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Abstract 

After presenting some structural notions on Hilbert spaces, which constitute a fundamental 

support for this work, we approach the goals of the chapter. First, a study about convex sets, 

projections and orthogonality, where we approach the optimization problem in Hilbert spaces 

with some generality. Then the approach to Riez representation theorem in this field, 
important in the rephrasing of the separation theorems. Then we give a look to the strict 

separation theorems as well as to the main results of convex programming: Kuhn-Tucker 

theorem and minimax theorem. Both these theorems are very important in the applications. 

Moreover, the strict separation theorems presented and the Riez representation theorem have a 

key importance in the demonstrations of Kuhn-Tucker and minimax theorems and respective 

corollaries.   
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1. Introduction 

Definition 1.1 

A Hilbert space is a complex vector space with inner product that, as metric space, is 

complete.∎ 

A Hilbert space is designated, usually, H or I. Remember that 

     

Definition 1.2 

An inner product in a complex vector space H is a sesquilinear Hermitian and strictly 

positive functional on H.∎ 

 

Observation: 
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-In real vector spaces, “sesquilinear Hermitian” must be replaced by “bilinear 

symmetric”, 

       -The inner product of two vectors x and y belonging to H, in this order, is denoted [𝑥, 𝑦],  

-The norm of a vector x is given by ‖𝑥‖ = √[𝑥, 𝑥], 

-The distance between two elements x and y belonging to H is 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. 

 

Proposition 1.1 

The norm, in a space with inner product, satisfies the parallelogram rule: 

                          ‖𝑥 − 𝑦‖2 + ‖𝑥 + 𝑦‖2 = 2(‖𝑥‖2 + ‖𝑦‖2). ∎ 

For more details on these concepts see, for instance, [1-5]. 

  

2. Convex Sets and Projections 

      Then we enounce and demonstrate a theorem that is a result of existence and uniqueness, 

fundamental in optimization, see [6]. 

 

      Theorem 2.1  

      Every closed convex set in a Hilbert space has only one element with minimal norm.  

Dem: 

Call C the closed convex set and 𝑑 = 𝑖𝑛𝑓‖𝑥‖, 𝑥 ∈ 𝐶. Under the assumed conditions it is 

possible to find a sequence ‖𝑥𝑛‖ in C, called minimizing sequence, such that 𝑑 = lim
𝑛

‖𝑥𝑛‖. By 

the parallelogram rule‖
𝑥𝑛−𝑥𝑚

2
‖

2
=

1

2
(‖𝑥𝑛‖2 + ‖𝑥𝑚‖2) − ‖

𝑥𝑛

2
+

𝑥𝑚

2
‖

2
. Nevertheless, as the 

second parcel of the second member of this equality is the   norm square of an element of C, 

‖
𝑥𝑛−𝑥𝑚

2
‖

2
≤

1

2
(‖𝑥𝑛‖2 + ‖𝑥𝑚‖2) − 𝑑2 → 0 and so 𝑥𝑛 is a Cauchy sequence. 

  As C is closed and H is complete, the limit element z belongs to C. And, by the inequality 

|‖𝑥‖ − ‖𝑦‖| ≤ ‖𝑥 − 𝑦‖, it follws that ‖𝑧‖ = 𝑑. 

 Suppose now that that 𝑧1 and 𝑧2 are two elements of C with norm d. So, again by the 

parallelogram rule, ‖
1

2
(𝑧1 − 𝑧2)‖

2
= 𝑑2 − ‖

 𝑧1

2
−

𝑧2

2
‖

2
≤ 0 and then 𝑧1 = 𝑧2. ∎ 

 Be now a closed convex set C, in H, and an element x, anyone, of H. Noting that 𝑥 − 𝐶 is a 

closed convex set, it results the following corollary of Theorem 2.1: 

 

      Corollary 2.1 

      Be C a closed convex set in H. For every element x in H there is only one element in C that 

is the closest of x; that is, there is only one element 𝑧 ∈ 𝐶 such that ‖𝑥 − 𝑧‖ = 𝑖𝑛𝑓‖𝑥 −

𝑦‖, 𝑦 ∈ 𝐶. ∎ 

 

For the moment, there is a result of existence and uniqueness for the optimization problem. 

