G. H.Yang, ”Dynamic observer-based robust control and fault 

detection for linear systems,” IET Control Theory and Applications, vol. 6, no. 

17, pp. 2657–2666, 2012. 

6. P, Zhang, S. X. Ding, and P, Liu, “A Lifting Based Approach to Observer 

Based Fault Detection of Linear Periodic Systems,” IEEE Trans. Automat. 

Control, vol. 57, No. 2, pp. 457–462, 2012. 

7. S. Nguang, P. Shi, and S. Ding, ”Fault detection for uncertain fuzzy systems: 

An LMI approach,” IEEE Trans. Fuzzy Syst., vol. 15, no. 6, pp. 1251–1262, 

2007.  

8. Y. Y. Cao and P. M. Frank, “Stability analysis and synthesis of nonlinear time–

delay systems via linear Takagi–Sugeno fuzzy models,” Fuzzy Sets Syst., vol. 

124, no. 2, pp. 213–229, 2001.  

9. L. Wu and D. W. C. Ho, ”Fuzzy filter design for nonlinear Itoˆ stochastic 

systems with application to sensor fault detection,” IEEE Trans. Fuzzy Syst., 

vol. 17, no. 1, pp. 233–242, 2009. 

10.  K. Zhang, B. Jiang, and M. Staroswiecki, “Dynamic Output Feedback Fault 

Tolerant Controller Design for Takagi–Sugeno Fuzzy Systems with Actuator 

Faults,” IEEE Trans. Fuzzy Syst., vol. 18, no. 1, 194–201, 2010. 

11. K. Zhang, B. Jiang, and P. Shi, “Analysis and Design of Robust H∞ Fault 

Estimation Observer with Finite–Frequency Specifications for Discrete–Time 

Fuzzy Systems,” IEEE Trans. Cybernetics, vol. 45, no. 7, pp. 1225–1235, 2015.  

12. J. X. Dong, J. T. Hou, “Output feedback fault–tolerant control by a set theoretic 

description of T–S fuzzy systems,” Applied Mathematics and Computation vol. 

301, pp.117–134, 2017.  

13. Q. X. Jia, W. Chen, and P. Wang, ”Design of a PD–type learning observer for 

reconstruction of actuator faults in descriptor systems,” IET Control Theory and 

Applications, Vol. 11, no. 1, pp. 17–24,2017. 

14. S. J. Huang and G. H. Yang, ”Fault Tolerant Controller Design for T–S Fuzzy 

Systems With Time–Varying Delay and Actuator Faults: A K-Step Fault– 

15. Estimation Approach,” IEEE Trans. Fuzzy Syst., vol. 22, no. 6, 1526–1540, 

2014.  

16. M. Chadli, A. Abdo, and S. X. Ding,”H2/H∞ fault detection filter design for  

17. discrete–time Takagi Sugeno fuzzy system,” Automatica, vol. 49, pp. 1996–

2005, 2013.  

18. M. Liu, X. B Cao, and P. Shi, ”Fault Estimation and Tolerant Control for Fuzzy 

Stochastic Systems,” IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 221–229, 

2013.  

19. M.Liu,X.BCao,andP.Shi,”Fuzzy–Model–Based Fault Tolerant Design for 

Nonlinear Stochastic Systems Against Simultaneous Sensor and Actuator 

Faults,” IEEE Trans. Fuzzy Syst., vol. 21, no. 5, pp. 789–799, 2013. 

20. Aouaouda, S., Chadli, M., Boukhnifer, M., & Karimi, H. R. (2015). Robust 

fault tolerant tracking controller design for vehicle dynamics: A descriptor 

approach. mechatronics, 30, 316-326. 

21. Aouaouda, S., & Chadli, M. (2015). Model Reference Tracking Control for 

Uncertain Takagi-Sugeno Systems subject to Sensor Faults. IFAC-

PapersOnLine, 48(21), 1250-1255. 

22. Tarbouriech, S., Garcia, G., da Silva Jr, J. M. G., & Queinnec, I. 

(2011). Stability and stabilization of linear systems with saturating actuators.  

23. Escobet, T., Bregon, A., Pulido, B., & Puig, V. (2019). Fault diagnosis of 

dynamic systems. Springer International Publishing. 

24. Li, Y., Liu, S., Li, Y., & Zhao, D. (2021). Fault estimation for discrete 

time‐variant systems subject to actuator and sensor saturations. International 

Journal of Robust and Nonlinear Control, 31(3), 988-1004. 

25. Do, M. H., Koenig, D., & Theilliol, D. (2020). Robust H∞ proportional-integral 

observer-based controller for uncertain LPV system. Journal of the Franklin 

Institute, 357(4), 2099-2130. 

26. Alwi, H., Edwards, C., & Marcos, A. (2012). Fault reconstruction using a LPV 

sliding mode observer for a class of LPV systems. Journal of the Franklin 

Institute, 349(2), 510-530. 

27. Patton, R. J., & Klinkhieo, S. (2010, June). LPV fault estimation and FTC of a 

two-link manipulator. In Proceedings of the 2010 American Control 

Conference (pp. 4647-4652). IEEE. 

28. Bara, G. I., Daafouz, J., Kratz, F., & Ragot, J. (2001). Parameter-dependent 

state observer design for affine LPV systems. International journal of 

control, 74(16), 1601-1611.  

29. Zhen-Hua, W. A. N. G., Rodrigues, M., Theilliol, D., & Yi, S. H. E. N. (2014). 

Sensor fault estimation filter design for discrete-time linear time-varying 

systems. Acta Automatica Sinica, 40(10), 2364-2369. 

30. Tanaka, K. and H.O. Wang, Fuzzy control systems design and analysis: a linear 

matrix inequality  approach2004: John Wiley & Sons. 

31. Guzman, J., López-Estrada, F. R., Estrada-Manzo, V., & Valencia-Palomo, G. 

(2021). Actuator fault estimation based on a proportional integral observer with 

nonquadratic Lyapunov functions. International Journal of Systems Science, 1-

14. 

32. S. Boyd, L. Ghaoui, and E. Feron, Linear Matrix Inequalities in Systems and 

Control Theory. Philadelphia, PA, USA: SIAM, 1994. 

33. Zhang, K., Jiang, B., Shi, P., & Cocquempot, V. (2018). Observer-based fault 

estimation techniques. Springer International Publishing. 

 

0 10 20 30 40 50
-0.1

-0.05

0

0.05

0.1

0.15

t(s)

 

 

f

f
estimated

0 10 20 30 40 50
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

t(s)

 

 

e
f

0 10 20 30 40 50
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t(s)

 

 

x
F1

x
F2


	I. Notations and problem statements:

