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Abstract. Consider the speed of the ions at different temperatures. The ions speed was taken

in 6 temperature groups of 5, 10, 100, 150, 250 and 300 at 50000 seconds. In fact, for each
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1. Introduction

A test used to compare the mean of a quantitative attribute in more than two groups is one-
way analysis of variance. in the one-way ANOVA analysis, the initial assumption H0 is that there
is no difference between the mean of populations and, in contrast to the secondary assumption H1,
there is a significant difference between the mean of the two groups of populations.
If the H0 assumption is accepted, the analysis ends, indicates that there is no difference between
the mean of the groups. But if the H0 assumption is rejected, it indicates the difference between
the groups and we should look for differences.
The advantages of using the analysis of variance is that only by performing a single test, the dif-
ference between the mean of all the groups in the test is examined.

Remark 1.1. In one-way ANOVA, the following assumptions should be established:

(1) Independent random samples have been taken from each community. In other words, the
dependent variable sizes in the variable factor levels are independent of each other.

(2) The traits examined in each community have normal distribution. That is, the dependent
variable sizes at each level of the factor variable have a normal distribution.

The data we want to examine is obtained by simulating the ion speed at various temperatures
of 5,10,100,200,250 and 300 Kelvin. for each temperature, we have about 50,000 speed variables
depending on that temperature.We will review the conditions 1.1.
Clearly, the one condition is established. To make a second condition, use the of following tests
and graphs.
Fig. 4 shows QQ-plot of quantile sample versus normal distribution, wherever the data is closer
to the right line, it follows a normal distribution. According to Fig. 4, it is clear that the samples
at different temperatures follow a normal distribution.

∗speaker
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Figure 1. Q-Q plots of different temperatures.

The test, which is examined, is kolmogorovsmirnov test, the KolmogorovSmirnov test is a non-
parametric test of the equality of continuous, one-dimensional probability distributions that can
be used to compare a sample with a reference probability distribution, or to compare two samples.
the KolmogorovSmirnov statistic quantifies a distance between the empirical distribution function
of the sample and the cumulative distribution function of the reference distribution, or between the
empirical distribution functions of two samples. if the significance test, ie p was smaller than 0.05,
it means that the distribution is not normal [?]. according to Table 1 in the appendix, almost all
p-valu of the test statistic is greater than 0.05, and it rejects the assumption of kolmogorovsmirnov
test, that is, the data follow the normal distribution.

Only data 5 Kelvin should be further reviewed. Figure 14 is a histogram of data 5 Kelvin,
which indicates the normality of the data, and this fact can also be followed by the central limit
theorem, when the data is highly selected the distribution of the data according to normal distri-
bution.Now, with conditions A we want to check, is the average number of speeds between different
temperatures the same or no?
First, Table 2 lists a descriptive index and plus a 95% confidence interval for the speed variable

Figure 2. Histogram from 5 Kelvin

at each of the temperatures. If you look at the average speed at among temperatures, you will see
that the mean is almost equal.

In Table 2, equality tests of variances were performed among six groups. You can see that
with respect to the value of 0.00, the equality of variances is not accepted at the α = 0.05 level.
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Table 16 is an analysis table for variance with the value of Y equal to 0.969, which rejects the
zero hypothesis. that’s mean there is no difference between average speed between at the temper-
atures. Therefore, it can be said that the temperatures do not have a general relationship. The
absence of a general relationship between temperatures means that if ion behavior is investigated
at a particular temperature, we can not predict the behavior of this ion at other temperatures.
Finally, according to the Tukey and Scheffe test, which is shown in Tables 20 and 5 of the ap-
pendix, we find that the temperatures do not have any relationship with each other. So, it can
be said that temperatures do not have an outside group relationship and no intergroup relationship.

2. Two-Way ANOVA: Replications and Interaction

In the first section, the speed of different ions investigated on the temperature. in this section,
we only consider the behavior of an ion at different temperatures. since it is believed that if we
assign six different groups of speeds to each of the temperatures, the inherent feature of the ions
may cause a difference. so, according to the data, we want to compare the six temperatures by
means of variance analysis with Replications sizes. in Table 7, variable Factor Levels are reminded
and in Table 8, the average and standard deviation of the speeds at each of the temperatures as
well as the number of samples are given.