However, unhappily, the demonstration is not constructive. It is not said how to determine that 

unique element. However, it is possible a better characterization, through a variational 

inequality, as we point in the following result, see [7, 8]: 

 



 

 

 

 

       Theorem 2.2  

Be C a closed convex set in H. For every x belonging to H, z is the only element in C 

closest - in norm - of x if and only if    

                             𝑅𝑒[𝑥 − 𝑧, 𝑧 − 𝑦] ≥ 0,
∀

𝑦 ∈ 𝐶
          (2.1)                     

     Dem: 

     Every characterization of this type comes through a variational argument. So, suppose that z 

is the only element closest in C, granted by Corollary 2.1. So, for any 𝜃, 0 ≤ 𝜃 ≤ 1, (1 − 𝜃)𝑧 +

𝜃𝑦 ∈ 𝐶 since 𝑦 ∈ 𝐶, as C is convex. So, 

𝑔(𝜃) = ‖𝑥 − ((1 − 𝜃)𝑧 + 𝜃𝑦)‖
𝟐

              (2.2) 

is a function twice continuously differentiable of 𝜃. In fact is a quadratic function of 𝜃. More: 

𝑔′(𝜃) = 2 𝑅𝑒[𝑥 − 𝜃𝑦 − (1 − 𝜃)𝑧, 𝑧 − 𝑦]         (2.3) 

𝑔′′(𝜃) = 2𝑅𝑒[𝑧 − 𝑦, 𝑧 − 𝑦]             (2.4). 

Then, so that z is the minimizing element, it is evident that it has to be 𝑔′(0) ≥ 0 ⇔

𝑅𝑒[𝑥 − 𝑧, 𝑧 − 𝑦] ≥ 0.              

Suppose now that (2.1) is fulfilled for a given element z of C. Therefore, building 

again 𝑔(𝜃), as in (2.2), (2.1) allows concluding that 𝑔′(0) is non-negative and, owing to (2.4), 

 𝑔′′(𝜃) is non-negative. So 𝑔(0) ≤ 𝑔(1) for any𝑦 ∈ 𝐶 that is 

‖𝑥 − 𝑧‖2 ≤ ‖𝑥 − 𝑦‖2,
∀

𝑦 ∈ 𝐶. 

Therefore, it proofs that z is the minimizing element in C. As already seen, such element is 

unique.∎ 

 

Observation:        

-It is interesting to interpret geometrically (2.1). So consider the set of elements h belonging 

to H such that 

 

𝑅𝑒[𝑥 − 𝑧, ℎ] = 𝑐 = 𝑅𝑒[𝑥 − 𝑧, 𝑧]. 

 

Indeed, a hyper-plane that contains z. This hyper-plane, which normal is 𝑥 − 𝑧, is a convex 

set C support plane in the sense that 

𝑅𝑒[𝑥 − 𝑧, 𝑧] = 𝑐, 𝑧 ∈ 𝐶             (2.5),

𝑅𝑒[𝑥 − 𝑧, 𝑦] ≤ 𝑐,
∀

𝑦 ∈ 𝐶             (2.6).
 

As 𝑅𝑒[𝑥 − 𝑧, 𝑧 − 𝑦] ≥ 0 ⇔ 𝑅𝑒[𝑥 − 𝑧, 𝑧] − 𝑅𝑒[𝑥 − 𝑧, 𝑦] ≥ 0 ⇔ 𝑅𝑒[𝑥 − 𝑧, 𝑦]𝑅𝑒[𝑥 − 𝑧, 𝑧], 

the point z is the support point. 

Now it is pertinent to present the following definitions, see [9]: 

 

Definition 2.1 

Given any closed convex set C in H , the application of H in H , making to correspond to 

each x the closest element of x in C , is called projection over C  and is designated 𝑃𝐶(. ). 𝑃𝐶(𝑥) 

is said the projection of  x over C. ∎   

   

Observation:        



 

 

       -𝑃𝐶(. ) is not necessarily linear and lets C invariant.  

 

Definition 2.2 

A cone is a set with the following property: 𝑡𝑥, 𝑡 ≥ 0, belongs to it since x belongs. ∎ 

 

Observation:        

        -A cone is not necessarily convex1.  

        -Note that C is a convex cone if, whenever 𝑥1 and 𝑥2 belong to C also 𝑡1𝑥1 + 𝑡2𝑥2 belong 

to C for any 𝑡1, 𝑡2 ≥ 0. ∎ 

 

        Then it follows a corollary of Theorem 2.2: 

 

 Corollary 2.2 

 Suppose that C is a closed convex cone. Be z the projection of x over C. Then 

𝑅𝑒[𝑥 − 𝑧, 𝑧] = 0 𝑎𝑛𝑑 𝑅𝑒[𝑥 − 𝑧, 𝑦] ≤ 0,
∀

𝑦 ∈ 𝐶         (2.7). 

