
EasyChair Preprint

№ 640

Automated dispatch of helpdesk email tickets:

Pushing the limits with AI

Atri Mandal, Nikhil Malhotra, Shivali Agarwal, Anupama Ray and
Giriprasad Sridhara

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 16, 2018



AUTOMATED DISPATCH OF HELPDESK EMAIL TICKETS:
PUSHING THE LIMITS WITH AI

A PREPRINT

Atri Mandal1, Nikhil Malhotra2, Shivali Agarwal1, Anupama Ray1, Giriprasad Sridhara1

1 IBM Research AI, Bengaluru, India
2 IBM Global Technology Services, Bengaluru, India

{atri.mandal,nikhilmal,shivaaga,anupamar,girisrid}@in.ibm.com

November 16, 2018

ABSTRACT

Ticket assignment/dispatch is a crucial part of service delivery business with lot of scope for au-
tomation and optimization. In this paper, we present an end-to-end automated helpdesk email ticket
assignment system, which is also offered as a service. The objective of the system is to determine the
nature of the problem mentioned in an incoming email ticket and then automatically dispatch it to an
appropriate resolver group (or team) for resolution.

The proposed system uses an ensemble classifier augmented with a configurable rule engine. While
design of a classifier that is accurate is one of the main challenges, we also need to address the need
of designing a system that is robust and adaptive to changing business needs. We discuss some of
the main design challenges associated with email ticket assignment automation and how we solve
them. The design decisions for our system are driven by high accuracy, coverage, business continuity,
scalability and optimal usage of computational resources.

Our system has been deployed in production of three major service providers and currently assigning
over 90,000 emails per month, on an average, with an accuracy close to 90% and covering at least
90% of email tickets. This translates to achieving human-level accuracy and results in a net saving of
more than 50000 man-hours of effort per annum. Till date, our deployed system has already served
more than 700,000 tickets in production.

1 Introduction

The landscape of modern IT service delivery is changing with increased focus on automation and optimization. Most
IT vendors today, have service platforms aimed towards end-to-end automation for carrying out mundane, repetitive
labor-intensive tasks and even for tasks requiring human cognizance. One such task is ticket assignment/dispatch
where the service requests submitted by the end-users to the vendor in the form of tickets are reviewed by a centralized
dispatch team and assigned to the appropriate service team i.e. resolver group.

The dispatch of a ticket to the correct group of practitioners is a critical step in the speedy resolution of a ticket. Incorrect
dispatch decisions can significantly increase the total turnaround time for ticket resolution, as observed in a study of an
actual production system [1]. Several factors make the dispatcher’s job challenging viz. need for in-depth knowledge of
the roles and responsibilities of various groups, heterogeneous and informal nature of email text and high attrition rate
in service delivery teams [2].

Given the fact that inefficiencies in dispatch have serious business consequences, there has been a lot of interest in
automating the assignment process, that is, the dispatching of a ticket to an appropriate resolver group based on the
problem description. A number of different approaches have been proposed for automating ticket dispatch [1][3][4][5].
The tickets may be raised in different manners such as through voice, web forms or e-mails to a centralized helpdesk
team. Our proposed system focuses on email tickets only but can be applied to other forms of tickets that use text.



A PREPRINT - NOVEMBER 16, 2018

Although email assignment may look like a simple text classification problem at first glance it becomes quite complex
and challenging when considered at industry scale.

Firstly, for large companies the number of resolver groups can be quite large - of the order of 500 in some cases.
Many of these resolver groups cater to overlapping problems which can be disambiguated only with domain specific
knowledge. Secondly in most businesses the helpdesk teams themselves undergo constant changes for better efficiency
and productivity leading to resolver groups being split, merged or renamed. All of these changes inevitably impact the
accuracy of machine learning classifiers. Thirdly the problems assigned to resolver groups themselves slowly change
over time. As such a once-trained model becomes outdated over time as it cannot effectively assign tickets mentioning
new problems or old problems with a different terminology [2].

1.1 Main Contributions

In this paper we present a readily deployable end-to-end automatic email dispatch system, which has the following key
features:

1. An ensemble based classification engine that uses supervised machine learning to understand the nature of
the problem from free unstructured email text and assign accurately. The choice of ensemble is based on
the results of comprehensive study performed with various machine learning and deep learning models as
presented in section 4.2.