In Table 9, multivariate tests of factor levels are presented and Table Mauchly’s Test 10 the
test of uniformity of variance-covariance matrix with level of significance α = 0.00 reasons for the
non-uniformity of the variance-covariance matrix.

The most important table the analysis variance is Table Tests of Within-Subjects Effects 11.
In the first row, level of significance of the ANOVA test is 0.965, that is, there is no significant
difference between the temperatures. In the second to fourth row, more cautious tests were pre-
sented. These tests are for the assumption of the non-uniformity of the variance-covariate matrix
the value of 0.05 these tests is due to the lack of discrepancy at various temperatures.

In Table 12, the avrage and standard deviation of the total, as well as the confidence inter-
val 95%, are obtained for the average, and in Table 18, the average and standard deviation of the
velocities for each of the temperatures as well as the 95% confidence interval for them are obtained.

Figure 3 also shows the difference between temperatures with a temperature of 300 Kelvin.
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Figure 3. Average linear graph.

3. Time series

Introduction

A time series is a sequence of observation of data points measured over a time interval. The
observations are ordered in time as successive observation may be dependent. Data must be equal
at time interval and dependent on the variable also do not have missing data. The purpose of
the time series is the describe, control and most importantly the predict. The difference in time
series and other modeling methods, including regression, is that time series predict future values
using previous data, while in other modeling methods, often, using independent variables, we try
to predict the desired variable [?].

Static data

Staticity is a very important topic in time series modeling. Because many probability models
of time series are based on the static series. If a series of times is static, it means that the series
fluctuates randomly around a constant, and if the series is unstable, it means that the series has
no stable mean. A trend series is a series of unsafe ones. Because its average is not constant and
is rising or decreasing with time. Simply put, we can call a series of times static or mana if its
statistical characteristics, such as its average and its variance, remain constant over time. The
basic concept of static is that the laws governing the process do not change with time, that is, the
process remains in statistical balance.

Model ARIMA(p, d, q) in time series analysis

Determining the appropriate model is one of the important issues in analyzing time series. In
this paper, considering the general model of ARIMA, we study the effect of the difference value
on the fit of the model. In the following sections, while introducing these models, we will examine
the amount of differentiation.
Time series methods are used to analyze data that dependent on time. Two domains in the mod-
eling of time series are the domain of time and domain of frequency.
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The self-return model is one of the most time-consuming models. In this model, it is assumed
that any value of the time series is returned to a certain and finite order such as p to the previous
values of the series. In other words, each series value can be written in terms of a certain number
of values before it, and the reason for naming this model is the same. For this model, the AR(p)
symbol is usually used.
Model AR(p) is always invertible because it can be obtained in terms of its previous values.
In general, this model can be written as follows:

(1) AR(p) : ψ(B)(Zt − µt) = at

In the 1 relation, the polynomial ψ(B) is a ccording to backward operator B, which is

ψ(B) = 1− ψ1B − ...− ψpB
p

Also Zt indicates the amount of time series and at its noise.
The self-return model is not always static. Because it results from 1:

(2) Zt =
1

ψ(B)
at

In general, if you can get to convergethe coefficient at to the right of relation 2, then the model is
convergent.
Therefore, convergence of the model is possible, for example, in the model AR(1), the coefficient
B is smaller than one, in other words, the polynomial root ψ(B) is greater than one. For higher
levels of the model, the stationary determination depends on the solution of the differential return
equation ψ(B) = 0 and places several conditions on the polynomial coefficients. Therefore, it is
inevitable to determine the value of the ψ(B) polynomial root for stationary diagnosis. If one or
more of the roots of ψ(B) is equal to one, then the model is not static. Since the convergence of
the right coefficient of relation 2 does not exist. In this case, with the difference of the model it
can be static:

(3) ARI(p, d) : ψ(B)(1−B)d(Zt − µt) = at

In this model, the decomposition of the d rank of the AR(p) model is performed. This model is
used when ψ(B) = 0 has a root d equal to one. In such cases, the difference in the model makes
it standable.
Now, if any value of the Zt series is in series, that is, a time series {at, t = 1, 2, ..., n} to a certain
and finite order such as q, then the resulting model is called the moving average model of the
q-order and shown with the MA(q) symbol. The MA(q) moving average model can be shown as
follows:

(4) MA(q) : Zt = θ(B)at.