In addition, if an element z of C satisfies these relations, it is the projection of x over C.∎ 

 

 This section ends with the following corollary see again [9]: 

  

 Corollary 2.3 

 Be M a closed vector subspace. So, for each 𝑥 ∈ 𝐻 there is one only element of M, that is 

the closest of x, being the projection of x over M such that 

[𝑥 − 𝑃𝑀(𝑥), 𝑚] = 0 ,
∀

𝑚 ∈ 𝑀
         (2.8). 

In this case 𝑃𝑀(. ) is linear and called projection operator corresponding to M.∎ 

3. Orthogonality and Orthonormal Basis 

     Following [10-12]: 

 

     Definition 3.1   

     Vector x is orthogonal to vector y if  [𝑥, 𝑦] = 0. ∎  

   

     Definition 3.2 

     The set S orthogonal complement in a Hilbert space is the set of the whole elements 

orthogonal to any element of S. Designate it 𝑆⊥. ∎ 

     

     Proposition 3.1 

i) If 𝑆 ≠ ∅   𝑆⊥ is a closed vector subspace. 

ii) If M  is a closed vector subspace   

a) (𝑀⊥)⊥ = 𝑀, 

b) After (2.8) 

 
1 It is enough to think in two straight lines passing through the origin. 



 

 

  𝑥 = 𝑃𝑀(𝑥) + (𝑥 − 𝑃𝑀(𝑥)), 𝑃𝑀(𝑥) ∈ 𝑀, (𝑥 − 𝑃𝑀(𝑥)) ∈ 𝑀⊥    (3.1). ∎ 

 

Observation: 

-In (3.1) it is patent an orthogonal decomposition of x. That is, x is decomposed in the 

sum of two elements orthogonal to each other. One belongs to the subspace M and the other 

to its orthogonal complement. Such a decomposition is unique in the sense that if 𝑥 = 𝑧1 + 𝑧2 

where 𝑧1 ∈ 𝑀 and 𝑧2 ∈ 𝑀⊥  it must be   𝑧1 = 𝑃𝑀(𝑥) and 𝑧2 = 𝑥 − 𝑃𝑀(𝑥), since 0 =

(𝑃𝑀(𝑥) − 𝑧1) + (𝑥 − (𝑃𝑀(𝑥) − 𝑧2) and the elements between parenthesis are orthogonal. 

 

Definition 3.3 

Call an orthonormal set everyone in which any two of its elements are orthogonal to each 

other, and each element has norm 1.∎ 

 

 Definition 3.4 

 Be S a non-empty set of H. L(S) designates the closure of the set of every S elements 

finite linear combinations.∎  

 

 Definition 3.5 

 An orthonormal set S is a basis of L(S).∎ 

 

 Observation: 

 -If S has a finite number of elements 𝑥𝑖 , 𝑖 = 1, … , 𝑛 the subspace  L(S) is precisely the set 

of the whole elements of the form ∑ 𝑎𝑘𝑥𝑘
𝑛
𝑘=1 .  And, in this case, the projection operator 

corresponding to L(S) is given by 𝑃L(𝑆)(𝑥) = ∑ 𝑎𝑘𝑥𝑘
𝑛
𝑘=1 fulfilling the coefficients 𝑎𝑘 the 

equation [𝑥 − ∑ 𝑎𝑗𝑥𝑗
𝑛
𝑗=1 , 𝑥𝑖] = 0, 𝑖 = 1, … , 𝑛 or: 

                              ∑ 𝑎𝑗[𝑥𝑗 , 𝑥𝑖]𝑛
𝑗=1 = [𝑥, 𝑥𝑖], 𝑖 = 1, … , 𝑛         (3.2). 

   -If the set 𝑥𝑖 , 𝑖 = 1, … , 𝑛 is orthonormal, the projection has the simple form 

                                     𝑃L(𝑆)(𝑥) = ∑ [𝑥, 𝑥𝑖]𝑛
𝑖=1 𝑥𝑖              (3.3) 

and also                    

                          ‖𝑥‖2 ≥ ‖𝑃L(𝑆)(𝑥)‖
2

= ∑ |[𝑥, 𝑥𝑖]|2𝑛
𝑖=1 (Bessel′s Inequality). 