2. A rule engine to i) handle domain specific content missed by the ensemble classifier and ii) ensure business
continuity. The rules are designed to strategically combine with machine learning methods for effective
disambiguation of classes. Rules are specified through customer-independent framework.

3. An effective retraining strategy which ensures that the models are up-to-date with the changes that happen
over time in the email utterances as well as resolver group organization.

We present a comprehensive study of the efficacy of different machine-learning and deep-learning algorithms in helpdesk
email ticket classification. The results are presented with real customer data from three different datasets – with the
largest of them having more than 700,000 emails and as many as 428 resolver groups. We were able to achieve human
level accuracy with more than 90% coverage on all the datasets with the proposed system using minimal computational
resources.

To the best of our knowledge, this is the first time that human-level accuracy has been reported for a deployed assignment
engine at this scale of automation, delivered consistently across datasets of varying size. The remainder of the paper is
organized as follows. Section 2 describes the related work. Section 3 gives an overview of the system used for ticket
classification and Section 4 discusses the different components of the system. In Section 5 we present our experimental
results while we conclude in Section 6.

2 Related Work

Ticket dispatch has been addressed by [1] using Support Vector Machines and discriminative keyword approach. They
propose semi-automated approach based on confidence scores. We have surpassed their work to i) reach human level
accuracy using advanced ensemble techniques for automated dispatch, ii) scale it to hundreds of resolver groups and
iii) incorporate retraining strategies to adapt to changing data. Several other researchers have studied different aspects
of the problem of routing tickets to resolver groups [3][4][5]. The work in [4] approaches the problem by mining
resolution sequence data and does not access ticket description at all. Its objective is to come up with ticket transfer
recommendations given the initial assignment information. The work in [3] mines historical ticket data and develops a
probabilistic model of an enterprise social network that represents the functional relationships among various expert
groups in ticket routing. Based on this network, the system then provides routing recommendations to new tickets. This
work also focuses on ticket transfers between groups (given an initial assignment) without looking at the ticket text
content. The work in [5] is different and approaches the problem from a queue perspective. This is more related to the
issue of service times and becomes particularly relevant when the ticket that has been dispatched to a group needs to be
assigned to an agent. There are some papers, which apply text classification techniques to handle tickets [6][7]. The
idea is that once ticket category is identified, then the assignment to resolver groups can be done by manual dispatchers
quickly. However, none of the works talk about the scale and retraining required in real-life deployment. In [8] tickets
are automatically classified based on description to route them to the right group. However, the work was applied on a
small ticket set with only 8 groups. The work in [9] attempts to classify the incoming change requests into one of the
fine-grained activities in a catalog. Some other works [10] and [11] talk about a holistic approach of ticket category
classification, cause analysis and resolution recommendation. However, they do not automate the process of assignment.

2



A PREPRINT - NOVEMBER 16, 2018

Figure 1: Architecture of the proposed system

3 System Overview

Figure 1 shows the system architecture along with the data flow diagram. Historical email ticket data is downloaded from
the ticketing tool (e.g. Remedy or ServiceNow) using custom-built adapters. The downloaded emails are passed through
two stages of pre-processing for data enrichment. The resolver group level pre-processing module uses techniques like
resolver group merging, long tail cutoff etc. to reduce the noise in the email data. The training data is further cleaned
using text pre-processing methods [12]. The cleaned email data is then trained using an ensemble of machine learning
classifiers and the trained models are stored in a database.

When a user sends an email to the helpdesk account a ticket is automatically generated and stored in the backend
ticketing tool. The newly generated tickets are downloaded by the adapter and classified using the runtime that consists
of ensemble classifier and the rule engine. The classification system returns a resolver group along with a confidence
score. If the confidence score is above a configured threshold the ticket is routed to the returned resolver group.
Otherwise the ticket is assigned back to manual queue for inspection by human agent. The combination of ensemble
classifier and rule engine ensures that a high percentage of tickets (more than 90%) are classified automatically by our
system with a low error rate.