In Equation 4, θ(B) is equal to:

θ(B) = 1− θ1B − θ2B
2 − ...− θqB

q.

It is obvious that moving average models are always static. Both self-reversal and moving average
models are in the realm of time. Now, if we consider the two models above, that is, any value
of the time series is a function of its previous values and its constructive series, the ARMA(p,q)
model is obtained.In general, this model can be written as follows:

(5) ARMA(p, q) : ψ(B)(Zt − µt) = θ(B)at.

Static ARMA(p,q) models are returned to the static part of the self-reversing part of the model.
In relation 5, if the model of the model is derived from the polynomial ψ(B) root, then the model
can be static with the difference of degree d. These models are represented by the ARIMA(p,d,q)
symbol and are shown as follows:

ARIMA(p, d, q) : ψ(B)(1−B)d(Zt − µt) = θ(B)at.
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That µt is the mean of the process corresponding to the desired time series. In these models, the
values of d are natural numbers.

The data we have is data that is dependent to different temperatures at equal intervals. To
predict the data, we use the following algorithm.

Algorithm (time series prediction)

Step one: Draw a time series graph.
Step Two: If the data are constant variance, we will go to the next step, otherwise by dividing the
data we will go through the first step.
Step third: If the data is static, we go to the next step, otherwise by dividing the data we will go
through the first step.
Step fourth: Using the graphs acf and pacf, we identify the model, we go to the next step.
Step Five: If the parameters are meaningful, we go to the next step, otherwise we will return to
step four.
Step Six: If the residuals are independent and meaningful, we will go to the next step; otherwise,
return to step four.
Step seventh: If the residuals is normal, we go to the next step otherwise, return to step four.
Step eEighth: We anticipate the next data.
Using the above algorithm, we examine the ion speeds at different temperatures. For each of the
six temperatures of 5, 10, 100,200,250 and 300 Kelvin, we have 50,000 variable speeds m

s depending
on any temperature in the same range.
For each of the six temperature variables, we apply six time series models. The results are as
follows.
Fig 4 is time series graph, acf and pacf at 5 K.
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Figure 4. 5 kelvin temperatures.

The acf graph has a downward trend towards zero, so the 5 kelvin time series is not static [?].
By differentiating data and according to Figure 5, the data are static.
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Figure 5. 5 kelvin temperatures.

Now, using the acf and pacf charts, we will identify models. For temperature 5 Kelvin, we
approximate six models. Consider a model that is p− value < 0.005 and the residue has a white
noise property, meaning that the residues are independent and meaningful and normal (0, σ2). In
summary, the tested models are shown in Table 14.
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Figure 6. Time series graph, acf and pacf from residue 5 Kelvin for arima(3,3,3)

[Histogram from residue 5 Kelvin]

[QQ-plot from residue 5 Kelvin]

Figure 7. Investigating the Normality of Residues for Model arima(3,3,3).
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According to Table 14 and Chart Remnants 2 and 8 of model arima(3,3,3),this Model is ac-
ceptable, so the next data can be predicted. Table 15 predicts 20 data from a temperature of 5
Kelvin.

Similarly, model testing and detection of 10,100,200,250 and 300 Kelvin temperatures are
presented below.
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Figure 8. 10 kelvin temperatures.
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[Graph from residue 10 Kelvin]
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Figure 9. Investigating the Normality of Residues for Model arima(1,1,1).

Table 16 predicts 20 data from a temperature of 10 Kelvin.
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Figure 10. 100 kelvin temperatures.
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[Graph from residue 100 Kelvin]
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Figure 11. Investigating the Normality of Residues for Model arima(0,0,1).

Table 17 predicts 20 data from a temperature of 100 Kelvin.
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Figure 12. 200 kelvin temperatures.

Table 18 predicts 20 data from a temperature of 200 Kelvin for model arima(1,1,1) .
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Figure 13. 250 kelvin temperatures.

Table 19 predicts 20 data from a temperature of 250 Kelvin for model arima(1,2,1) .
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Figure 14. 300 kelvin temperatures.
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[Graph from residue 300 Kelvin]
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Figure 15. Investigating the Normality of Residues for Model arima(1,2,1).