    -Call, now, S a sequence {𝑥𝑖} of elements 𝑥𝑖 , 𝑖 = 1, … , 𝑛. S can be made orthonormal 

mean this that is possible to determine an orthonormal basis for L(S): 

L(S)=𝐿(Ο) being Ο orthonormal. Such a basis may be obtained through the known Gram-

Schmidt method, since not the whole  {𝑥𝑖} are 0.  

 

With the whole generality: 

 

Theorem 3.1  

Every non-trivial Hilbert space, that is: not constituted exclusively by 0, has an 

orthonormal basis. 

 Dem:   

  It is possible to find orthonormal sets in the space, unless it is trivial. Introduce a partial 

ordination in the class of the orthonormal sets, through the inclusion relation: 

 -Given two orthonormal sets A and B, 𝐴 < 𝐵 if and only if 𝐴 ⊂ 𝐵.  



 

 

   Be {𝐴𝛼} a subclass totally ordered: a chain – maximal, that is: not strictly contained in 

another chain. The Haudsdorf maximal chain theorem grants the existence of a maximal 

chain. 

   Be 𝐴 =
∪
𝛼

  𝐴𝛼 . A is orthonormal. Then we show that L (A), the subspace generated by A 

is in fact the whole Hilbert space. 

   Proceed by absurd. Suppose that 𝑧 ∈ 𝐻 is not in L (A). Call P the projection operator 

corresponding to L(A). So 𝑒 =
𝑧−𝑃𝑧

‖𝑧−𝑃𝑧‖
 is orthogonal to A and the family obtained postponing 

to the chain  {𝐴𝛼} the set 𝐴 ∪ {𝑒} violates the chain maximally.∎ 

 

   Observation: 

   -There may be, evidently, many sets as the set A referred in this demonstration, but it is 

demonstrated that all of them have the same cardinal. 

   -An orthonormal basis may not be finite and the space is of infinite dimension. 

Moreover, it is not necessarily countable. However, it results from Bessel’s inequality that, 

for every   𝑥 ∈ 𝐻, only a countable number of    [𝑥, 𝑒], 𝑒 ∈ Ο , may be different from zero.  

4. Riez Representation Theorem 

      An important theorem, about the representation of a continuous linear functional by 

elements of the space is the Riesz representation theorem, see again [11] and [13]:  

 

      Theorem 4.1 (Riesz representation) 

       Every continuous linear functional 𝑓(∙) may be represented in the form 𝑓(𝑥) = [𝑥, �̃�] 

where 

�̃� =
𝑓(𝑞)̅̅ ̅̅ ̅̅ 2

[𝑞, 𝑞]
𝑞. 

          Dem: 

          Begin noting that for every continuous linear functional 𝑓(. ), the Nucleus of   𝑓(. ) 3 is 

a closed vector subspace. If the functional under consideration is not the null functional, there 

is an element y such that 𝑓(𝑦) ≠ 0. Be z the projection of y over Nuc(f)and make 𝑞 = 𝑦 − 𝑧. 

So, q is orthogonal to Nuc(f) and 𝑓(𝑞) = 𝑓(𝑦) and, in consequence, 𝑓(𝑞) ≠ 0. Then, for 

every 𝑥 ∈ 𝐻, 𝑥 −
𝑓(𝑥)

𝑓(𝑞)
𝑞 belongs evidently to Nuc(f). So, 𝑥 −

𝑓(𝑥)

𝑓(𝑞)
𝑞 is orthogonal to q and, in 

consequence, [𝑥, 𝑞] −
𝑓(𝑥)

𝑓(𝑞)
[𝑞, 𝑞] = 0 ⇔ [𝑥, 𝑞] =

𝑓(𝑥)

𝑓(𝑞)
[𝑞, 𝑞] 𝑡ℎ𝑎𝑡 𝑖𝑠 ∶ 𝑓(𝑥) = [𝑥,

𝑓(𝑞)̅̅ ̅̅ ̅̅

[𝑞,𝑞]
𝑞 ] . ∎ 

 

           Observation: 

           -From the theorem, it results  ‖𝑓‖𝐻´ = ‖�̃�‖𝐻 , where the H dual space is 𝐻′4.  