We will now define key terms used in the rest of the paper. Let N be the total number of email tickets. In the manual
assignment case let NH1 be the number of tickets for which the ticket was ultimately resolved by the same group to
which the ticket was initially assigned. Let NH2 be the number of tickets for which the initial and final groups differ.
Then human-level accuracy can be defined as:

Hacc =
NH1 × 100

N
where : N = NH1 +NH2

In the automated email assignment scenario tickets are assigned primarily by the assignment engine, which combines
both ensemble classifier, and rule engine. Let NX be the total number of tickets actually assigned by the ensemble
classifier; NXcorr be the number of tickets which were predicted by ensemble and for which the resolver group predicted
is correct i.e. the ticket was ultimately resolved by the predicted resolver group; NR the number of tickets where the
resolver group was predicted by the rule engine; and NRcorr the number of tickets which were predicted by rule engine
and the predicted resolver group was correct. Then we can define Ensemble Accuracy(Xacc),Ensemble Coverage (Xcov),
Assignment Engine Accuracy (Eacc) and Assignment Engine Coverage (Ecov) as follows:

Xacc =
NXcorr × 100

NX
,Xcov =

NX × 100

N

3



A PREPRINT - NOVEMBER 16, 2018

Eacc =
(NXcorr +NRcorr)× 100

NX +NR
,Ecov =

(NX +NR)× 100

N

4 Assignment Engine Components

Having defined the system, we now describe in detail the different functional components of the assignment engine.

4.1 Preparation of Training Data

This section explains the bootstrapping phase of our system. The ticketing tool (Remedy, ServiceNow etc.) organizes
email data into structured fields containing relevant information about the ticket e.g. incident type, creation date,
problem description, resolver group etc. We use custom adapters to connect to the ticketing tool and extract fields
relevant for training. Currently the adapter extracts only the text portion of the email (viz. email subject and body)
along with the resolver group for training. The steps involved in training data preparation are described below.

4.1.1 Resolver group level pre-processing

This type of pre-processing is a one-time effort required during customer on-boarding phase. The purpose of this
pre-processing is to reduce noise in the training data. We reduce noise and enrich training data for the resolver groups
using the following techniques:

4.1.2 Merging related resolver groups

Some of the resolver group labels in the training data can be merged. Merging increases the size of the training data and
at the same time reduces the number of unique labels thus improving training accuracy. We found that there are at least
two types of resolver groups that can be merged for assignment purpose.

a) Resolver groups with varying escalation levels: Firstly there are some tickets for which the final assigned group is
one of various escalation levels (e.g. Tier1, Tier2 etc.) of the same resolver group. However the helpdesk often assigns
directly to only one of these escalation levels. Escalations to higher levels usually happen after additional information is
sought from the customer. But it is enough to assign the ticket initially to the default escalation level.

b) Region specific resolver groups: Sometimes tickets are meant to be resolved based on the user location. In that
case the tickets are assigned to a particular region and is resolved by an agent locally. To merge these resolver groups
we create a new label and assign all the region specific tickets to this label. After the initial assignment, the correct
resolver group can be inferred based on some other fields in the ticket e.g. end-user location or originator email-id etc.
using the rule engine.

4.1.3 Long tail cutoff

We observed that in most of the datasets there are a large number of resolver groups with very few samples. If we plot
a histogram of frequencies these groups will constitute more than 80% of the resolver groups but less than 10% of
training data. Our studies indicate that, if the long tail is included in training, the overall accuracy of classification goes
down along with a significant increase in training time and model size. By restricting the number of resolver groups in
training we reduce noise significantly and also avoid class imbalance, resulting in increase of accuracy. Additionally,
the resolver groups, which fall in the long tail, can often be predicted better using the rule engine (refer Table 5) and
using some augmentation techniques. As such our strategy was to divide the downloaded historical data into 2 parts viz.
IH = IT + IL where IH is the complete data downloaded for training, IT is the data used for training classifiers and IL is
the long tail. Resolver groups belonging to IT will be classified using trained models while those belonging to IL will be
handled exclusively by the rule engine. In our system we use the above strategy to retain at least 98% of data while
cutting down the resolver group count to less than 20%. Figure 2 shows the resolver group frequency distribution for
one of our datasets (dataset C).The evaluation results are shown in Section 5.