Table 20 predicts 20 data from a temperature of 300 Kelvin.
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Table 1. One-Sample Kolmogorov-Smirnov Test

K5 K10 K100

Number 50000 50000 50000

NormalParametersa,b Mean 0.001932319 0.004717649 −0.008281157

Std. Deviation 40.8336794436 54.1247153816 148.6141327423

Most Extreme Differences Absolute 0.017 0.007 0.002

Positive 0.015 0.007 0.002

Negative -0.017 -0.005 -0.002

Kolmogorov-Smirnov Z 3.746 1.550 0.492

Asymp. Sig. (2-tailed) 0.000 0.160 0.969

K200 K250 K300

Number 50000 50000 50000

NormalParametersa,b Mean −0.025794156 −.025794156 0.639499674

Std. Deviation 111.7119287029 111.7119287029 251.8141972986

Most Extreme Differences Absolute 0.004 0.004 0.004

Positive 0.004 0.004 0.002

Negative -0.004 -0.004 -0.004

Kolmogorov-Smirnov Z 0.890 0.890 0.808

Asymp. Sig. (2-tailed) 0.407 0.407 0.532

a. Test distribution is Normal.
b. Calculated from data.

Table 2. Descriptives

Temperature (K) Mean Std. Deviation 95% Confidence Interval for Mean
Lower Bound Upper Bound

5 0.001932 40.8336794 -0.355993 0.359857

10 0.004718 54.1247154 -0.469709 0.479144

100 -0.008281 148.6141327 -1.310949 1.294386

200 -.025794 111.7119287 -1.004998 0.953409

250 -0.025794 111.7119287 -1.004998 0.953409

300 0.639500 251.8141973 -1.567761 2.846761

Table 3. Test of Homogeneity of Variances

Levene Statistic df1 df2 Sig.
26298.072 5 299994 0.000
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Table 4. Test of Homogeneity of Variances

Sum of Squares df Mean Square F Sig
Between Groups 17654.884 5 3530.977 0.184 0.969

Within Groups 5.753e9 299994 19175.422

Total 5.753e9 299999

4. CONCLUSION

5. ACKNOWLEDGMENTS

6. Appendix

Table 5. Multiple Tukey Model Comparison
Statistics

Mean 95% Confidence Interval
Test (I) V2 (J) V2 Difference (I-J) Std. Error Sig Lower Bound Upper Bound

Tukey HSD 1 2 -.0027853 .8757950 1.000 -2.498559 2.492989

3 .0102135 .8757950 1.000 -2.485560 2.505987

4 .0277265 .8757950 1.000 -2.468047 2.523500

5 .0277265 .8757950 1.000 -2.468047 2.523500

6 -.6375674 .8757950 .979 -3.133341 1.858207

2 1 .0027853 .8757950 1.000 -2.492989 2.498559

3 .0129988 .8757950 1.000 -2.482775 2.508773

4 .0305118 .8757950 1.000 -2.465262 2.526286

5 .0305118 .8757950 1.000 -2.465262 2.526286

6 -.6347820 .8757950 .979 -3.130556 1.860992

3 1 -.0102135 .8757950 1.000 -2.505987 2.485560

2 -.0129988 .8757950 1.000 -2.508773 2.482775

4 .0175130 .8757950 1.000 -2.478261 2.513287

5 .0175130 .8757950 1.000 -2.478261 2.513287

6 -.6477808 .8757950 .977 -3.143555 1.847993

4 1 -.0277265 .8757950 1.000 -2.523500 2.468047

2 -.0305118 .8757950 1.000 -2.526286 2.465262

3 -.0175130 .8757950 1.000 -2.513287 2.478261

5 .0000000 .8757950 1.000 -2.495774 2.495774

6 -.6652938 .8757950 .974 -3.161068 1.830480

5 1 -.0277265 .8757950 1.000 -2.523500 2.468047

2 -.0305118 .8757950 1.000 -2.526286 2.465262

3 -.0175130 .8757950 1.000 -2.513287 2.478261

4 .0000000 .8757950 1.000 -2.495774 2.495774

6 -.6652938 .8757950 .974 -3.161068 1.830480

6 1 .6375674 .8757950 .979 -1.858207 3.133341

2 .6347820 .8757950 .979 -1.860992 3.130556

3 .6477808 .8757950 .977 -1.847993 3.143555

4 .6652938 .8757950 .974 -1.830480 3.161068

5 .6652938 .8757950 .974 -1.830480 3.161068
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Table 6. Multiple Scheff Model Comparison
Statistics