 
2 𝑓(𝑞)̅̅ ̅̅ ̅̅  is the conjugate complex number of f(q). 
3 The Nucleus of 𝑓(∙)is designated Nuc(f ) and Nuc(f )={𝑥: 𝑓(𝑥) = 0}. 

4 Consider a continuous linear functional f in a normed space E. It is called f norm, and 

designated ‖𝑓‖: 

                                                             ‖𝑓‖ = sup
||𝑥||≤1

|𝑓(𝑥)|. 



 

 

 

5. Convex  Sets Strict Separation 

 

       Convex sets separation is very important in convex programming, which is a very potent 

mathematical instrument for operations research, management and economics see, for 

example, [14-16]. The target of this work is to present Theorem 5.1 that gives sufficient 

conditions for the strict separation of convex sets. First the following definitions: 

 

     Definition 5.1 

     Two closed convex subsets A and B, in a Hilbert space H, are at finite distance from each 

other if inf
𝑥∈𝐴,𝑦∈𝐵

‖𝑥 − 𝑦‖ = 𝑑 > 0.∎ 

 

     Definition 5.2 

     Two closed convex subsets A and B, in a Hilbert space H, are strictly separated if, for 

some 𝑣 ∈ 𝐻, inf
𝑥∈𝐴

[𝑣, 𝑥] > sup
𝑦∈𝐵

[𝑣, 𝑦].∎ 

     Then it follows, see again [12], 

 

     Theorem 5.1(strict separation) 

     Two closed convex subsets A and B, in a Hilbert space H, at finite distance from each 

other can be strictly separated. 

      Dem: In fact, as zero is then a 𝐴 − 𝐵 complement interior point, taking its projection over 

the 𝐴 − 𝐵 closure and calling it 𝑣, [−𝑣, 𝑣 − 𝑞] ≥ 0, ∀𝑞 ∈ 𝐴 − 𝐵, by Theorem 2.2. So [𝑣, 𝑞] ≥
[𝑣, 𝑣] and [𝑣, 𝑥] − [𝑣, 𝑦] ≥ [𝑣, 𝑣], 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 leading to inf

𝑥∈𝐴
[𝑣, 𝑥] ≥ sup

𝑦∈𝐵
[𝑣, 𝑦].∎ 

     It is also possible to show that 

 

     Theorem 5.2 Being H a finite dimension Hilbert space, if A and B are non-empty disjoint 

convex sets, they can always be separated.∎  

6. Convex  Programming  

Now we outline a class of convex programming problems, at which it we intend to 

minimize convex functionals subject to convex restrictions. Begin presenting a basic result 

that characterizes the minimum point of a convex functional subject to convex inequalities, 

see [17]. Note that it is not mandatory to impose any continuity conditions. 

 

 

 

That is, the supreme of the values assumed by |𝑓(𝑥)| in the E unitary ball. The class of the 

continuous linear functionals, with the norm above defined, is a normed vector space, called the E 

dual space, designated 𝐸′. Of course, a Hilbert space is a normed space.  



 

 

Theorem 6.1 (Kuhn-Tucker) 

 Be f(x), 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛, convex functionals defined in a convex subset C of a Hilbert 

space. Consider the problem  min
𝑥∈𝐶

𝑓(𝑥) , 𝑠𝑢𝑏. : 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑛, be 𝑥0 a point where the 

minimum, supposed finite, is reached. Suppose also that for each vector u in 𝐸𝑛, Euclidean 

space with dimension n, non-null and such that 𝑢𝑘 ≥ 0, there is a point x in C such that 

∑ 𝑢𝑘𝑓𝑘(𝑥) < 0,1 designating 𝑢𝑘 the components of u. So, 

i) There is a vector v, with non-negative components {𝑣𝑘}, such that  

min
𝑥∈𝐶

{𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

} = 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) = 𝑓(𝑥0)              (6.1)

𝑛

1

, 

 

ii) For every vector u in 𝐸𝑛 with non-negative components, that is: belonging to the 

positive cone of 𝐸𝑛 , 

𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

≥ 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) ≥ 𝑓(𝑥0) + ∑ 𝑢𝑘𝑓𝑘(𝑥0)   

𝑛

1

(6.2).