4.2 Classification Models

This section presents our study on the performance of various machine-learning classifiers in classification of email
data, in terms of accuracy and training time. For training the classification models, we concatenate the subject and the
body of the email(description) with a space in between and use the resulting string as our training data. The resolver
group acts as the label for our training data. Table 1 and Table 2 show the impact of various traditional machine learning
models [13] and deep neural network models that were used. In order to improve accuracy and coverage of the overall

4



A PREPRINT - NOVEMBER 16, 2018

Figure 2: Resolver group frequency distribution showing IT and IL for dataset C

Table 1: Comparison of various Machine Learning Algorithms w.r.t. Accuracy and Training Time

LinearSVM KNN LR m-NB RF Adaboost Gradient
Boosting

Dataset A Accuracy(%) 87.3 80.12 79.48 72.68 81.41 31.5 75.6
Train-time(s) 7.8 260.5 43 17.3 363.75 4561 8612

Dataset B Accuracy(%) 83.42 72.58 79.95 64.19 74.91 32.98 65.1
Train-time(s) 76.12 2218.65 404.05 22.18 7190.16 332.97 95320.1

Dataset C Accuracy(%) 86.339 67.57 84.29 63.97 76.99 30.43 61.47
Train-time(s) 1001.06 1921.7 2992 167.5 20799.6 1288.63 126960

service, we use an ensemble [14]. Each pair of models were combined, and the final ensemble classifier was chosen
based on the accuracy and coverage. As explained in Section 4.1.3, rule engine is important to handle the long tail in
class distribution and the final chosen ensemble classifier in combination with the rule engine forms the classification
module of the service.

4.2.1 Training the classifiers

We convert the training data samples into word vector representation before applying machine-learning algorithms.
We observed that using tf-idf representation increased the accuracy of traditional machine learning algorithms for all
datasets by at least 3-4%. Another observation was that using bigrams also improved the accuracy for some datasets.
Intuitively we can argue that this is so because some bigrams like ‘account creation’, ‘account deletion’, ‘password
reset’ etc. are useful indicators in deciding the resolver group. The hyperparameters were chosen experimentally over
10-fold cross-validation on the datasets.

However, for learning deep neural networks, tf-idf representation being extremely sparse is not useful. Distributed
representation of text creates a dense, low-dimensional representation and is perhaps the main reason why deep learning
saw major breakthroughs in natural language processing [15]. There are primarily two methods of learning the word
embeddings: one in which word embeddings are learnt while training the neural network; and second using pretrained
word vectors. We experimented with both methods for classification (models learning word embeddings being referred
to CNN-WE, LSTM-WE, and CNN-LSTM-WE in Table 2), and pretrained word-vector representations (100-d GloVe

Table 2: Comparison of various Deep neural networks w.r.t. Accuracy and Training Time

MLP CNN-WE LSTM-WE CNN-G LSTM-G CNN-LSTM-G

Dataset A Accuracy(%) 85.8 74 76.94 74.01 71.64 73.24
Train-time(s) 184.12 183.75 5546.6 160.56 9833.7 1844.8

Dataset B Accuracy(%) 80.87 77.75 79.35 76.23 80.37 77.7
Train-time(s) 10858.15 8680.35 86651.57 1926 89280.94 23229.47

Dataset C Accuracy(%) 83.3 82.67 78.14 81.27 83.51 81.48
Train-time(s) 2779 10519.99 90149.9 6557.12 687483 60128.5

5



A PREPRINT - NOVEMBER 16, 2018

Table 3: Sample rules

f1 f2 f3 CE CF
X X X ZZZ-SDK ZZZ-GB-SDK

"HSS" X X ZZZ-MM ZZZ-HSS-MM
"replenish team" "xyz" "abc@xyz" X ZZZ-REPLEN

"HSS"AND"EWM" X X X ZZZ-HSS-WM

vectors) [16] referred to as CNN-G, LSTM-G and CNN-LSTM-G. A word embedding layer learnt on the input domain
is better suited to the domain but requires a lot of training data and increases overall training time. Because of diverse
dataset sizes to be handled by our service, we use pretrained 100-dimensional GloVe vectors trained on 6B tokens.
We chose GloVe over word2vec as GloVe utilizes local context-based learning (like word2vec) along with global text
statistics (as in classical vector space models such as Latent Semantic Analysis) [16].

4.3 Rule Engine

The rule engine is one of the key components of our end-to-end system which is used to handle scenarios typical
of an enterprise. Such scenarios typically correspond to business design and decisions and are not amenable to
machine-learning or deep-learning classifiers. We list three main scenarios below:
1. Resolver group perturbations driven by business decisions: Often resolver groups are either renamed or split or
merged to form new resolver groups. These decisions are mostly taken to remove duplication of effort, or to address
macro-economic changes. As most of these decisions are sudden, machine-learning models are not able to handle
classification for the newly formed classes, which affects services in production.
2. Resolver groups belonging to the long tail: As discussed before, in most datasets 20% of the classes account for
more than 90% of the tickets. The learning models are not trained on the remaining 80% classes, which account for less
than 10% of the overall ticket data, to reduce noise and avoid class imbalance. Although this improves classification
accuracy and time, the model will never learn to predict these classes. For all these classes the rule engine is essential.
3. Presence of resolver groups with similar or overlapping email format: Many helpdesk organizations use fixed
templates for submission of certain types of issues. The same template can be used for multiple resolver groups. When
these tickets are used to train the machine learning model, it learns the template structure rather than the actual content.
So the classification accuracy is very low for such resolver groups (Table 5). Rule-engine addresses this issue for the
confusing classes to override the decision of the machine learning classifier.