Mean 95% Confidence Interval
Test (I) V2 (J) V2 Difference (I-J) Std. Error Sig Lower Bound Upper Bound

Scheffe 1 2 -.0027853 .8757950 1.000 -2.916781 2.911210

3 .0102135 .8757950 1.000 -2.903782 2.924209

4 .0277265 .8757950 1.000 -2.886269 2.941722

5 .0277265 .8757950 1.000 -2.886269 2.941722

6 -.6375674 .8757950 .991 -3.551563 2.276428

2 1 .0027853 .8757950 1.000 -2.911210 2.916781

3 .0129988 .8757950 1.000 -2.900997 2.926994

4 .0305118 .8757950 1.000 -2.883484 2.944507

5 .0305118 .8757950 1.000 -2.883484 2.944507

6 -.6347820 .8757950 .991 -3.548778 2.279214

3 1 -.0102135 .8757950 1.000 -2.924209 2.903782

2 -.0129988 .8757950 1.000 -2.926994 2.900997

4 .0175130 .8757950 1.000 -2.896483 2.931509

5 .0175130 .8757950 1.000 -2.896483 2.931509

6 -.6477808 .8757950 .990 -3.561776 2.266215

4 1 -.0277265 .8757950 1.000 -2.941722 2.886269

2 -.0305118 .8757950 1.000 -2.944507 2.883484

3 -.0175130 .8757950 1.000 -2.931509 2.896483

5 .0000000 .8757950 1.000 -2.913996 2.913996

6 -.6652938 .8757950 .989 -3.579289 2.248702

5 1 -.0277265 .8757950 1.000 -2.941722 2.886269

2 -.0305118 .8757950 1.000 -2.944507 2.883484

3 -.0175130 .8757950 1.000 -2.931509 2.896483

4 .0000000 .8757950 1.000 -2.913996 2.913996

6 -.6652938 .8757950 .989 -3.579289 2.248702

6 1 .6375674 .8757950 .991 -2.276428 3.551563

2 .6347820 .8757950 .991 -2.279214 3.548778

3 .6477808 .8757950 .990 -2.266215 3.561776

4 .6652938 .8757950 .989 -2.248702 3.579289

5 .6652938 .8757950 .989 -2.248702 3.579289

Table 7. Within-Subjects Factors
Dependent

factor1 Variable
1 K5

2 K10

3 K100

4 K200

5 K250

6 K300
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Table 10. Mauchly′sTestofSphericityb

Within Subjects Effect Mauchly’s W Approx. Chi-Square df Sig. Epsilona

Greenhouse-Geisser Huynh-Feldt Lower-bound

factor1 .000 . 14 . 0.448 0.448 0.200

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected
tests are displayed in the Tests of Within-Subjects Effects table.
b. Design: Intercept
Within Subjects Design: factor1

Table 8. Within-Subjects Factors
Mean Std. Deviation N

K5 0.001932319 40.8336794436 50000

K10 0.004717649 54.1247153816 50000

K100 -0.008281157 148.6141327423 50000

K200 -0.025794156 111.7119287029 50000

K250 -0.025794156 111.7119287029 50000

K300 0.639499674 251.8141972986 50000

Table 9. MultivariateTestsb
Effect Value F Hypothesis df Error df Sig

factor1 Pillai’s Trace 0.000 0.080a 4.000 49996.000 0.988

Wilks’ Lambda 0.000 0.080a 4.000 49996.000 0.988

Hotelling’s Trace 0.000 0.080a 4.000 49996.000 0.988

Roy’s Largest Root 0.000 0.080a 4.000 49996.000 0.988

a. Exact statistic
b. Design: Intercept
Within Subjects Design: factor1
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Table 12. Grand Mean

Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

0.098 0.280 -0.450 0.646

Table 13. factor1

factor1 Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

1 0.002 0.183 -0.356 0.360

2 0.005 0.242 -0.470 0.479

3 -0.008 0.665 -1.311 1.294

4 -0.026 0.500 -1.005 0.953

5 -0.026 0.500 -1.005 0.953

6 0.639 1.126 -1.568 2.847

Table 11. Tests of Within-Subjects Contrasts
Type III Sum of

Source factor1 Squares df Mean Square F Sig.
factor1 Linear 6770.670 1 6770.670 0.252 0.616