𝑛

1

∎ 

 

Corollary 6.1 (Lagrange duality) 

In the conditions of Theorem 6.1 𝑓(𝑥0) = sup
𝑢≥0

inf
𝑥∈𝐶

𝑓(𝑥) + ∑ 𝑢𝑘𝑓𝑘(𝑥). ∎   𝑛
1  

 

 Observation: 

 -This corollary is useful supplying a process to determine the problem optimal solution, 

 -If the whole 𝑣𝑘 in expression (6.2) are positive, 𝑥0 is a point in the border of the convex 

set defined by the restrictions, 

 -If the whole 𝑣𝑘are zero, the inequalities do not influence the problem, that is: the 

minimum is equal to the one of the restrictions free problem. 

        Considering non-finite inequalities see [18]: 

  

 Theorem 6.2 (Kuhn-Tucker in infinite dimension) 

  Be C a convex subset of a Hilbert space H and f (x) a real convex functional defined in 

C. Be I a Hilbert space with a closed convex cone 𝓅, with non-empty interior, and F(x) a 

convex transformation from H to I (convex in relation to the order introduced by cone 𝓅: if 

𝑥, 𝑦 ∈ 𝓅, 𝑥 ≥ 𝑦 𝑖𝑓 𝑥 − 𝑦 ∈ 𝓅). Be 𝑥0 a f (x) minimizing in C subjected to the inequality 

𝐹(𝑥) ≤ 0.Consider 𝓅∗ = {𝑥: [𝑥, 𝑝] ≥ 0,
∀

𝑥 ∈ 𝓅} (dual cone). Admit that given any 𝑢 ∈ 𝓅∗ it is 

possible to determine x in C such that [𝑢, 𝐹(𝑥)] < 0. So, there is an element v in the dual 

cone 𝓅∗, such that for x in C 𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) + [𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], 

being u any element of 𝓅∗. ∎ 

 

      Corollary 6.2 (Lagrange duality in infinite dimension) 

      𝑓(𝑥0) = sup
𝑣∈𝓅∗

inf
𝑥∈𝐶

( 𝑓(𝑥) + [𝑣, 𝐹(𝑥)])  in the conditions of Theorem 6.2. ∎ 

 



 

 

7. Minimax Theorem 

Although belonging to the field of convex programming we make the option of giving a 

privileged treatment to the minimax theorem, see [19, 20]. 

In a two players game with null sum be Φ(𝑥, 𝑦) a real function of two variables 𝑥, 𝑦 ∈ 𝐻 

and A and B convex sets in H. One of the players chooses strategies (points) in A in order to 

maximize Φ(𝑥, 𝑦) (or minimize −Φ(𝑥, 𝑦)): it is the maximizing player. The other player 

chooses strategies (points) in B in order to minimize Φ(𝑥, 𝑦) (or maximize −Φ(𝑥, 𝑦)); it is 

the minimizing player. The function Φ(𝑥, 𝑦) is the payoff function. The function 

Φ(𝑥0, 𝑦0) represents, simultaneously, the gain of the maximizing player and the loss of the 

minimizing player in a move at which they chose, respectively the strategies 𝑥0 and 𝑦0. So, 

the gain of one of the players is equal to the other’s loss. That is why the game is a null sum 

game. A game in these conditions value is c if 

                      sup
𝑥∈𝐴

inf
𝑦∈𝐵

Φ(𝑥, 𝑦) = 𝑐 = inf
𝑦∈𝐵

sup
𝑥∈𝐴

Φ(𝑥, 𝑦)            (7.1). 

   If, for any (𝑥0, 𝑦0), Φ(𝑥0, 𝑦0) = 𝑐, (𝑥0, 𝑦0) is a pair of optimal strategies. There will be 

a saddle point if also 

                        Φ(𝑥, 𝑦0) ≤  Φ(𝑥0, 𝑦0) ≤ Φ(𝑥0, 𝑦), x∈ 𝐴, 𝑦 ∈ 𝐵                      (7.2). 

   So, see again [6]:  

 

   Theorem 7.1(minimax) 

   Consider A and B closed convex sets in H, being A bounded. Be Φ(𝑥, 𝑦)a real 

functional defined for x in A and y in B fulfilling: 

    -Φ(𝑥, (1 − 𝜃)𝑦1 + 𝜃𝑦2) ≤ (1 − 𝜃)Φ(𝑥, 𝑦1) + 𝜃Φ(𝑥, 𝑦2) for x in A and 𝑦1, 𝑦2 in B, 

0 ≤ 𝜃 ≤ 1 (that is: Φ(𝑥, 𝑦) is convex in y for each x), 

    - Φ((1 − 𝜃)𝑥1 + 𝜃𝑥2, 𝑦) ≥ (1 − 𝜃)Φ(𝑥1,, 𝑦) + 𝜃Φ(𝑥2, 𝑦) for y in B and 𝑥1, 𝑥2 in A, 