4.3.1 Design of rule engine

The rule engine is designed to have a customer independent framework for rule specification and is easy to configure
using an user interface. The user interface allows specification of rules using values of certain ticket parameters e.g.
email subject, description etc. and output of the ensemble classifier. The rule engine can override the output of the
ensemble classifier in certain cases. Each rule in the rule engine can be generically expressed by the following equation:

(f1 = φ1) ∧ (f2 = φ2) ∧ (f3 = φ3) ∧ (CE = R)⇒ CF

where CF is the resolver group predicted by the engine, φi is the value of the ticket parameter i and CE is the resolver
group predicted by the ensemble classifier. Here φi can take a finite value (or regular expression) or the value X
(implying DON’T CARE). Some sample rules are shown in Table 3 below for better understanding. 1.

The first rule is used for renaming cases, (ZZZ-SDK renamed to ZZZ-GB-SDK) meaning if the ensemble predicted
class is ZZZ-SDK the final prediction will be ZZZ-GB-SDK irrespective of the field values. The second rule is used
for commonly confused sets of resolver groups. Here, ensemble is used to determine the commonly confused set
[ZZZ-MM, ZZZ-HSS-MM], then rule is applied to determine the exact resolver group within the set. The third rule uses
a combination of values from three different fields to override machine-learning prediction. The fourth rule is similar to
third except that it uses value of only one field to make a prediction. However the important thing to note is that there is
an order of precedence between rules two and four. Rules two and four have a common match criteria for field f1 (viz.
the keyword HSS). In these cases we match the more restrictive rule first to minimize the possibility of false positives.

1Resolver group names (Columns CF and CE) are anonymized to preserve confidentiality

6



A PREPRINT - NOVEMBER 16, 2018

Input :Email-Text, M1_cutoff, M2_cutoff
Output :result = <resolver_grp, confidence>

result = [None, 0.0]

<M1_resolver_group, M1_confidence> = InvokeClassifier(M1, Email-Text)

if M1_confidence ≥M1_cutoff then
result = <M1_resolver_group, M1_confidence>

end
else

<M2_resolver_group, M2_confidence> = InvokeClassifier(M2, Email-Text)

if M2_confidence ≥M2_cutoff then
result = <M2_resolver_group, M2_confidence>

end
else if M1_resolver_group == M2_resolver_group then

result = <M2_resolver_group, min(M1_cutoff,M2_cutoff)>
end
result = ApplyRuleEngine(f1, f2, f3, result.resolver_grp)
if result.resolver_grp 6= None then

/* Assign ticket to result.resolver_grp */
return result

end
else

/* Assign ticket to manual queue */
return [None, 0.0]

Algorithm 1: Dispatch Algorithm

4.4 Model Selection and Ticket Dispatch

The email ticket dispatcher actually assigns the ticket to a specific resolver group and updates the ticket. The dispatcher
combines the results of the two classifiers and rule engine using a dispatch algorithm to output the final prediction and
confidence score. If the confidence score of the final result is below the configured threshold the ticket is assigned to
the manual queue. The pseudo code for the dispatcher algorithm is given in Algorithm 1. In the algorithm, M1 and
M2 (with confidence cutoffs M1_cutoff and M2_cutoff respectively) denote the ensemble classifier models chosen
based on results shown in Table 1 and Table 2. M1 is the model having higher precision. InvokeClassifier invokes a
machine-learning classifier and returns the best prediction for resolver group along with the corresponding confidence
value. ApplyRuleEngine invokes the rule engine on the results obtained from the ensemble classifier.

4.5 Retraining

We have already discussed how rule engine takes care of changes happening in email data due to resolver groups
getting renamed, merged or split. However there are still other changes in training data that need to be handled e.g.
subtle changes in email utterances over time. These changes can happen due to various factors like resolver groups
taking on new problems, increased automation etc. To capture these changes effectively we use a sliding window based
retraining strategy. The sliding window ensures that training data is refreshed periodically and the most recent changes
are retained, so the classifiers remain up-to-date.