Quadratic 6738.163 1 6738.163 0.248 0.618

Cubic 3347.532 1 3347.532 0.166 0.684

Order 4 723.475 1 723.475 0.106 0.745

Order 5 75.044 1 75.044 0.007 0.933

Error(factor1) Linear 1.343e9 49999 26856.967

Quadratic 1.357e9 49999 27146.186

Cubic 1.007e9 49999 20147.541

Order 4 3.417e8 49999 6833.621

Order 5 5.310e8 49999 10620.512

Table 15. Predicts 20 data from a temperature of 5 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.030528 6 0.030527 11 0.030528 16 0.030526
2 0.030529 7 0.030529 12 0.030526 17 0.030527
3 0.030528 8 0.030529 13 0.030527 18 0.030527
4 0.030528 9 0.030528 14 0.030529 19 0.030527
5 0.030529 10 0.030529 15 0.030529 20 0.030529
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Table 14. Model identification for a temperature of 5 Kelvin

Model ar1 ar2 ar3 ma1 ma2 ma3
arima(1,2,1) 0.123 0.7982

s.e. 0.0052 0.03
arima(3,1,2) 1.0342 -1.0814 0.3297 0.3419 0.1629

s.e. 0.0156 0.012 0.0126 0.0162 0.096
arima(1,1,1) 0.3298 0.8808

s.e. 0.0042 0.0091
arima(1,1,0) 0.41818

s.e. 0.0039
arima(3,2,3) 1.0300 -1.0782 0.3265 -0.6535 -0.1810 -0.1654

s.e. 0.0159 0.123 0.128 0.0164 0.0092 0.0094
arima(3,3,3) 0.0202 -0.4468 -0.5685 -0.4258 -0.6251 0.0051

s.e. 0.0024 0.0156 0.0226 0.00256 0.0276 0.0042

Table 16. Predicts 20 data from a temperature of 10 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.0189146 6 0.1271956 11 0.1887945 16 0.2348891
2 0.047400 7 0.1415878 12 0.1988690 17 0.2430617
3 0.0719922 8 0.1547150 13 0.2084579 18 0.250968
4 0.0929962 9 0.1668402 14 0.2176252 19 0.2586333
5 0.1111697 10 0.1781533 15 0.2264217 20 0.2660777

Table 17. Predicts 20 data from a temperature of 100 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.0854351 6 0.1187241 11 0.1187242 16 0.1187243
2 0.1187243 7 0.1187242 12 0.1187241 17 0.1187242
3 0.1187241 8 0.1187242 13 0.1187244 18 0.1187241
4 0.1187242 9 0.1187243 14 0.1187243 19 0.1187241
5 0.1187242 10 0.1187242 15 0.1187241 20 0.1187241

Table 18. Predicts 20 data from a temperature of 200 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.050079 6 0.278764 11 0.401364 16 0.49469
2 0.116548 7 0.307205 12 0.421633 17 0.511058
3 0.168667 8 0.333244 13 0.440971 18 0.527126
4 0.211115 9 0.357395 14 0.459496 19 0.542718
5 0.247144 10 0.380016 15 0.477303 20 0.557875

Table 19. Predicts 20 data from a temperature of 250 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.1272352 6 0.1272352 11 0.1272351 16 0.1272352
2 0.1272352 7 0.1272351 12 0.1272352 17 0.1272353
3 0.1272351 8 0.1272351 13 0.1272352 18 0.1272353
4 0.1272352 9 0.1272352 14 0.1272351 19 0.1272352
5 0.1272353 10 0.1272353 15 0.1272353 20 0.1272354
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Table 20. Predicts 20 data from a temperature of 300 Kelvin.
N speed m

s N speed m
s N speed m

s N speed m
s

1 0.2518092 6 0.2518090 11 0.2518091 16 0.2518091
2 0.2518092 7 0.2518092 12 0.2518091 17 0.2518090
3 0.2518091 8 0.2518092 13 0.2518092 18 0.2518090
4 0.2518090 9 0.2518091 14 0.2518091 19 0.2518091
5 0.2518092 10 0.2518091 15 0.2518092 20 0.2518091
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