0 ≤ 𝜃 ≤ 1 (that is: Φ(𝑥, 𝑦) is concave in x for each y), 

               - Φ(𝑥, 𝑦) is continuous in x for each y, 

so (7.1) holds, that is: the game has a value. ∎  

             Dem: 

             Beginning by the most trivial part of the demonstration:  

 

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≤ Φ(𝒙, 𝒚) ≤ sup
𝒙∈𝐴

Φ(𝒙, 𝒚) 

and so 

sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≤ inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚). 

 

Then, as Φ(𝒙, 𝒚) is concave and continuous in 𝒙 ∈ 𝐴, 𝐴 convex, closed and bounded, it 

follows that sup
𝒙∈𝐴

Φ(𝒙, 𝒚) < ∞.  

 

Be 𝐶 = inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚). Suppose now that there is 𝒙0 ∈ 𝐴 such that Φ(𝒙0, 𝒚) ≥ 𝐶, for any y 

in B. In this case, inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) ≥ 𝐶 or sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) ≥ 𝐶 as it is appropriate. Then the 

existence of such a 𝒙0 will be proved. 

 



 

 

For any y in B, be 𝐴𝒚 = {𝒙 ∈ 𝐴: Φ(𝒙, 𝒚) ≥ 𝐶}. 𝐴𝒚 is closed, limited and convex. Suppose 

that, for a finite set (𝒚1, 𝒚2, … , 𝒚𝑛), ⋂ 𝐴𝒚𝑖
= ∅𝑛

𝑖=1 . Consider the transformation from A to 𝐸𝑛 

defined by  

 

𝑓(𝒙) = (Φ(𝒙, 𝒚1) − 𝐶, Φ(𝒙, 𝒚2) − 𝐶, … , Φ(𝒙, 𝒚𝑛) − 𝐶). 

 

Call G the 𝑓(𝐴) convex hull closure. Be P the 𝐸𝑛 closed positive cone. Now we show 𝑃⋂𝐺 =

∅: indeed, being Φ(𝒙, 𝒚) concave in x, for any 𝒙𝑘 in A, 𝑘 = 1, 2, … , 𝑛, 0 ≤ 𝜃𝑘 ≤

1, ∑ 𝜃𝑘 = 1,𝑛
𝑘=1  

                                ∑ 𝜃𝑘(Φ(𝒙𝑘, 𝒚) − 𝐶) ≤ Φ(∑ 𝜃𝑘𝒙𝑘, 𝒚𝑛
𝑘=1 ) − 𝐶𝑛

𝑘=1 . 

 

Therefore, the convex extension of 𝑓(𝐴) does not intersect P. 

 

Consider now a sequence 𝒙𝑛 of elements of A, such that 𝑓(𝒙𝑛) converges for 𝒗, 𝒗 ∈ 𝐸𝑛. As A 

is closed, limited and convex, it is possible to define a subsequence, designated 𝒙𝑚 such that 

𝒙𝑚 converges weakly for an element of A (call it 𝒙0). In addition, for any 𝒚𝑖 as Φ(𝒙, 𝒚𝑖) is 

concave in x,  

 

𝑙𝑖𝑚̅̅ ̅̅̅Φ(𝒙𝑚, 𝒚𝑖) ≤ Φ(𝒙0, 𝒚𝑖), or 𝑓(𝒙0) ≥ 𝑙𝑖𝑚̅̅̅̅̅𝑓(𝒙𝑚 = 𝒗). 

 

So 𝑃⋂𝐺 = ∅. Then, G and P may be strictly separated, and it is possible to find a vector in 

𝐸𝑛 with coordinates 𝑎𝑘, such that 

 

sup
𝒙∈𝐴

∑ 𝑎𝑖(Φ(𝒙, 𝒚𝑖) − 𝐶) < ∑ 𝑎𝑖𝒆𝑖 ,

𝑛

𝑖=1

𝑛

𝑖=1

 

with the whole 𝑎𝑖 greater or equal than zero. 