However along with recent data we also need to keep learning from past mistakes. As such in addition to the
sliding window data we also retain misclassified data from previous periods. In our deployment environment the
mis-classifications from each slide interval are not directly added for retraining. They are first supervised by a human
agent for false negatives. A false negative occurs when the assignment engine predicts correctly but the ticket was
transferred due to some other reason not mentioned in the email. This additional supervision is necessary to ensure high
quality of training data.

The length (W) of the sliding window is determined such that the training data is sufficient for good accuracy. The slide
interval (t) is determined by the average time it takes for a ticket to be fully resolved in the system. For production
deployment we used t=7 days and W=90 days. However these values can vary depending on the nature of the dataset.

7



A PREPRINT - NOVEMBER 16, 2018

Table 4: Dataset size, usage and results
Dataset A Dataset B Dataset C

Number of resolver groups 70 403 428
Duration of the training dataset 6 months 12 months 15months
Email tickets(N) in training set 11562 423343 712320

Duration in deployment 19 months 3 months 16 months
Tickets served/month(T) 1000 40,000 50,000

Total tickets served till date 19000 120,000 680,000
Ensemble Accuracy(Xacc) 90.07% 86.17% 89.61%
Ensemble Coverage(Xcov) 93.67% 92.88% 93.83%

Assignment Engine Accuracy(Eacc) 92.73% 88.66% 92.13%
Assignment Engine Coverage(Ecov) 97.84% 93.3% 95.5%

4.6 Deployment and Maintenance

The automated assignment engine is currently deployed as a single tenant service hosted in a Kubernetes cluster (refer
to Figure 3). There are three REST APIs to achieve the full functionality, namely i) /train - The call to train method is
asynchronous and it returns a training-id, ii) /status - To check the status of a training in progress and iii) /classify - The
call to the classifier to predict the resolver group. The ensemble classifier is run periodically on a GPU cluster and the
trained models stored in a cloud based object store. The model id, datasource name and creation timestamp are stored
separately in a metadata store. The requests for training are handled sequentially. The end point for classify can handle
multiple requests in parallel.

There are mainly two components of the assignment engine which need active maintenance viz. Retraining and Rule
Engine. The maintenance activity involves active monitoring of the misclassified tickets and taking an action based on
whether the ticket was confused with a class in IT or IL. In the former case, the misclassified sample is added to the
dataset for retraining; in the latter case rule engine modifications may be needed like adding a rule to the rule engine
to cover the misclassification if possible. The rule engine modifications are handled by subject matter experts in the
helpdesk and requires about 5 hrs of manual effort per week. The scripts for generation of misclassification reports,
triggering re-training and the entire assignment engine code are maintained by a team of 2 developers (working for 5
hrs/week per account).

5 Evaluation

This section enumerates the results of evaluation of the assignment engine. For evaluation we have used real datasets
from three major helpdesk service provider accounts. The client accounts are from two different domains viz. telecom
and supply-chain/logistics. To preserve client confidentiality we henceforth refer to these datasets as Dataset A, Dataset
B and Dataset C respectively. The datasets were divided into training and test sets with a 90:10 split and we used
10-fold cross-validation on the datasets. All our experiments were run on a NVIDIA Tesla K80 GPU cluster with 4
CUDA-enabled nodes. The dataset statistics as well as the final accuracy numbers achieved by our system are described
in Table 4.

5.1 Human Accuracy vs. Assignment Engine Accuracy

We next look at the optimal selection of algorithms that maximize accuracy and coverage. It is important to note that
for business purposes the algorithms need to have at least human-level accuracy along with reasonably high coverage.

To compute human accuracy we mined audit logs of the ticketing systems. Our experiments reveal that across all
datasets the accuracy achieved by human agents is about 85%. Therefore we select the confidence threshold such
that the expected accuracy of prediction is at least 85%. This ensures that the selected classifiers operate at least at
human level efficiency. Figure 4 shows the performance of the best three algorithms at different confidence levels
(ranging from 0.1 to 0.9). For dataset C a combination of linear SVM (confidence≥ 0.5) and MLP (confidence≥
0.6) gave a slightly higher accuracy(89.61%) than that of LSTM-G(confidence≥0.5) and linear SVM(Xacc=88.38%),

8



A PREPRINT - NOVEMBER 16, 2018

Figure 3: Deployment Architecture

(a) (b)

Figure 4: At different confidence thresholds(a) Assignment accuracy (b) Assignment coverage.

9



A PREPRINT - NOVEMBER 16, 2018

Table 5: Improvement of sparse classes with rule engine
Resolver Group P,R(linearSVM) P,R(ensemble) P,R(+rule engine)
MXX-Support 65.22%,28.99% 72.1%,35.77% 90.9%,86.95%

AppXXX-Support 64.76%,37.22% 75.1%,36.5% 89.61%,85.1%
PrXXX-Support 62.38%,40.65% 71.21%,41.6% 89%,87.34%
XXX-HSS-XXX - - 96.1%,90.1%
XXXha-CRM - - 94.6%,89.5%

(a) (b)

Figure 5: Effect of different optimization techniques on (a) Classification Accuracy (b) Training time

although the individual accuracy was marginally higher for LSTM-G compared to MLP. For this reason, as also for
other practical considerations like memory and CPU constraints as well as training time our deployment in production
uses an ensemble of linear SVM and MLP. For the other two datasets SVM and MLP were clear winners.

5.2 Rule Engine Accuracy

Table 5 2 shows precision(P) and recall(R) metrics for some resolver groups having low accuracy. In each of these cases
we were able to improve the accuracy significantly using the rule engine. The first three resolver groups are commonly
confused (derived from confusion matrix) and individual rules were applied to predict the correct resolver group. The
last two resolver groups belong to IL, so precision(P)/recall(R) numbers are not available for the ensemble; in these
cases accuracy was achieved using rules only.

5.3 Performance and scalability

Figures 5 and 6 demonstrate the impact of the different training optimization techniques on the accuracy of prediction,
training time and model size of SVM. These charts are shown for only the largest dataset viz. dataset C – but the trend
is fairly similar across other datasets as well. The results can be summarized as follows.

Merging coupled with long tail optimization brings down the number of resolver groups by about 84%(438 to 72) along
with a 40% reduction in training time, 27% reduction in model size and 5% improvement in accuracy. This underscores
the effectiveness of long tail approach. We also found that using the tf-idf approach with bi-grams proved to be effective
across most ML algorithms including SVM. To optimize on the number of features and model size we used the tf-idf
approach with parameters max_df=0.8 and min_df=5. Finally we used chi-square statistic (with best k features) to
reduce the model size further. Overall using these approaches we were able to achieve a 99% reduction in model size,
93.5% reduction in training time, and a 13% increase in accuracy for dataset C while keeping the coverage constant
at about 98%. We also achieved significant speedup in classification time using asynchronous requests and batching.

2Resolver Group names anonymized to preserve confidentiality

10



A PREPRINT - NOVEMBER 16, 2018

Figure 6: Model size optimization (SVM)

Figure 7: Ticket volumes for a single day

Figure 7 shows the peak per-day ticket volumes recorded during the entire training period, for each account. Our system
was able to achieve a runtime throughput of about 286 requests/sec, which is equivalent to about 1500 times the peak
hourly volume (696 requests/hr) as shown in the figure.

5.4 Business Impact

Automated assignment of helpdesk tickets results in considerable saving in human effort for large companies having
clients across geographies. It reduces the time taken for ticket assignment and at the same time minimizes human error.
This enables the companies to focus more on innovation and core business needs. Based on our results as summarized
in Table 4, we give an estimate of human effort saving, across all accounts. Assuming that a human agent takes about 3
min to read and assign each ticket, the net savings (in min) for an account can be calculated as: Si = T × Ecov × 3.
Summed across all three accounts this gives a total saving of 51629.04 hrs/annum. Till date, our system has served
more than 700,000 tickets in production across the deployed accounts.

5.5 Observations

There are three main takeaways from our evaluation results above. The most important observation is that our assignment
engine performs better than all traditional machine-learning and deep learning algorithms. Secondly, we can see that
simple machine learning algorithms like SVM and MLP are often better than more computationally expensive deep
learning algorithms in the task of helpdesk email assignment automation. SVM clearly outperforms all algorithms
irrespective of the size of the dataset. MLP performs reasonably well with all dataset sizes. This result is very significant
from a product development standpoint as these algorithms are easy to implement, require minimal computational

11



A PREPRINT - NOVEMBER 16, 2018

resources and provide better performance at runtime. However, it must be noted that, CNN and LSTM accuracy
increases with the size of the dataset and when the training size is very large (more than 5 million) CNN and LSTM
start outperforming MLP. Thus our results indicate that an ensemble of SVM and MLP will be a good trade-off for most
practical purposes but if we have a large enough dataset and infrastructure is not a concern then the best choices are
SVM and CNN-WE/LSTM-G. Finally, our results [Table 4] clearly indicate the importance of a rule engine in helpdesk
email assignment. The rule engine not only increases the overall accuracy and coverage of the system but also ensures
business continuity.