 

Obviously, the 𝑎𝑖 cannot be simultaneously null. So dividing for ∑ 𝑎𝑖
𝑛
𝑖=1  and taking in account 

the convexity of Φ(𝒙, 𝒚) in y  

sup
𝒙∈𝐴

Φ(𝒙, �̅�) − 𝐶 < 0, where �̅� =
∑ 𝑎𝑘𝑦𝑘

𝑛
𝑘=1

∑ 𝑎𝑘
𝑛
𝑘=1

. 

 

In addition, evidently, or �̅� ∈ 𝐵or inf
𝒚∈𝐵

sup
𝒙∈𝐴

Φ(𝒙, 𝒚) < 𝐶.This contradicts the definition of C. 

So, 

⋂ 𝐴𝒚𝑖

𝑛

𝑖=1

≠ ∅. 

Indeed,  

⋂ 𝐴𝒚

𝒚∈𝐵

≠ ∅ 

as it will be seen in the sequence using that result and proceeding by absurd. Note that 𝐴𝒚 is a 

closed and convex set and so it is also weakly closed. And being bounded it is compact in the 



 

 

weak topology5, as A. Calling 𝐺𝒚 the complement of 𝐴𝒚 it results that 𝐺𝒚 is open in the weak 

topology. So, if ⋂ 𝐴𝒚𝒚∈𝐵  is empty, ⋂ 𝐺𝒚𝒚∈𝐵 ⊃ 𝐻 ⊃ 𝐴. But, being A compact, a finite number 

of  𝐺𝒚𝑖
is enough to cover A: 

⋃ 𝐺𝒚𝑖
⊃ 𝐴;

𝑛

𝑖=1

 

that is: ⋂ 𝐴𝑖
𝑛 
𝑖=1  is in the complement of A and so it must be  

⋂ 𝐴𝒚𝑖

𝑛
𝑖=1 = ∅, leading to a contradiction. 

 

Suppose then that 𝒙0 ∈ ⋂ 𝐴𝒚𝒚∈𝐵 . So, in fact 𝒙0 satisfies Φ(𝒙0, 𝒚) ≥ 𝐶, as requested.∎ 

 

      Then it follows a Corollary of Theorem 7.1, obtained strengthening its hypothesis. 

 

       Corollary 7.1 

       Suppose that the functional Φ(𝒙, 𝒚) defined in Theorem 2.1 is continuous in both 

variables, separately, and that B is limited. Therefore, there is an optimal pair of strategies, 

with the property of being a saddle point. 

         Dem: 

It was already seen that exists 𝒙0 such that  

Φ(𝒙0, 𝒚) ≥ 𝐶                                                (7.3) 

  

for each y. As Φ(𝒙0, 𝒚) is continuous in y and B is limited  

 

inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) = Φ(𝒙0, 𝒚0) ≥ 𝐶                      (7.4) 

for any 𝒚0 in B6. But inf
𝒚∈𝐵

Φ(𝒙0, 𝒚) ≤ sup
𝒙∈𝐴

inf
𝒚∈𝐵

Φ(𝒙, 𝒚) = 𝐶 and, so 

 

Φ(𝒙0, 𝒚0) = 𝐶.                                                  (7.5) 

The saddle point property follows immediately from (7.3), (7.4) and (7.5). ∎ 

 

         To see more details about this approach of minimax theorem, see [21-26]. 

         One last reference to Nash theorem, [27], which generalizes the minimax theorem: 

           

         Theorem 7.2 (Nash) 

         The mixed extension of every finite game has, at least, one strategic equilibrium. ∎ 

 

         Its demonstration demands, among other results, an important contribution of Kakutani 

theorem, see [28].   

 
5 See, for instance, [3]. 

6 A continuous convex functional in a Hilbert space has minimum in any limited closed convex set.   

 



 

 

8. Conclusions 

     The Hilbert spaces are one of the mathematical fields more considered in the optimization 

problems fundamentals. Therefore, their structure and respective consequences deserve study 

and reflection. This was what we tried to do here in as simple ways as we could. It is always 

important to emphasize the fruitfulness of the results in part presented in convex 

programming, for instance in Kuhn-Tucker theorem and in the minimax theorem. It is never 

too much to point out the importance of strict separation theorems in achieving these results. 

Also to refer the importance of the Riesz representation theorem in the rephrasing of the 

separation theorems, key tools in functional optimization, here in strict separation theorems. 

Ant its direct contribution in getting the Lagrange duality results. Finally, to highlight 

Theorem 2.1, by its comprehensiveness, fundamental in optimization. 
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