6 Conclusion and Future Work

We have proposed email ticket assignment engine that uses an ensemble of machine learning techniques combined
with a rule engine to perform automated dispatch. Our system achieves human-level accuracy and has already been
deployed for three customers in production. However, there are still some areas of improvement in the system like
adding support for images and attachments. In a lot of cases users will only send a screenshot or log snippet with hardly
any text. These cases cannot be handled by the present system. Last but not the least we need to handle concept drift.
This is currently handled by using a sliding window of recent data as well as use of the rule engine. However in datasets
with high concept drift this method may not give good results over the long run. We need to come up with an effective
active learning strategy to handle such scenarios.

References
[1] Shivali Agarwal, Renuka Sindhgatta, and Bikram Sengupta. Smartdispatch: Enabling efficient ticket dispatch in

an it service environment. In 18th ACM SIGKDD, 2012.

[2] A. Mandal, N. Malhotra, S. Agarwal, A. Ray, and G. Sridhara. Cognitive system to achieve human-level accuracy
in automated assignment of helpdesk email tickets. ArXiv e-prints, August 2018.

[3] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. Easyticket: A ticket routing recommendation
engine for enterprise problem resolution. In 34th VLDB, 2008.

[4] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. Efficient ticket routing by resolution sequence
mining. In 14th ACM SIGKDD, 2008.

[5] Hoda Parvin, Abhijit Bose, and Mark P. Van Oyen. Priority-based routing with strict deadlines and server flexibility
under uncertainty. In INFORMS WSC 2009, 2009.

[6] Gargi Dasgupta, Tapan Kumar Nayak, Arjun R. Akula, Shivali Agarwal, and Shripad J. Nadgowda. Towards
auto-remediation in services delivery: Context-based classification of noisy and unstructured tickets. In 12th
ICSOC, volume 8831 of Lecture Notes in Computer Science. Springer, 2014.

[7] C. Zeng, W. Zhou, T. Li, L. Shwartz, and G. Y. Grabarnik. Knowledge guided hierarchical multi-label classification
over ticket data. IEEE Trans. Network and Service Management, 14(2):246–260, 2017.

[8] Giuseppe Di Lucca. An approach to classify software maintenance requests. In 18th IEEE ICSM, 2002.

[9] Cristina Kadar, Dorothea Wiesmann, Jose Iria, Dirk Husemann, and Mario Lucic. Automatic classification of
change requests for improved it service quality. In SRII Global Conference, 2011.

[10] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. Juggling the jigsaw: Towards automated problem
inference from network trouble tickets. In 10th USENIX NSDI, 2013.

[11] Shivali Agarwal, Vishalaksh Aggarwal, Arjun R. Akula, Gargi Banerjee Dasgupta, and Giriprasad Sridhara.
Automatic problem extraction and analysis from unstructured text in it tickets. IBM Journal of Research and
Development, 61(1):41–52, 2017.

[12] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky. The
stanford corenlp natural language processing toolkit. In 52nd ACL (System Demonstrations), 2014.

[13] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.

[14] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, New York,
NY, USA, 2004.

12



A PREPRINT - NOVEMBER 16, 2018

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words
and phrases and their compositionality. In 26th NIPS, 2013.

[16] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word representation.
In EMNLP 2014, 2014.

13


	Introduction
	Main Contributions

	Related Work
	System Overview
	Assignment Engine Components
	Preparation of Training Data
	Resolver group level pre-processing
	Merging related resolver groups
	Long tail cutoff

	Classification Models
	Training the classifiers

	Rule Engine
	Design of rule engine

	Model Selection and Ticket Dispatch
	Retraining
	Deployment and Maintenance

	Evaluation
	Human Accuracy vs. Assignment Engine Accuracy 
	Rule Engine Accuracy
	Performance and scalability
	Business Impact
	Observations

	Conclusion and Future Work

